搜档网
当前位置:搜档网 › 2016年第32届中国数学奥林匹克(CMO)竞赛试题(图片版,无答案)

2016年第32届中国数学奥林匹克(CMO)竞赛试题(图片版,无答案)

2016年第32届中国数学奥林匹克(CMO)竞赛试题(图片版,无答案)
2016年第32届中国数学奥林匹克(CMO)竞赛试题(图片版,无答案)

2007年中国西部数学奥林匹克试题及答案

2007年中国西部数学奥林匹克 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数? ,A T A ?≠?()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在 ⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证: 的充要条件为P ,Q ,M ,N 四点共圆. 1O 2O 1O 2O 1O 2O OD MN ⊥ 三、设实数a ,b ,c 满足3a b c ++=.求证: 2221115411541154114 a a b b c c ++?+?+?+1≤. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分 五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍? 六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足 ???=++=++. ,022211ny x x x x n n L L 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案 奥数题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故C错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

第十届中国东南地区数学奥林匹克试题解答

第十届东南数学奥林匹克解答 第一天 (2013年7月27日 上午8:00-12:00) 江西 鹰潭 1. 实数,a b 使得方程3 2 0x ax bx a -+-=有三个正实根.求32331 a a b a b -++的 最小值. (杨晓鸣提供) 解 设方程320x ax bx a -+-=的三个正实根分别为123,,x x x ,则由根与系数的关系可得 123122313123,,x x x a x x x x x x b x x x a ++=++==, 故0,0a b >>. 由2123122313()3()x x x x x x x x x ++≥++知:23a b ≥. 又由123a x x x =++≥= a ≥ 32331a ab a b -++23(3)31 a a b a a b -++= +332333113 a a a a a a b ++≥≥=≥++ 当9a b == 综上所述,所求的最小值为. 2. 如图,在ABC ?中,AB AC >,内切圆I 与BC 边切于点D ,AD 交内切圆I 于另一点E ,圆I 的切线EP 交BC 的延长线于点P ,CF 平行PE 交AD 于点 F ,直线BF 交圆I 于点,M N ,点M 在线段BF 上,线段PM 与圆I 交于另一 点Q .证明:ENP ENQ ∠=∠. (张鹏程提供) 证法1 设圆I 与,AC AB 分别切于点,S T 联结,,ST AI IT ,设ST 与AI 交 于点G ,则,I T A T T G A I ⊥⊥,从而有2AG AI AT AD AE ?==?,所以,,,I G E D 四点共圆. 又,IE PE ID PD ⊥⊥,所以,,,I E P D 四点共圆,从而,,,,I G E P D 五点共圆. 所以90IGP IEP ∠=∠=,即IG PG ⊥ ,

小学二年级数学奥林匹克竞赛题(附答案)

小学二年级数学奥林匹克竞赛题(附答案) 1、用0、1、 2、3能组成多少个不同的三位数?2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题? 3、2,3,5,8,12,( ),( ) 4、1,3,7,15,( ),63,( ) 5、1,5,2,10,3,15,4,( ) ,( ) 6、○、△、☆分别代表什么数?(1)、○+○+○=18 (2)、△+○=14 (3)、☆+☆+☆+☆=20 7、△+○=9 △+△+○+○+○=25 8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗? 9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元? 10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟? 11. 修花坛要用94块砖,?第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算) 12. 王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米? 13. 食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵? 14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元? 15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本? 16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵? 17、1+2+3+4+5+6+7+8+9+10=( ) 18、11+12+13+14+15+16+17+18+19=( )

19、按规律填数。(1)1,3,5,7,9,( ) (2)1,2,3,5,8,13 ( ) (3)1,4,9,16,( ) ,36 (4)10,1,8,2,6,4,4,7,2,( ) 20、在下面算式适当的位置添上适当的运算符号,使等式成立。 (1)8 8 8 8 8 8 8 8 =1000 (2) 4 4 4 4 4 =16 (3)9 8 7 6 5 4 3 2 1=22 21、30名学生报名参加小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人? 22、用6根短绳连成一条长绳,一共要打( )个结。 23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下( ) 个。 24、2个苹果之间有2个梨,5个苹果之间有几个梨? 25、用1、2、3三个数字可以组成( ) 个不同的三位数。 26、有两个数,它们的和是9,差是1,这两个数是( ) 和( ) 27、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( ) 盘。 28、把4、6、7、8、9、10填下入面的空格里(三行三列的格子) ,使横行、竖行、斜行上三个数的和都是18。

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛 1.设素数p 、正整数n 满足()2 2 1 1n k p k =+∏.证明:2p n <. 1.按照 ()2 1 1n k k =+∏中的因子所含p 的幂次分情形讨论. (1)若存在()1k k n ≤≤,使得()2 2 1p k +,则221p n ≤+. 于是,2p n ≤ <. (2)若对任意的()1k k n ≤≤,( ) 2 2 1p k +?,由条件,知存在1j k n ≤≠≤,使得()21p j +且() 2 1p k +. 则( )22 p k j -. 于是,|()()p k j k j -+. 当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <. 2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()12 12100n n x x x x x x n +++=,求n 的最 大可能值. 2、n 的最大可能值为9702, 显然:由已知等式得 1n i i x n =≥∑,所以:1 100n i i x =≤∏ 又等号无法成立,则 1 99n i i x =≤∏ 而 ()()()1 1 1111111n n n n i i i i i i i i x x x x n =====-+≥-+=-+∑∑∏∏ 则 1 1 198n n i i i i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ?+?≤?=… 取123970299,1x x x x =====,可使上式等号成立

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥. 2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4.将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.

5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由. 6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值. 7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上. 8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +??=++. (1)证明:存在常数A ,B ()01A <<, 使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <. 第十六届中国东南地区数学奥林匹克 参考答案 1.原不等式 ()() 2221(1)a b b a b b kab ?++++≥ ()221(1)b ab b b kb a ???++++≥ ?? ? 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有 ()()2231(1)1(1)(1)b ab b b b b b a ????++++≥++=+ ? ? ????? 于是我们只需要取32(1)k b b ?≤+即可.

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

2007年第6届中国女子数学奥林匹克(CGMO)试题(含答案)

2007年女子数学奥林匹克 第一天 1.设m 为正整数,如果存在某个正整数n ,使得m 可以表示为n 和n 的正约数个数(包括1和自身)的商,则称m 是“好数”。求证: (1)1,2,…,17都是好数; (2)18不是好数。 2.设△ABC 是锐角三角形,点D 、E 、F 分别在边BC 、CA 、AB 上,线段AD 、BE 、CF 经过△ABC 的外心O 。已知以下六个比值 DC BD 、EA CE 、FB AF 、FA BF 、EC AE 、DB CD 中至少有两个是整数。求证:△ABC 是等腰三角形。 3.设整数)3(>n n ,非负实数.2,,,2121=+++n n a a a a a a 满足 求1 112 1232 221++++++a a a a a a n 的最小值。 4.平面内)3(≥n n 个点组成集合S ,P 是此平面内m 条直线组成的集合,满足S 关于P 中的每一条直线对称。求证:n m ≤,并问等号何时成立? 第二天 5.设D 是△ABC 内的一点,满足∠DAC=∠DCA=30°,∠DBA=60°,E 是边BC 的中 点, F 是边AC 的三等分点,满足AF=2FC 。求证:DE ⊥EF 。 6.已知a 、b 、c ≥0,.1=++c b a 求证: .3)(4 1 2≤++-+ c b c b a 7.给定绝对值都不大于10的整数a 、b 、c ,三次多项式c bx ax x x f +++=2 3)(满足条件32:.0001.0|)32(|+<+问f 是否一定是这个多项式的根?

8.n 个棋手参加象棋比赛,每两个棋手比赛一局。规定:胜者得1分,负者得0分,平局各得0.5分。如果赛后发现任何m 个棋手中都有一个棋手胜了其余m —1个棋手,也有一个棋手输给了其余m —1个棋手,就称此赛况具有性质P (m ). 对给定的)4(≥m m ,求n 的最小值)(m f ,使得对具有性质)(m P 的任何赛况,都有所有n 名棋手的得分各不相同。 综上,最少取出11枚棋子,才可能满足要求。 三、定义集合}.,|1{P k m k m A ∈∈+=+N 由于对任意的k 、1 1, ,++≠∈i k i k P i 且是无理数,则对任意的k 1、P k ∈2和正整数 m 1、m 2, .,1121212211k k m m k m k m ==?+=+ 注意到A 是一个无穷集。现将A 中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n ,设此数列中的第n 项为.1+k 接下来确定n 与m 、k 间的关系。 若.1 1,1111++≤+≤+i k m m k m i m 则 由m 1是正整数知,对5,4,3,2,1=i ,满足这个条件的m 1的个数为].1 1[++i k m 从而,).,(]1 1[5 1 k m f i k m n i =++= ∑= 因此,对任意.),(,,,n k m f P k N m N n =∈∈∈++使得存在

2009第六届中国东南地区数学奥林匹克试题及解答

第六届中国东南地区数学奥林匹克 第一天 (2009年7月28日 上午8:00-12:00) 江西·南昌 1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y 。 2. 在凸五边形ABCDE 中,已知AB =DE 、BC =EA 、AB EA ≠,且B 、C 、D 、E 四点共圆。证明:A 、B 、C 、D 四点共圆的充分必要条件是AC =AD 。 3. 设,,x y z R +∈,222(), (), ()a x y z b y z x c z x y =-=-=-。求证: 2222()a b c ab bc ca ++≥++。 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边。 第二天 (2009年7月29日 上午8:00-12:00) 江西·南昌 5. 设1、2、3、…、9的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记 1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M 。(其中M 表示集合M 的元素个数) 6. 已知O 、I 分别是ABC ?的外接圆和内切圆。证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ?的外接圆和内切圆。 7. 设(2)(2)(2) (,,)131313x y z y z x z x y f x y z x y y z z x ---= ++++++++, 其中,,0x y z ≥ ,且 1x y z ++=。求(,,)f x y z 的最大值和最小值。 8. 在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块? F E I O B C A D

2019年英国高中数学奥林匹克竞赛试题

2019-2020英国数学奥林匹克 第一轮 比赛时间:2019年11月29日 1.证明:存在至少3个小于200的素数p ,满足p+2,p+6,p+8,p+12均为素数.同样的,证明有且仅有一个素数q,满足q+2,q+6,q+8,q+12,q+14均为素数. 2.整数数列a 1,a 2,a 3,……满足递推关系:2214410n n n n a a a a +-+-=对任意正整数n 成立. 求a 1的所有可能的值. 3.两个圆S 1,S 2切于点P.一条不经过点P 的公切线分别与S 1,S 2交于点A,B.过P 且在△APB 外的直线CD 与S 1,S 2分别交于点C,D.证明AC ⊥BD. 4.共2019只企鹅摇摆着走向它们最喜欢的饭馆.当企鹅到达时,每只企鹅都得到了一张门票,上面写有1-2019的数字,升序排列,并被告知他们要排队就餐.第一只企鹅站在队伍的最前面.接下来,持有n 号门票的企鹅,需要找到满足m <n 且m 整除n 的最大整数m,然后钻到第持有m 号门票的企鹅后面.随后下一只企鹅加入队伍,直到2019只企鹅都排好队. (1)持2号门票的企鹅前面有多少只企鹅? (2)与持33号门票企鹅相邻的分别是持哪两个号码的企鹅? 5.有6个小孩均匀地围着圆桌坐成一圈.开始时,有一个小孩有n 个糖果,其他人没有糖果.如果有一个小孩有4个以上的糖果,那么他可以进行如下操作:吃掉一个糖果,同时给他相邻的和对面的一个人各一个糖果.如果经过某些步骤之后,每个小孩的糖果数量相同,就称这是一次”完美安排”.求可以实现”完美安排” 的所有 n 的值. 6.若定义域和值域均为整数的二元函数f(m,n)满足,对任意整数对(m,n),都有: 2f(m,n)=f(m-n,n-m)+m+n=f(m+1,n)+f(m,n+1)-1, 就称它是一个“好函数”.求所有的“好函数”. 第二轮 比赛时间:2020年1月30日

2016女子数学奥林匹克试题

2016女子数学奥林匹克 (2016年8月12‐8月13日) 1、整数3n ≥,将写有21,2,...,n 的2 n 张卡片放入n 个盒子,每个盒子各有n 张。其后允许操作如下:每次选其中两个盒子,在每个盒子中各取两张卡片放入另一个盒子。证明:总是可以通过有限次操作,使得每个盒子内的n 张卡片上恰好是n 个连续整数。 2、ABC ?的三条边长为,,BC a CA b AB c ===,ω是ABC ?的外接圆。 ①若不含A 的 BC 上有唯一的点P (不同于,B C ),满足 PA PB PC =+,求,,a b c 应该满足的充要条件。 ②P 是①中所述唯一的点,证明:若AP 过BC 的中点, 则60BAC ∠

5、设于数列12,,...a a 的前n 项之和为12...n n S a a a =+++,已知11S =,对于1n ≥都有 21(2)4n n n S S S ++=+。证明:对于任意正整数n ,都有n a ≥。 6、求最大的正整数m ,使得可以在m 行8列的方格表中填入,,,C G M O ,每个单元格填一个字母。使得对于其中任意两行,这两行中最多在一列所填字母相同。 7、I 是锐角ABC ?的内心,AB AC >。BC 边上的高AH 与直线,BI CI 分别交于,P Q 。O 是IPQ ?的外心,,AO BC 交于L ,AIL ?的外接圆与BC 交于,N L ,D 是I 在BC 上的投影,求:BD BN CD CN =。 8、,Q Z 分别代表全体有理数、整数,在坐标平面上,对于任意整数m ,定义 (,),,0,m xy A x y x y Q xy Z m ??=∈≠∈???? 。对于线段MN ,定义()m f MN 为线段MN 上属于m A 的点的个数。求最小的实数λ,使得对于任意直线l ,均存在与l 有关的实数()l β,满足:对于l 上任意两点,M N ,都有20162015()()()f MN f MN l λβ≤?+。

新人教版2020-2021三年级上册数学奥林匹克竞赛难题试卷

中心小学三上年级数学竞赛试题 小朋友,经过小学里两年多的学习,你一定掌握了不少本领,相信你一定会有大的收 获。 一、我会填(每题2分,共26分) 1、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下, 要想超过姐姐,小华第三次最少要踢()个。 2、学校有篮球和排球共80个,篮球比排球多4个,篮球有()个。 3、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大 猴有()只。 4、某学生第一次与第二次数学测验的平均成绩是62分,第三次测验后,三次平均 成绩是68分,他第三次得()分。 5、由0、2、5、8组成的最大四位数是(),最小四位数是()。 6、在()里填上合适的数 2时=()分 8米=()分米=()厘米 5000千克=()吨 60毫米=()厘米 7、下列算式中,□,○,△,☆各代表什么数? (1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4) 56÷☆= 7 □=(),○=(),△=(),☆=()。 8、用4个边长是1厘米的正方形,拼成一个长方形,这个长方形的周长是()厘 米,如果拼成一个正方形,这个正方形的周长是()厘米。 9、小惠今年6岁,爸爸今年年龄是她的5倍,()年后,爸爸年龄是小惠的3 倍。 10、四月份有30天,这个月共( )个星期余( )天。 11、在○里填上“>”“<”或“=” 3时○300分60毫米○6分米6千米○5800米6+7+8+9+0○6×7×8×9×0 12、一节课40 分钟,如果10时40分上课,那么( )时( )分下课。 13、在□内填入适当的数字,使下列加法竖式成立: 二、我会判断(每题1分,共6分)

2018年第十五届东南地区数学奥林匹克试题

The 15th China Southeast Mathematical Olympiad 福建,泉州 第一天(2018年7月30日8:00-12:00) 高一年级试卷 1. 设c 是实数,若存在[]1,2x ∈,使得max ,25c c x x x x ? ?+++≥???? .求c 的取值范围.这里{}max ,a b 表示实数a 、b 中的较大者. 2. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论. 3. 锐角ABC △内接于⊙O ()AB AC <,BAC ∠的平分线于BC 相交于点T ,AT 的中点是M ,点P 在ABC △内,满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若直线AO 平分线段DE .证明:直线AO 与AMP △的外接圆相切. 4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素?证明你的结论.

The 15th China Southeast Mathematical Olympiad 福建,泉州 第二天(2018年7月31日8:00-12:00) 高一年级试卷 5. 设{}n a 为非负实数列.定义21k k i i X a ==∑,212k k k i i Y a i =??=???? ∑,1,2, k =.证明:对任意正整数n ,有100n n n n i i i i X Y Y X ?==≤? ≤∑∑.这里,[]x 表示不超过实数x 的最大整数. 6. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF . 7. 一次会议共有24人参加,每两人之间或者握手一次,或者不握手.会议结束后发现,总共出现了216次握手,且任意握过手的两个人P 、Q ,在剩下的22人中,恰与P 、Q 之一握过手的不超过10人.一个朋友圈指的是会议中3个两两之间握过手的人所构成的集合.求这24个人中朋友圈个数的最小可能值. 8. 设m 为给定的正整数,对正整数l ,记()()()()4142451m l A l l l =+?+? ?+.证明:存在无穷多个正整数l ,使得55 m l l A 且515m l +不整除l A .并求出满足条件的l 的最小值.

小学数学奥林匹克竞赛试题 及答案(四年级)

1 小学数学奥林匹克竞赛试题及答案 (四年级) (红色为正确答案) 1、下面的△,○,□各代表一个数,在括号里填出得数: △+△+△=36 □×△=240 ○÷□=6 ○=( ) A 120 B 100 C 130 D 124 2、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个. A 5 B 6 C 7 D 4 3、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场. A 97 B98 C 99 D 50 4、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵. A 10 B 8 C 9 D 7 5、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。 A 24 B 20 C 12 D 16 6、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次. A 5 B 6 C 3 D 4 7、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。 A 0 B 1 C 2 D 3 8、有一位探险家,用6天时间徒步横穿沙漠。如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。 A 2 B 3 C 4 D 5 9、在右图的中间圆圈内填一个数,计算每一线段两 数之差(大减小),然后算出这三个数之和,那么这个 差数之和的最小值是( ). 13 32 41 13

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

最新-2018女子数学奥林匹克 精品

第一天 2018年8月12日上午8∶00~12∶00 长春 我们进行数学竞赛的目的,不仅仅是为了数学而数学,其着眼点还是因为它是一切科学的得力助手,因而提高数学,也为学好其他科学打好基础. ——华罗庚 1. 如图,设点P 在△ABC 的外接圆上,直线CP 和AC 相交于点E ,直线BP 和AC 相交于点F ,边AC 的垂直平分线交边AB 于点J ,边AB 的垂直平分线交边AC 于点K,求证: 2 2BF CE =F ··K AK JE AJ . 2.求方程组 的所有实数解. 3.是否存在这样的凸多面体,它共有8个顶点,12条棱和6 个面,并且其中有4个面,每两个面都有公共棱? 4.求出所有的正实数a ,使得存在正整数n 及n 个互不相交的无限集合1A ,2A ,…,n A 满足1A ∪2A ∪…∪n A =Z ,而且对于每个i A 中的任意两数b >c ,都有b -c ≥i a . ?? ???=++??? ?? +=???? ? ?+=??? ??+1 ,11311215zx yz xy z z y y x x

第二天 2018年8月13日上午8∶00~12∶00 长春 数学竞赛,它对牢固基础知识、发展智力,培养拔尖人才,是一件具有战略意义的活动。 ——华罗庚 5.设正实数x ,y 满足3 x +3y =x -y ,求证: .1422<y x + 6.设正整数n ≥3,如果在平面上有n 个格点,,,?21P P n P 满足:当j i P P 为有理数时,存在k P ,使得k i P P 和k j P P 均为无理数;当j i P P 为无理数时,存在k P ,使得k i P P 和k j P P 均为有理数,那么称n 是“好数”. (1)求最小的好数; (2)问:2018是否为好数? 7.设m ,n 是整数,m >n ≥2,S ={1,2,…,m },T ={1a ,2a …,n a }是S 的一个子集.已知T 中的任两个数都不能同时整除S 中的任何一个数,求证: .11121m n m a a a n ++?++< 8.给定实数a ,b ,a >b >0,将长为a 宽为b 的矩形放入一个正方形内(包含边界),问正方形的 边至少为多长?

16高中数学奥林匹克竞赛训练题(2)编辑版

高中数学奥林匹克竞赛训练题(02) 第一试 一、选择题(本题满分30分,每小题5分) 1.(训练题07)十个元素组成的集合.的所有非空子集记为,每一非空子集中所有元素的乘积记为.则(C). (A)0 (B)1 (C) -1 (D)以上都不对 2.(训练题07)△ABC的三个内角依次成等差数列,三条边上的高也依次成等差数列.则为(B) (A)等腰但不等边三角形(B)等边三角形(C)直角三角形(D)钝角非等腰三角形 3.(训练题07)对一切实数,不等式恒成立.则的取值范围是(A) (A)(B) (C) (D) 4.(训练题07)若空间四点满足,则这样的三棱锥共有(A)个. (A)0 (B)1 (C)2 (D)多于2 5.(训练题07)已知不等式时恒成立,则的取值范围是(B) (A)(B) (C) (D) 6.(训练题07)方程在复数集内根的个数为.则(C) (A)最大是2 (B)最大是4 (C)最大是6 (D)最大是8 二、填空题(本题满分30分,每小题5分) 1.(训练题07)函数的值域是________ 2.(训练题07)已知椭圆,焦点为,,为椭圆上任意一点(但点不在x轴上),的内心为,过作平行于轴的直线交于.则________. 3.(训练题07)为的三个内角, 且.则_____. 4.(训练题07)实数满足.则的最小值是____. 5.(训练题07)在一次足球冠军赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有队参赛,则=__6____. 6.(训练题07)若是一个完全平方数,则自然数14 . 三、(训练题07)(本题满分20分)若正三棱锥底面的一个顶点与其所对侧面的重心距离为4,求这个正三棱锥的体积的最大值.(18) 四、(训练题07)(本题满分20分)一个点在轴上运动的速度为2米/秒,在平面其它地方速度为1米/秒.试求该点由原点出发在1秒钟内所能达到的区域的边界线. 五、(训练题07)(本题满分20分)已知为虚数,且是方程的实根.求实数的取值范围.() 第二试 一、(训练题07)(本题满分20分)在中,为边上的任一点,于,于,交于. 求证:. 二、(训练题07)(本题满分35分)用个数(允许重复)组成一个长为的数列,且.证明:可

相关主题