搜档网
当前位置:搜档网 › #1 机引风机失速分析

#1 机引风机失速分析

#1 机引风机失速分析
#1 机引风机失速分析

#1机引风机失速分析

我公司的1A引风机于2008年8月0点30分启动时发生明显异音,就地紧急停运,检修开票检查发现1A引风机入口静叶脱落一片,脱落的静叶撞击风机动叶片导致动叶片打弯变形。经联系厂家处理后1A引风机于2008年8月11日09点10分重新并入系统运行。在运行中发现容易发生风机失速现象。仅9月份就已发生4次,严重危险着机组的安全运行和引风机的安全安运行。为防止事故的发生,我们应该分析出引风机发生失速的原因;总结出风机失速时正确的处理方法;并针对风机易失速进行预防性的工作。

一、风机失速产生的机理

1.1失速的过程及现象

风机处于正常工况时,冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。

图1.失速时气流冲角的变化

风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶

轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。

图2. 风机失速时各叶片工作状况的变化

1.2影响冲角大小的因素

由于风机一般是定转速运行的,即叶片周向速度u是一定值,这样影响叶片冲角大小的因素就是气流速度与叶片开度角。如上图所示,可以看出:当叶片开度角β一定时,如果气流速度c越小时,冲角α就越大,产生失速的可能性也就越大。

从图2还可以看出,当流速C一定时,如果叶片角度β减小,则冲角α也减小;当流速C 很小时,只要叶片角度β很小,则冲角α也很小。因此,当风机刚启动或低负荷运行时,风机失速的可能性大大减小甚至消失。同样,对于动叶可调风机,当风机发生失速时关小失速风机的动叶,可以减小气流的冲角,从而使风机逐步摆脱失速状态。

1.3风机失速和喘振的关系

轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区(参见附图我厂一次风机的特性曲线)。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。如图3所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < Q K时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为H K,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时

风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于Q K,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。

风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件:

1.风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;

2.风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;

3.整个循环的频率与系统的气流振荡频率合拍时,产生共振。

旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在图3所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。旋转对风机的正常运转影响不如喘振这样严重。

风机在运行时发生喘振,情况就不相同。喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。喘振时的振动有时是很剧烈的,损坏风机与管道系统。所以喘振发生时,风机无法运行。

图3. 风机喘振曲线

失速和喘振的主要区别如下:

1.失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如:失速区的旋

转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的

影响。

2.喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特

性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,

但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。

二、我公司目前引风机存在的主要问题

1.引风机8月份检修后实际特性曲线可能不同于风机厂家所提供的特性曲线,易发生失速。

建议对我厂一次风机进行性能测试,了解我厂一次风机的真实特性。

2.两台引风机动叶角度存在一定偏差:同样的负荷下(电流相同)1B引风机静叶角度比

1A引风机大10%左右,导致两台风机并列运行特性不好,从而容易导致失速情况的发生。

3.对引风机动叶进行检查时发现引风机动叶间角度存在一定的偏差,这样会导致部分叶片

首先进入失速区,随后波及至相邻的叶片;

4.目前两台引风机均未进行失速开关定值试验,风机失速时无任何报警。

5.目前1B引风机出口压力未投用,不利于对判断风机失速。

6.引风机静叶易卡涩,静叶连杆销子易脱落。

三、我公司引风机失速的原因

风机运行中由于气流速度与流量成正比,因此正常运行中导致风机流量异常降低的因素都可能导致风机失速,而运行中有可能导致风机流量下降的因素主要有以下几个方面:

1.两台风机并列运行时风机特性相差过大,致使两台风机风量严重不平衡;

2.风机出入口风道堵塞

3.风机出口挡板销子脱落或断裂等原因导致其突然关闭或部分关闭时;

4.对于带脱硫系统的机组来说,增压风机入口静叶操作导致引风机出口管路压力突然上

升时。

经查阅曲线,我们发现9月份几次引风机失速均与增压风机的操作有关,具体见下表:

通过上表可以看出每一次引风机失速均和脱硫增压风机在旁路挡板关时入口静叶关到30%左右导致引风机出口压力高,101077

四、我厂一次风机发生失速的情况介绍及处理方法:

我厂#3机组分别于2006年10月19日及24日两次发生一次风机失速情况。

10月19日,#3机组负荷150MW,一次风机3A、3B处于自动方式,值班人员发现两台一次风机动叶开度逐步开足,而一次风母管压力变化不大,同时一次风机3B振动上升,巡检人员至就地进行检查,发现一次风机3B就地有异声,同时一次风机外壳温度较高,判断

一次风机3B发生失速,手动关小一次风机3B及3A动叶,一次风机3B动叶关至60%后,一次风压明显上升,振动恢复正常数值,同时一次风机3B出口温度显示明显上升(最高至65?C,说明一次风机3B彻底脱离失速区,机壳热量被带至风机出口)。

图5. 10月19日#3机一次风机3B失速时的参数曲线

10月24日,#3机600MW,给煤机3A跳闸,手动停运磨煤机3A后联关磨煤机出口关断阀,一次风流量下降100t/h后导致一次风机出口压力上升(从8.84 kPa上升至9.25kPa),一次风机3A电流从66A下降至61A,振动从52μm上升至86μm,出口温度从30?C上升至35?C并有上升趋势,就地检查一次风机3A有异声。判断一次风机3A发生失速后,手动关小一次风机3A动叶开度,在动叶关小时过程中一次风机出口压力有逐步上升的现象,此时逐步关小正常运行的一次风机动叶开度,降低背压,以助于发生失速的一次风机尽快脱离失速区。(降低正常运行的一次风机动叶开度时应注意各台磨煤机一次风量的变化,以防一次风量过低造成磨煤机跳闸)。当一次风机3A动叶开度从63%关至49%时,一次风压快速上升,一次风机振动恢复正常,同时出口温度出现回落现象,一次风机就地外壳温度及振动也恢复正常,风机运行正常后逐步提高两台一次风机出力。

图5. 10月24日#3机一次风机3A失速时的参数曲线

五、总结以上两次失速的情况,一次风机发生失速主要有以下现象:

1、发生失速时一次风压下降;

2、DCS上发生失速的一次风机出口温度上升;

3、发生失速的一次风机振动上升;

4、发生失速的一次风机电流下降;

5、就地检查一次风机有异声,外壳温度上升,振动加剧。

六、发生风机失速时的处理:

从以上分析中可以得出处理失速方法的本质是设法减小冲角,恢复叶片线形绕流。实际运行中当风机发生失速时应采取以下紧急处理方法:

1、通过以上介绍的风机失速时的现象迅速判断哪一台发生失速;

2、快速降低机组负荷,降低运行磨煤机的煤量,减少一次风系统阻力,以防一次风量低造成

磨煤机跳闸;

3、缓慢降低发生失速风机的动叶角度,注意风机出口压力变化,当风机出口压力上升时,说

明该风机已开始逐步脱离脱流区域,此时可逐步关小另一台一次风机的动叶,并注意一次风母管压力以及各台磨煤机一次风量的变化;(由于风机发生失速时出力已大幅度下降,关小失速风机不会造成一次风机母管压力下降,相反,关小动叶后由于冲角下降,风机失速程度降低,风机出口压力会有所上升,当风机出口压力上升后关小另一台风机动叶开度会有利于失速风机快速脱离失速区)

4、注意发生失速的一次风机振动及出口风温、风压变化,并对一次风机进行就地检查,当一

次风机出口风温及风机振动恢复正常时,说明一次风机已脱离失速区,此时可逐步调平两台一次风机的出力。

七、防止一次风机发生失速的预防措施

1、目前一次风压自动暂不投入,以防在自动情况下风机动叶开度大后进入失速区域;

2、正常运行中,尽量保持两台送风机的出力相平衡,注意维持两台一次风机电流、开度及

出口压力尽量接近,建议不同工况下一次风机开度如下:

3、建议正常情况下保持一台停运的磨煤机一次风量有约30t/h的通流量,以加大总一次风

的流量,降低一次风系统的阻力,使一次风机的工作点远离失速区。此外,采取这一措施一方面发生一次风压低时可快速关闭该磨通道,保持正常运行磨煤机的风量,另一方面也可减少暖磨时间,一旦发生一台磨煤机跳闸,可迅速启动该台备用磨煤机,满足调度的负荷需求;

4、机组运行过程中注意两台一次风机出口温度,当出口温度有上升现象后应及时到现场进

行检查,注意风机壳体温度及振动情况的变化,并注意检查风机是否有异声;

5、机组运行过程中,巡检人员加强对两台一次风机的检查,注意风机壳体温度及振动情况

的变化;

6、建议热工一次风压自动时一次风压应根据磨煤机运行台数改变定值(控制策略可参照#2

机组),这样可保证各个不同工况下一次风机运行均具有较大的安全性。

八、目前有待于解决的问题:

1、要求沈阳鼓风机厂尽快解决一次风机及送风机零位偏差及两侧风机特性偏差问题,消除一

次风机动叶角度偏差的现象;

2、一次风机及送风机零位解决后应尽快正常投用喘振报警;

3、解除磨煤机停运自动关磨煤机出口关断阀的逻辑,防止磨煤机正常停运后出口关断阀关闭

后造成一次风压波动过大,使一次风机进入失速区;

4、增加三大风机外壳温度测点,并将信号送至DCS,以便于运行人员及时发现风机失速现

象;

5、尽快进行一次风机性能试验,确定实际风机特性和厂家所提供数据的偏差。

附:我厂一次风机特性曲线

一次风机失速现象原因分析及处理措施

一次风机失速现象原因分析及处理措施 [摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。 [关键词]冲角;失速特性;现象;处理措施 风机的失速现象主要发生于轴流式风机。而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。 1 失速产生的机理 1.1 失速的过程及现象 轴流风机的叶片均为机翼型叶片。风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。 风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。 1.2 影响冲角大小的因素 王滩电厂的一次、送、吸风机都是定转速运行的,即叶片周向速度u是一定

火电厂锅炉引风机抢风的影响因素及解决措施探讨

火电厂锅炉引风机抢风的影响因素及解决措施探讨 引风机是锅炉烟风道系统中的重要组成部分,对于锅炉的高效运行具有重要的意义,进而影响到火电厂的经济效益。一旦引风机发生抢风现象,不仅会对系统内设备本身造成一定的损害,同时严重影响到锅炉的运行状态,甚至会引发安全事故,为火电厂的安全稳定运行带来巨大的威胁。文章对于影响火电厂锅炉引风机抢风的因素进行了分析,进而提出了解决的措施,对于提高锅炉引风机运行的稳定性具有重要的意义。 标签:火电厂;锅炉引风机;抢风;因素;解决措施 引风机是火电厂中的一种大型回转设备系统,其主要是依靠机械能提高气体压力并且排送气体,从而为烟风系统的高效运行提供充足的动力,对火电厂的高效生产创造了有利的条件。在引风机运行的过程中,由于烟囱的通风能力不佳、空气预热器堵塞、锅炉运行参数不达标以及其他设备的运行状态不正常等,都会导致引风机发生抢风现象,从而降低运行效率,并且对相关设备产生不利影响。经过调查分析,在大多数火电厂中的锅炉引风机都存在抢风现象,所以为了保证设备运行的稳定性和安全性,要对其影响因素进行分析,进而制定出完善的解决措施,降低引风机抢风现象的发生几率,为火电厂的高效运行创造有利的条件。 1 锅炉引风机发生抢风的常见因素 1.1 烟囱通风能力减弱 烟囱的通风能力对引风机的运行状态会有一定程度的影响,烟囱为竖向结构,所以通风能力由其自身产生,并且向上。在增压风机运行的过程中,所产生的压力会降低烟囱的通风能力,加之其自身也存在的一定的阻力,所以通风能力就会下降。在锅炉运行负荷以及排烟温度降低到一定程度时,整个管网的阻力会随之上升,而管网阻力的特性曲线受到破坏时,就会导致引风机发生抢风现象。 1.2 空气预热器出现阻塞 当引风机的出风管道偏离风机的工作区域时,其工作效率就会下降,进而影响到锅炉的出力状况,烟气在水平烟道中的流动速度会降低,长此以往,烟道中会积存大量的灰尘,从而造成空气预热器堵塞,导致引风机抢风。 1.3 锅炉运行参数与引风机设计参数不符 为了确保锅炉的正常运行,需要使用适宜的引风机,在各方面的参数一定要相符。如果引风机与锅炉运行的设计参数不匹配,引风机所选的型号越大,其所产生的风压以及风量就会越大,当供风量超出了锅炉所需的范围时,锅炉的烟风系统无法承受这种压力和风量,引风机的风速就会失控从而导致抢风现象。而在锅炉运行负荷较小时,处于并联状态的两台引风机和失速区的距离就会更接近,

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

1000MW机组引风机失速原因分析及防范措施

1000MW机组引风机失速原因分析及防范措施 发表时间:2019-04-11T16:40:11.970Z 来源:《电力设备》2018年第30期作者:吴鹏刘敏 [导读] 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 (国电浙能宁东发电有限公司宁夏银川市 753000) 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 关键词:引风机;失速;事故处理;防范措施 某电厂3号机组2台引风机为成都电力机械厂的AP系列动叶可调轴流式通风机(HU27448-222G),针对该厂3号机组引风机A失速异常现象,通过查找引风机重要参数曲线,对事故处理过程及原因进行分析,对保障机组风机安全运行提出了防范措施,对国内同类型 1000MW机组引风机异常处理具有良好的借鉴意义。 1事故经过 2018年1月7日0∶18∶38,3号机升负荷至998MW,之后3号机组处于满负荷稳定过程,引风机动叶处于自动调节,炉膛负压约为-92Pa,此时A动叶开至最大为93%,电流为761.52A,B动叶开至90%,电流为796.6A,相差最大约为35A,且A动叶执行机构开至最大为93%。 1∶32∶18,引风机A动叶开至最大93%,电流为755.88A,B动叶开至93%,电流为839.56A,电流相差最大约为75A,且还有电流偏差增大的趋势。 1∶38∶23,引风机A失速报警发出。运行监盘人员发现引风机A电流由757.24A突降至541.39A,最大幅度达到210A。引风机B电流由846.12A突降至823.25A,电流仅降25A。送风机A从166.74A升至167.85A(最大升幅为1.1A),送风机B从161.49A升至162.37A(最大升幅为1.1A),送风机电流几乎无异常波动。 2引风机失速原因 2.1轴流风机失速 轴流风机性能曲线的左半部有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。在其它因素都不变的情况下,轴流风机叶片前后的压差大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成正比,不同的叶片叶型有不同的临界冲角值。翼型的冲角超过临界值时,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”。 2.2风机失速的危害 对风机本身而言,若在失速区域长时间运行,将导致叶片断裂,且叶轮的机械部件也可能损坏。英国HOWDEN公司有明确规定:风机在失速区内累积运行时间不能超过15h,否则要更换叶片。对机组而言,若风机发生失速,造成风机跳闸,将直接联锁单侧通风组停止,机组减负荷;间接地引起炉膛正压或负压超限,锅炉发生MFT,联锁机组跳闸。因此,轴流风机运行中必须防止其发生失速。 2.3引风机失速现象 (1)负荷低于450MW运行时,在相同静叶开度情况下,两台引风机电流基本一致,风烟系统抗干扰能力较强,引风机自动调节可以正常投运。 (2)负荷高于450MW运行时,在相同静叶开度情况下,A引风机电流略高于B引风机,负荷越高偏差越大。 (3)450MW以上高负荷工况下,当B引风机电流高于A引风机运行时,A引风机易出现失速,同时B引风机出现明显抢风现象。600MW 工况失速时,A引风机电流由约240A陡降至约170A,而B引风机电流也由约240A陡升至约275A,炉膛负压剧烈波动,引风机自动调节退出。 3引风机失速后的处理方法 (1)当风机失速时,首先解列炉膛负压自动,控制另一台风机电流、振动和炉膛负压在规定范围内。 (2)为防止炉膛压力过高或风机电流过大,必要时可适当降低机组负荷和送风量,以防止风机掉闸和锅炉灭火。 (3)根据当前烟气流量和风机出入口差压,采取降低未失速风机出力、适当抬高炉膛压力和降低引风机出口压力等措施,判断能否将风机比压能降至水平失速线下。因为水平失速线全压升约2.08kPa,因此,未失速风机入口压力在3.0kPa以下,方便直接进行2台引风机的出力调整,否则,必须通过采取加强布袋除尘器清灰、投入检修布袋通道等方法来消除烟道异常阻力以及降低烟气量。 (4)在风机失速情况下的紧急清灰过程中,应尽量维持较低的炉膛压力、较高的引风机出口压力和较低的烟气流量,以提高清灰效果,同时加强清灰设备的检查消缺工作。 (5)在进行引风机调整时,在满足炉膛压力不超过1000Pa的条件下,可将2台风机转速调整一致,然后逐步关小失速风机静叶,同时关小另一台风机静叶,保持2台风机静叶开度基本一致,以防交替失速抢风。在失速现象消除时,风机调节装置开度与相同负荷下的烟气量基本匹配,以防止炉膛负压剧烈波动。将未失速风机工作点拉至失速线以下才能使失速风机并列出风,此时炉膛压力必然显示冒正,使布袋清灰效果下降,因此,必须尽量缩短风机并列过程。 (6)风机并列后,先观察布袋差压变化情况和失速裕量是否满足提升风机出力要求。然后根据情况逐步调整炉膛负压至正常范围,若并列过程时间较长且布袋差压明显增加时,必须在增加引风机出力的同时适当增加送风量,以保证足够的失速裕量,从而防止再次发生失速抢风。 4防范措施 为解决机组运行中引风机出现的失速现象,必须使风机的实际运行工作点远离理论失速界限,为此提出相应的解决措施如下。

一次风机失速事件分析

一次风机失速事件分析

2011年6月11日#1机组B一次风机失速异常事件一事件前运行工况: 1、#1机组负荷413MW,A、B、C、D、F磨运行。总煤量为262吨,一次风母管压力为9.37kpa,B一次风机出口压力11.827KPa ,B一次风机电流130A,动叶开度61%;A一次风机电流125.3A,动叶开度59.6%,风机出口压力11.66KPa。六台磨风量总和为477吨/小时。 2、E磨备用。E磨冷风门开度13%、热风调整门、气动门、锁紧门关闭状态,E磨通风流量8.4t/h,入口风压0.31KPa。 3、A磨为烟煤,煤量58 t/h、风量91.4t/h、入口风压8.54KPa。 B磨为褐煤,煤量50 t/h、风量93.1 t/h、入口风压8.54KPa。 C磨为褐煤,煤量为57 t/h、风量为93.4 t/h、入口风压 8.49KPa。D磨为褐煤,煤量为48 t/h、风量为94.0 t/h、 入口风压8.53KPa。F磨为褐煤,煤量为50 t/h、风量为96.6 t/h、入口风压8.59KPa。 二、事件经过: 1、10时04分,B一次风机失速 (1)机组长王虎立即汇报值长,值长刘学会令解AGC、解协调,减负荷,投入上排、中排油枪增加锅炉热负荷、稳燃; (2)主值班员石伟解除A、B一次风机自动,手动并列一次风机。2、10时05分B磨跳闸( B磨跳闸原因为:失去煤火检) (1)立即启动E磨煤机运行; (2)同时将B磨跳闸首出复位后并提升磨辊,使其具备启动条件。

9、10时16分机侧汽温降至480℃,值长刘学会令开启各蒸汽管道和气缸疏水;并派人到就地检查机侧各蒸汽管道无异常,机组振动、胀差均正常。 10、10时17分一次风机并入正常运行。 11、10时18分主汽温度降低到最低430℃。 12、10时20分主汽温度升高到460℃。 13、10时29分主汽温度升高到529℃,负荷恢复到360MW. 机组各参数逐渐恢复正常运行。 三、原因分析 1.B一次风机第一次失速的原因: (1)E磨停止运行后没有按规定通风,而E磨冷风入口又靠近B一次风机出口,所以E磨停止通风使B一次风机出口阻力增加流量降低,一次风母管压力未发生变化情况下,一次风流量由508.5吨/小时,降至497.3吨/小时(2)在风机失速前运行的磨煤机一次风流量均有不同程度的降低(风量由100t/h左右降至93t/h左右,六台磨煤机总一次风量由497.3吨/小时降至477吨/小时),磨煤机出入口压差均有不同程度的升高,通过这两点说明在风机失速前磨已有轻微堵煤现象发生,使一次风系统通风阻力增大。两项因素的共同作用,在一次风机出力随机组负荷变化而进行调整时,使B一次风机运行工况进入失速区而发生失速。 2.B一次风机第二次失速的原因: (1)在处理第一次风机失速时,没有及时解炉主控将各磨的煤量降

引风机抢风原因分析

关于我厂#2炉引风机抢风原因分析及个人处理意见 引言:近期我厂#2炉频繁出现引风机抢风现象,运行人员都根据轴流式风机的工作特性经精心调整后恢复正常,未发生事故.我在夜班期间应姚主任令,进行了一下分析.由于本人水平有限且不是当事人分析如下,仅供参考 一. 我查了一下最近四次引风机抢风前后工况如下表 二. 抢风现象 当两台引风机进入抢风区域后,风机电流大幅波动最大可达几十安,在把引风机出力调平过程中,多次出现两引风机出力互换,电流互换,工作点互换的情况,并伴随负压的波动.区别于#1炉引风机出现过的喘震,负压的波动没有周期性,应不属于共振.虽然抢风可以引起喘震,就以上四次现象分析,并未发生喘震. 三. 原因分析 1. 两台风机并列运行,风机的实际运行状态不仅取决于其本体的性能,还取决于整个管路的特性,风机的工作点即是风机性能曲线与风道特性曲线的交点.当风道的特性曲线与两台风机的合成性能曲线交于驼峰点后时,可形成稳定工况,若与性能曲线交于驼峰前,则进入抢风区,两个风机的工作点受到扰动就会互换. 2. 造成风机进入抢风区的最常见的原因就是风道的阻力系数增加,管路特性曲线变陡我厂风机在低负荷时发生抢风就属于这个原因 3. 我厂#2炉的空预器堵灰严重是造成管道阻力增加而抢风的重要原因.但我认为这几次引风机抢风的主要原因在于引风机后的烟道受阻即脱硫问题.原因如下: A. 此几次抢风均发生于脱硫旁路烟气挡板全关或正在关的状态下, B. 在引风机出口烟气压力不低于-300PA(31日三值早班)我将引风机开至接近各个抢风情况下的开度,未发生抢风现象.切通过调历史曲线抢风均发生于引风机出口烟气压力较低值 C. 由于空预器堵造成的空预器两侧二次风差压增加在低负荷较#1机约大0.2KPA,而次几次抢风前引风机出口压力值较正常高出约0.3KPA. 四. 防范措施 1. 加强脱硫管理,当旁路挡板全关,且#2炉处于低负荷时其增压风机的出力应保证不得使引风机出口负压低于一定值 2. 加强GGH管理防堵 3. 加强空预器吹灰 4. 利用停炉时间清洗空预器 5. 有些电厂对烟道进行改造,省煤器下设灰斗,定期放灰.布置我厂是否适合 6. 在此段时间若脱硫,空预器都无法满足要求,可以在低负荷降低风箱差压,来减少烟道阻力 五.结束语,综上是我对我厂#2炉引风机抢风原因分析及个人处理意见,希望领导能够对我的分析进行批评与指教 时间 3月29日04:16 3月30日06:01 3月29日00:48 3月28日22:46 抢风前稳定后抢风前稳定后抢风前稳定后抢风前稳定后 A引风机电流(A) 90 89 96 103 90 90 93 90 B引风机电流

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

火电厂锅炉引风机抢风问题与应对措施

火电厂锅炉引风机抢风问题与应对措施 在火电厂的运行中,锅炉是其中最为基础、重要的设备,如果其中的引风机发生抢风的现象,则会直接影响锅炉的效率。对此,本文将深入研究火电厂锅炉引风机抢风问题及相应的应对措施。 标签:火电厂;锅炉;引风机;问题;对策 1火电厂锅炉引风机抢风问题 1.1设计参数 在火电厂运行中,如果引风机的风机有着过大的选型,就会增大风量和风压,导致抢风问题以及风机失速问题的出现。若引风机是两台并联运行,那么如果锅炉处于小负荷状态,就会导致工作点与失速区非常接近,如果在一定程度上改变了工况,导致抢风问题发生。 1.2脱硫系统无法正常工作 在火电厂锅炉的运行中,脱硫系统出现异常是锅炉引风机抢风的关键因素。当脱硫系统处于正常运行的状态时,增压风机能够将脱硫系统产生的阻力抵消掉,此时增压风机、锅炉引风机之间,形成了一种串联的关系。所以,如果增加风机出力明显大于脱硫系统时,那么增压风机就会对引风机产生助力作用,强化引风机的运行效果。反之,如果增加风机出力明显小于脱硫系统时,那么引风机就会对增压风机产生助力作用,影响平衡增压风机的运行效果,增加系统中管网的阻力,最终形成引风机抢风的问题。 1.3堵塞问题 通过实践研究表明,如果有堵塞问题出现于空气预热器中,那么风机工作区就不能够匹配引风管道系统的出力特性,会导致抢风问题出现在引风机中。引风机如果在空气预热器的作用下,出现了抢风问题,那么引风机就无法进行平衡的处理,会使引风机的工作效率降低,并且锅炉出力也受到了较大程度的影响,降低了水平烟道的烟气流速;出现了这种问题,如果不及时采取有效的处理措施,再继续长时间运行,就会导致更加严重的问题出现于烟道中,如飞灰沉积等等。 1.4漏风问题 对于火电厂的锅炉来说,其系统属于一个整体,要想强化引风机的运行功能,就必须在根本上提高系统的密闭性。但实际上,火电厂锅炉在运行中并不能避免漏风的问题,而出现这一现象是因为烟道设计、锅炉本体的设计存在诸多不合理的因素。当锅炉漏风时,其中的烟气就会出现体积膨胀的现象,使得烟气的流速提升。另外锅炉本身的漏风现象,还会使得炉膛的温度降低,在一定程度上影响

600MW机组引风机失速、喘振异常的分析与探讨

600MW机组引风机失速、喘振异常的分析与探讨 发表时间:2018-01-10T11:10:17.063Z 来源:《电力设备》2017年第27期作者:张立刚 [导读] 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。 (陕西德源府谷能源有限公司陕西榆林 719400) 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。笔者结合大型锅炉引风机的工作特点,就失速、喘振等异常情况进行了分析,总结了风机型号选择、运行方式等方面存在的问题,希望可以为大型锅炉引风机相关异常的处理提供借鉴。 关键词:大型锅炉;引风机;失速;喘振 国家环境保护部在2011年颁布《火电厂大气污染物排放标准》,要求燃煤机组燃烧排放的烟气中氮氧化物浓度不能超过100mg/m3,现在全国各电厂陆续进行更为严格的超低排放改造,电力企业纷纷对锅炉低氮燃烧器、分级配风及加设SCR脱硝装置改造,实现对氮氧化物排放的有效控制,这种改造需要在烟道中安装两层催化剂,烟道阻力约增加1000Pa。引风机作为火力发电厂主要辅机设备,其耗电量占机组厂用电率的比重较大,加装SCR系统的机组大量喷氨降低氮氧化物,氨逃逸率过大使硫酸氢铵大量增加,而在160-230℃温度区间,硫酸氢铵是一种高粘性液态物质,粘附烟气中的飞灰颗粒板结在空预器换热元件上,导致空预器阻力增加,进一步增大了引风机出力,而且按原来风烟系统阻力选型的引风机调整范围变窄,易引起风机喘振等现象。 一、锅炉引风机失速、喘振异常概述 1.1引风机失速、喘振异常的发生原理 首先引风机失速即叶片叶弦的夹角和气流方向被称为冲角,会使进入风机叶栅的气流冲角随着开得过大的风机动叶而增大,一旦冲角超过临界值,叶片背面尾端立即会出现涡流区,冲角超过临界值越多则表示失速越严重,同时会加大流体阻力,进而堵塞流道,降低风机风压后引发喘振。 其次轴流风机运行中喘振是最特殊的现象,风机风量与出口压力不对应是造成风机喘振的原因。喘振指风机在运行于不稳定区域内并引起电流、风量和压力的大幅度脉动及管道和风机剧震动的现象。高压头,大容量风机发生喘振的危害很大,会直接损坏设备和轴承,锅炉的安全运行也会受风机事故的直接影响,总而言之,失速是发生喘振的基本因素,然而失速却不一定会是喘振,它只是单纯地失速恶化表现。 1.2引风机失速、喘振危害 失速导致风机损坏,由于旋转失速使风机各叶片受到周期性力作用,若风机在失速区内运行相当长时间,会造成叶片断裂,叶轮的其它部件也会受到损害。失速导致喘振,若管道系统容积与阻力适当,在风机发生失速压力降低时,出口管道内的压力会高于风机产生的压力而使气流发生倒流,管道内压力迅速降低,风机又向管道输送气体,但因流量小风机又失速,气流又倒流。伴随喘振的发生,风机参数也大幅度波动,振动剧烈。可在很短时间内损坏风机,必须立即停止风机运行。风机发生喘振、失速时,造成炉膛压力大幅波动,锅炉燃烧不稳定,在高负荷发生时,可能导致风机跳闸、机组RB降出力、锅炉灭火等事故。风机喘振时,风机的风量和风压、电动机电流急剧波动,产生气流的撞击,振动显著增加,噪声巨大,此时风机叶片、机壳、风道均受大很大的交变力作用,会造成风机严重损坏,风机的容量与压头越大,则喘振的危害性越大。因此,轴流风机应避免在失速、喘振状态下长时间运行。 二、锅炉引风机失速、喘振异常的原因 2.1风机失速原因 如果风机长时间运行于失速区,必然会损坏叶轮的机械部件或造成叶片断裂,因此则有相关风机制造厂规定,如果风机运行于失速区域内超过15h则需立即更换叶片。但对于机组来说,风机失速会造成设备出现跳闸现象,同时会减少机组负荷及迫使单侧通风组停止运行。喘振前机组负荷为600MV,引风机动叶开度在93%左右,引风机喘振时的进口压力、电机电流和进口烟气流量呈大幅度周期性脉动,同时炉膛负压的波动也较大。引风机出现喘振时首先发生喘振的B侧引风机,电机电流也下降到215A,之后A侧引风机也开始出现喘振,还产生抢风现象,导致进口烟气流量、进口压力、电机电流的波动变化较大。恰好引风机附近有运行人员巡检,当场听到周期性和剧烈的噪音与振动。 2.2引风机喘振原因 空预器的烟气侧压差过大增加引风机进口管路阻力,最终出现管路特性曲线中所显示的变陡现象。对此引风机需不断增加出力使炉膛负压维持到相应的范围,引风机电流会随着动叶不断地开大而增加,进而导致引风机进入不稳定工况区域,造成引风机失速,失速恶化则会发生喘振并发展为和另一台引风机抢风情况,最终导致两台引风机进口烟气流量、电机电流、进口压力出现大幅度交替脉动,使机组和设备的安全运行受到严重威胁。 2.3引风机失速与喘振的联系和区别 轴流式风机的基本属性即失速,每个引风机上的叶轮可以都会出现不稳定的失速现象,但这种失速现象是肉眼看不到的,处于隐性之中。肉眼无法看到的,因此只能采用高频测试器和高灵敏度仪器对其探测。但喘振和它不同的一点就在于是显行的。风机的流量、压力、功率等脉动会在发生喘振时伴随着噪声有剧烈明显的晃动,但需指出的一点是,喘振只会出现在一定的条件内,如同等风机安装在不同系统就会出现喘振和不喘振现象。此外,叶片结构特性也是造成风机失速的因素之一,从开始到结束其基本规律都一直存在,其运行不会受系统容积形状的影响。风机与系统耦合的振荡特性是喘振的表现形式,风道容积在一定程度会限制其频率和振幅,在发生失速时尽管叶轮附近的工况会出现波动,然而整台风机的流量、压力和功率基本不会受失速影响,依旧保持稳定运行。但需指出的的是,整台风机的压力、流量和功率在发生喘振时会遭到大幅度脉动,致正常运行无法维持。此外,失速是降低压力的关键因素,它只存在于顶峰以左的区域段,喘振只发生于风机特性曲线的坡度区域段,二者有着紧密联系,因而喘振发生和失速的存在息息相关。 三、锅炉引风机失速、喘振异常解决办法 3.1合理选择引风机型号和型式 风机选型的合理确定是保证其经济安全运行的前提,其设计参数更要严格把握,如果参数过大,会导致风机不能运行在高效区域内,

探讨电厂锅炉引风机抢风问题

探讨电厂锅炉引风机抢风问题 作为火电厂的重要设备之一,引风机影响着烟风系统的正常运行,也影响着整个火电厂的正 常运行。随着相关技术的发展,现阶段国内火电厂通常采用两台以及两台以上引风机并行工 作的方式保障火电厂的正常运行,这种方式可以确保在一台引风机出现故障时另一台引风机 可以维持火电厂的运行。在实际运行过程中,作为火电厂发电机组的重要辅助设备,引风机 的实际运行状况不但取决于自身的性能,还受到整个火电厂管路性能的影响。常见的火电厂 引风机抢风问题主要有:锅炉运行参数和引风机设计参数不符合、火电厂脱硫系统没有正常 运行、空气预热器堵塞、锅炉烟道漏风、锅炉负荷较大、烟囱排风能力较差,下文对这些问 题进行相应的分析和探讨。 1 电厂锅炉引风机抢风问题原因分析 1.1 锅炉运行参数和引风机设计参数有偏差 在火电厂实际运行过程中,如果锅炉配备的引风机选型太大,会产生较大的风量和风压,在 不能和锅炉烟风系统正常匹配的情况下,会发生风机失速、抢风故障。在采用并行工作的两 台引风机处于小负荷工作状态时,就会导致引风机的工作点接近于失速区,一旦工作情况发 生变化,就会出现引风机抢风故障。 1.2 火电厂脱硫系统出现不正常运行状况 在实际火电厂运行过程中,如果相应的脱硫系统可以正常运行,在增压风机运行的情况下可 以减缓脱硫系统运行增加的阻力,在这种状况下,增风压机和锅炉引风机会串联在一起运行,共同发挥相应的作用,但是当增风压机产生的力比整个脱硫系统产生阻力时,就会导致增压 风机作用于引风机。当增风压机产生的力比整个脱硫系统产生阻力小时,就会导致引风机作 用于增压风机。因此,在整个脱硫系统产生阻力和增压风机产生力存在一定偏差时,会形成 一定的作用力,尤其是在脱硫系统阻力大于增压风机产生力时,会导致相应的管网阻力增大 从而发生引风机抢风故障的发生。 1.3 空气预热器堵塞 在实际运行过程中,如果空气预热器发生堵塞状况,将会导致引风管道系统的出力特性和风 机工作区产生一定的偏差,就会导致引风机抢风状况的发生。在引风机由于空气预热器故障 发生抢风现象之后,锅炉引风机的处理工作就会发生一定的平衡失调,导致引风机工作效率 大大下降,致使锅炉出力受到严重的影响,从而致使水平烟道烟气流速降低,在长期的这种 运行状况下,就会导致烟道内发生飞灰沉积现象。 锅炉本体、尾部烟道出现漏风 在锅炉本体或者尾部烟道出现漏风情况时,会导致烟气体积发生增大现象,致使烟气流动速 度逐渐加快。随着运行,炉膛内部温度也会逐渐降低,导致相应的燃料无法充分燃烧,导致 烟道尾部的受热面出现堵灰故障,导致管网阻力会逐渐增大,引风机的运行工况点会逐渐进 入非稳定的工作区域,导致引风机抢风故障的发生。 1.4 锅炉负荷不稳定或煤种偏离 在处于低负荷运行状况时,锅炉内负荷会发生比较大的幅度波动,或者实际运行燃烧的煤种 与设计运行存在较大的偏差时,尤其是实际煤种存在较多灰分、硫分时,在实际燃烧过程中 就会导致烟气中含有过量的铁离子和硫酸盐,导致烟道系统中空气预热器和省煤器等设备出 现结渣堵灰情况,从而导致管网阻力逐渐增大,如果相应的设备长期处于这种状况,就会导 致管网阻力特性曲线发生破坏,导致引风机出现抢风故障。

风力发电机简述

风力发电机简述 日益加剧的世界能源危机和环境恶化问题,迫使人类在能源使用方式和能源使用类型选择上做出改变。节能减排、开源节流,发展低碳化经济等一系列体现环境友好的政策陆续出台。在世界范围内掀起了以保护环境,促进人类可持续发展为特征的新能源产业运动。其中,以风能为能源来源的风力发电产业在近期发展迅速,成为新能源产业里发展最具产业性、系统性、商业性的产业。本文将简要介绍风力发电机的发展历史和水平轴风力发电机原理与技术。 一、风力发电概念 1.1相关概念 风能是指:地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。简单地说,风能就是“风" 所蕴藏的能量。由定义可以知道它包含六层含义:第一,风能是太阳能的一种形式;第二风能是一种动能;第三风能的分布是全球性的;第四,风能是一种自然界本身自有的既存的能量形式;第五,是不排放污染物的清洁能源;第六,是可以再生的能源。对风能进行界定最重要的结论莫过于其是一种可利用的清洁的资源。亦即,风能是可以持续利用的与自然环境“友好”的自然资源。 风能的利用主要是以风能作动力和风力发电两种形式,其中以风力发电为主要的利用方式。以风能作动力其实就是利用风的运动带动机械装置实现人类生产和生活目的。风力发电则是将风的动能转化成电能的形式。风力发电机也就是将风能转化成电能的装置。 1.2 风能利用的优势 风能利用具有巨大的优势,主要表现在以下几点: (1)风力资源非常丰富; (2)风力资源是清洁型,节约型能源; (3)风能是一种便宜的能源; (4)风能对土地的占用率极小; (5)风能非常安全; (6)内陆地区的风能利用能带来更好的经济效益; (7)风能利用的巨大优势; (8)风能技术有广泛的适用性; (9)风能技术对于发展中国家来说是比较理想的; (10)风能的利用是一种先进技术的利用; (11)风能的发展增加就业机会; (12)风力发电机有非常好的可靠性。 1.3 风能利用的局限 虽然风能是一种可以利用的自然界白生能源,但其自然属性不因人类的科技技术能力的提升的而有改变,人类对风能的利用只是在无限的了解其自然属性。因其自然属性之下生成的利用风能困难的表现:第一,时间与地点相异的条件下,太阳辐射强弱不一导致气压差大小的多变,因而使得风的流动快慢不一,表现在:风速不稳定,产生的能量大小不稳定,这种不稳定性是人力无法改变的。第二,太阳辐射的“全球性”反而成为了风能利用的极大限制因素。地球表面的地貌状况是千变万化的,太阳辐射产生的气流运动因地理状况而存在差异。适合人类生存的地理环境不一定会有丰富的风能,且一般情况下风能资源丰富的地区是不适合人类聚居的。故而风能全球性分布的价值性因风能自然属性与人类社会发展相冲突大

风机在运行中失速的原因分析及应对措施

风机在运行中失速的原因分析及应对措施 摘要:随着我国经济的快速发展,我国的环保工作也进行得如火如荼,成效显著。但我国产业结构仍处于高能耗模式当中,这种产业机构不利于我国环境治理 工作的顺利开展。为了优化我国产业结构,协调环境保护工作,要求在火力发电 机组中通过引进先进的技术或设备,提高供电效率,实现产业结构优化。鉴于此,本文主要介绍了某电厂 300MW 机组引风机的特性及技术参数。在此基础上,分 析引风机失速的原因、失速后的处理,以及采取防止引风机失速措施。 关键词:引风机;风量;转速 引言:本文以某锅炉厂生产的型号为:型号:DG1025/18.2-∏6,型式:亚 临界参数、四角切圆燃烧方式、自然循环汽包炉,单炉膛、一次再热、平衡通风、固态除渣露天∏型布置,全钢架、全悬吊结构的燃煤锅炉。在运转工作中,锅炉 配备一台50% 容量的电动引风机。由于燃用煤种硫份含量偏高及超低排放要求, 造成机组空预器差压逐渐增大,随之而来引风机失速频繁发生。 1引风机在生产中的应用 该厂引风机在低负荷时则采用两路汽源并用来降低小机排气温度,以实现机 组运行的安全性;小机排气可通过背压机对热网供热,进一步降低供电煤耗,提 高上网电量。同时引风机可以实现变转速调节负荷,减少节流损失,避免了引风 机对厂用电系统的电压冲击。从引风机实际运行情况来看,其具备低能耗、高效 率的优点,能为企业带来巨大的经济利益和环保效益,对企业的产业结构优化具 有促进作用,意味着其逐步成为一种趋势,在发电产业中具有良好的发展前景。 2该引风机设备参数 该电厂工程采用引增合一,引风机为成都风机厂生产的静叶可调轴流式风机,引风机由东方有限公司生产。引风机调整方式转速及静叶配合调节。该引风机技 术参数详见表 1。 表 1 该引风机技术参数 3引风机失速分析 3.1机组正常运行一段时间后,随着空预器堵塞的加剧,空预器进出口烟气侧和风量侧差 压持续上升,造成引风机入口风量低于设计值。机组负荷 300MW 时,引风机进口风量(低 温省煤器投运)DCS 数据计算来为 255m3/s,而设计为235m3/s,已严重偏离设计工作点, 造成风机易进入失速区域。 3.2采取低氧燃烧措施后,烟气量偏小。 3.3引风机的轮机性能存在一定差别,造成两台机器工作点不一致。 3.4风机出力偏差未结合风机工作点进行调整,使并列风机流量偏差增加。 3.5烟道阻力有一定偏差,烟气温度低,烟道阻力大的风机所需全压升高、容积流量小, 更容易被抢风而引起失速。 3.6风机在炉膛压力大幅度波动及机组负荷变化时,并列引风机进汽调门性能不一致,造 成风机短时间出现出力偏差增加,工作点偏移抢风。 4引风机失速后的处理方法 4.1发生引风机失速时运行人员应先判断哪台风机失速,一般引风机入口负压小的风机为 失速风机。立即手动解除两台引风机小机转速和静叶自动,手动进行调整。 4.2投入等离子进行稳燃,快速降负荷至 2000MW 左右,减小送风机动叶,维持总风量 在 500-600t/h 左右,防止风机跳闸及炉膛灭火。 4.3立即手动将两台引风机都增加 100rpm 左右的转速,主要目的是为了将两台引风机工 作点远离失速区,有利于失速风机的并列。 4.4手动将失速引风机的静叶关小,手动关小另一台引风机的静叶至两台引风机入口负压

增压风机 失速分析

某发电分公司燃化除灰部脱硫运行 2007-11-6 【摘要】:某发电分公司#5、6脱硫系统自2006年9月投产以来,增压风机经常性的失速,造成#5、6脱硫系统不能正常运行,针对增压风机失速进行分析、整理,保证脱硫系统的正常运行,提高运行工人分析事故和处理事故的能力,对发现的问题吸取精华,剔除糟泊。 【关键词】:增压风机失速分析漳电脱硫 【引言】:近年来,由于我国国民经济的迅速发展,对电力的需求增长更快,作为主要电源供应的燃煤发电机组也逐年增加,燃煤火力发电装置排放物对人类生存直接构成危害,我国火力发电用煤主要是高灰分、高硫分煤的比例比较大,而且几乎不经过任何洗选等预处理过程,同时,火力发电硫氧化物排放的总量最大而且集中,因此,火力发电需要对尾气硫化物进行脱除,目前在发电厂应用最多的脱硫技术是比较成熟的石灰石-湿法,石灰石-湿法技术关键是脱硫系统中增压风机的正常运行,只有保证增压风机正常运行,才能保证脱硫系统正常运行,乃至整个机组的正常运行 增压风机是大容量轴风机,是直接影响主机安全运行的重要因素,同时也是环保评价我厂脱硫投入率的前提,轴硫分风机失速信号测点就是风机叶片前后的烟气流量的差压前后的反应,运行对DCS增压风机筒振重点监测是十分必要的,正常情况下烟气流入静叶挡板门通过动叶旋转至增压风机出口,烟气流与动叶形成很小的夹角当经过叶片后形成平行的流线状态为最好。当烟气与某一叶片形成有扰动角度时,这时绕过叶片的烟气流在叶片背面形成涡流,叶片之间的气道受阻,轻则筒振增大,失速报警信号发出。重则,扰动气流破坏相邻的边界层,使之多个动叶间烟气流通道被气流团阻塞(包括级间叶片气流团剧烈扰动导致末级叶片背压升高)不采取措施风机喘震增大引起共振,导致叶片折断轴变形断裂等严重后果。 #6脱硫系统运行,增压风机静叶挡板开度60%,增压风机出口温度异常升高、电流下降、筒振升高、失速报警信号发、出口压力下降,增压风机内声音异常,静叶挡板门各静叶轴承座振动增大,造成#6增压风机失速有以下原因: 1、脱硫系统中出入口烟气挡板门内置扇形板任意一扇脱落或销子断使扇门不能开启,都会导致增压风机入口流量不足或出口阻力增大。 1)、烟气系统入口挡板门没有完全开启或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 2)、烟气系统出口挡板门没有完全开启,或挡板门的一扇脱落,造成入口风量不足,增压风机不能正常工作,发生喘振,造成失速,经检查入口挡板门在全开位置,没有发现任意一扇脱落开不起来,也没有发现销子断裂,挡板门的主轴转动自如; 3)、烟气系统烟道中的支撑多,支撑不合格,支撑上积灰,造成系统阻力大,经专家测试系统支撑不是造成增压风机失速的原因; 2、GGH积灰造成烟气阻力大,GGH打开人孔检查后,发现换热元件上积灰严重,增压风机入口烟尘含量高,造成系统积灰,造成GGH积灰严重的原因有: 1)、烟气中灰尘含量高,携带的烟尘黏结在换热器元件上,造成换热元件堵塞

引风机抢风预防措施及处理

引风机抢风预防措施及处理 一、针对近期频繁发生引风机抢风,分析有以下原因: 1、风机挡板开度落入风机特性曲线造成风机进入不稳定区域。 引风机在档板35%~70%范围内较稳定; 2、引风机叶轮磨损严重使风机特性曲线改变造成抢风; 3、引风机入口两侧压力偏差大(包括除尘器、空预器阻力偏差大),造成风机出力不均匀而抢风; 4、当除尘器差压大时,除尘器喷吹突然加快时或烟道负压突然发生变化,容易发生抢风; 5、当炉膛负压较小、除尘器差压大时,空预器吹灰、炉膛吹灰时,极易发生引风机抢风; 二、根据以上原因,制定防范措施如下: 1、 加强引风机控制 1) 引风机操作要缓慢进行,保持两台引风机电流同步。

2) 引风机尽可能在35%~70%区间运行,如果负荷高,#1炉引风机开度70%不能满足炉膛负压需要时,#2炉引风机电流达到248A不能满足炉膛负压需要时,要汇报值长要求降低负荷运行; 3) 在负荷低限时,一次风压保持到#1炉8.7Kpa左右,#2炉维持密封风压在15KPa以上,尽可能降低一次风压,#1、2炉都要保证磨组风量在40T/h以上,在推力瓦温度小于70℃前提下, 出口温度尽力在75~85℃,不得发生堵磨现象。 2、 AGC指令升负荷20MW以上时,集控监盘人员要第一时间通知除尘运行人员,将布袋除尘器差压降低,防止除尘值班员在没有准备的情况下负荷突涨,不能及时增加喷吹频率使除尘器差压升高和输灰不及时造成灰位高形成布袋除尘器二次扬尘; 3、 每班必须对空预器进行两次吹灰。#1炉空预器差压达到850Pa,#2炉空预器差压达到750Pa增加空预器吹灰次数,如果无法降低空预器差压,汇报值长通知专工。 4、 炉膛吹灰要求负荷在220MW以上并且在300MW以下必须在早班完

相关主题