搜档网
当前位置:搜档网 › 数列应用题中的递推关系

数列应用题中的递推关系

数列应用题中的递推关系
数列应用题中的递推关系

数列应用题中的递推关系

以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。

一、等差、等比数列问题

等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。

例1、流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病。某市去年11月份曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人。由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数。

分析:设11月n 日这一天新感染者最多,则由题意可知从11月1日到n 日,每天新感染者人数构成一等差数列;从n+1日到30日,每天新感染者构成另一个等差数列。这两个等差数列的和即为这个月总的感染人数。

略解:由题意,11月1日到n 日,每天新感染者人数构成一等差数列a n ,a 1=20,d 1=50,11月n 日新感染者人数a n =50n —30;从n+1日到30日,每天新感染者人数构成等差数列b n ,b 1=50n-60,d 2=—30,b n =(50n-60)+(n-1)(-30)=20n-30,11月30日新感染者人数为b 30-n =20(30-n)-30=-20n+570. 故共感染者人数为:2

)30)](57020(6050[2)305020(n n n n n -+-+-+-+=8670,化简得:n 2-61n+588=0,解得n=12或n=49(舍),即11月12日这一天感染者人数最多,为570人。

二、a n - a n-1=f(n),f(n)为等差或等比数列

有的应用题中的数列递推关系,a n 与a n-1的差(或商)不是一个常数,但是所得的差f(n)本身构成一个等差或等比数列,这在一定程度上增加了递推的难度。

例2、某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a 元的前提下,可卖出b 件。若作广告宣传,广告费为n 千元时比广告费为(n-1)千元时多

卖出n b 2

件,(n ∈N *)。 (1)试写出销售量s 与n 的函数关系式;

(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?

分析:对于(1)中的函数关系,设广告费为n 千元时的销量为s n ,则s n-1表示广告费为(n-1)元时的销量,由题意,s n ——s n-1=n b 2,可知数列{s n }不成等差也不成等比数列,但是两者的差n b 2构成等比数列,对于这类问题一般有以下两种方法求解:

解法一、直接列式:由题,s=b+

2b +22b +32

b +…+n b 2=b(2-n 21) (广告费为1千元时,s=b+2b ;2千元时,s=b+2b +22b ;…n 千元时s=b+2b +22b +32b +…+n b 2) 解法二、(累差叠加法)设s 0表示广告费为0千元时的销售量, 由题:?????

??????=-=-=--n n n b

s s b s s b s s 222121201 ,相加得S n -S 0=2b +22b +32b +…+n b 2, 即s=b+

2b +22b +32

b +…+n b 2=b(2-n 21)。 (2)b=4000时,s=4000(2-n 21),设获利为t,则有t=s ·10-1000n=40000(2-n 21)-1000n 欲使T n 最大,则:???≥≥-+11n n n n T T T T ,得?

??≤≥55n n ,故n=5,此时s=7875。 即该厂家应生产7875件产品,做5千元的广告,能使获利最大。

三、a n = C ·a n-1+B ,其中B 、C 为非零常数且C ≠1

例3、某企业投资1千万元于一个高科技项目,每年可获利25%,由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目的资金可以达到或超过翻两番(4倍)的目标?(lg2=0.3)。

分析:设经过n 年后,该项目的资金为a n 万元,则容易得到前后两年a n 和a n-1之间的递推关系:a n =a n-1(1+25%)-200(n ≥2),对于这类问题的具体求解,一般可利用“待定系数法”:

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

特征方程解数列递推关系

用特征方程与特征根解数列线性递推关系式的通项公式 一.特征方程类型与解题方法 类型一 递推公式为An+2=aAn+1+bAn 特征方程为 X 2 =aX+b 解得两根X 1 X 2 (1)若 X 1≠X 2 则A n =pX 1n +qX 2 n (2)若X 1=X 2=X 则A n =(pn+q)X n (其中p.q 为待定系数,由A 1.A 2联立方程求得) (3)若为虚数根,则为周期数列 类型二 递推公式为 特征方程为X = d c b a X X ++ 解得两根X 1 X 2 (1)若X 1≠X 2 则计算2111x A x A n n --++=21 x d cA b aA x d cA b aA n n n n -++-++=k 2 1x A x A n n -- 接着做代换B n =2 1 x A x A n n -- 即成等比数列 (2)若X 1=X 2=X 则计算x A n -+11=x d cA b aA n n -++1 =k+x A n -1 接着做代换B n =x A n -1 即成等差数列 (3)若为虚数根,则为周期数列 类型三 递推公式为 特征方程为X =d c b ax X ++2 解得两根X 1 X 2 。然后参照类型二的方法进行整理 类型四 k 阶常系数齐次线性递归式 A n+k =c 1A n+k-1+c 2A n+k-2+…+c k A n 特征方程为 X k = c 1X k-1+c 2X k-2+…+c k (1) 若X 1≠X 2≠…≠X k 则A n =X k n 11+X k n 22+…+X k k n k (2) 若所有特征根X 1,X 2,…,X s.其中X i 是特征方程的t i 次重根,有t 1+t 2+…+t s =k 则

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

递推数列通项公式求法(教案设计)

递推数列通项公式的求法 彭山一中 郑昌建 一、课题:常见递推数列通项公式的求法 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出累加法的试用题型。 ③学生分组讨论完成累乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1:已知数列}{n a ,1a =1,1n a +=n a +2,求n a ? 变式: 已知数列}{n a ,1a =1,1n a +=n a +2n ,求n a ?

活动:通过分析发现形式类似等差数列,故想到用累加法去求解。教师引导学生细致讲解整个解题过程。 解:由条件知:n a a n n 21=-+ 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+??????+-+-+-n n a a a a a a a a )1(2)2(232222-?+-?+?+?+=n n 所以[]2)1(22)1(1-?+-=-n n a a n 由 1a =1,12+-=∴n n a n 练习: 已知数列}{n a ,1a =1,n n n a a 2 11=-+,求n a ? 总结:类型1:)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 问题2: 已知数列{a n }满足)(,2,111*+∈==N n a a a n n ,求{a n }的通项公式。 变式:若条件变为)(,21*+∈=N n a a n n n 方法归纳:利用累乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 解:1342312-??????????n n a a a a a a a a 1 2212222--??=n n 即) 1()2(2112-+-+++=n n n a a 练习: 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 总结:类型2型如 用累乘法求解 问题3: 已知数列{a n }满足)(,12,111*+∈+==N n a a a n n ,求{a n }的通项公式。 发现:)1(21,112111+=+++=+++n n n n a a a a 即 令b n =a n +1,则b n+1=a n+1+1 即21=+n n b b ) (1n f a a n n ?=+222n n n a -=∴2=++∴ +11n 1n a a

题型最全的递推数列求通项公式的习题

高考递推数列题型分类归纳解析 各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例1:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例2:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的通项1 ___ n a ?=?? 12n n =≥ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14) 在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足* 111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111 *444(1)(),n n b b b b n a n N ---=+∈L 证明:数列{b n }是等差数列; (Ⅲ)证明: *122311...().232 n n a a a n n n N a a a +-<+++<∈ 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1 +n q ,得: q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 例:已知数列{}n a 中,651= a ,1 1)2 1(31+++=n n n a a ,求n a 。 变式:(2006,全国I,理22,本小题满分12分)

数列递推关系式求通项常用方法

由数列的递推公式求通项公式的常用方法 递推数列的通项问题具有很强的逻辑性,是考察逻辑推理和转化化归能力的好素材,因此也成为近几年高考的热点.解决这类问题的关键在于将所给的递推数列经过变形、代换等手法转化为等差或等比数列,然后求其通项公式. 类型1:)(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 )1(,),2(),1()(123121-+=+=+=+=-+n f a a f a a f a a n f a a n n n n 型:, 累加得);1()2()1(1-++++=n f f f a a n 累加法也可以写为112211)()()(a a a a a a a a n n n n n +-++-+-=--- 例:已知数列{}n a 满足21=a ,11++=+n a a n n ,求n a 。 类型2:n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解 ,)1(,,)2(,)1()(123121-+-====n n n n a n f a a f a a f a a n f a 型: 累乘得);1()2()1(1-=n f f f a a n 累乘法也可以写为112211a a a a a a a a n n n n n ????= --- . 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 类型3:q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法1(待定系数法):把原递推公式转化为)λ-(λ-1n n a p a =+,其中由待定系数法求得λ,再利用换元法转化为求等比数列}{λ-n a 进而求解。

数列递推关系与单调性

数列递推关系与单调性

数列递推关系与单调性 数列与函数的关系:类比函数(单调性与周期性) 11,1,2 n n n S n a S S n -=?=? -≥? 求数列的通项公式:法一:直接求n a ;法二:先求n S ,再求n a ,要注意n 的变化 ()n n S f a ?==? ?一.线性的 二.非线性的 一.线性的 1.已知21n n S a =+ 求n a 2.已知21 n n S a =+ 求n a 3.已知1 11,22 n n a S a +==+,求n a 注意序号的变化 二.非线性的 1.已知0n a >,222 n n n S a a =+-;求n a 2.已知0 n a >,2 42n n n S a a =+,求n a 3.已知0 n a >,1 2n n n S a a =+ ,求n a 总结:(1)11,1 ,2 n n n S n a S S n -=?=? -≥?这主要是解题的步骤;(2)

决策好先求n a 还是n S ;(3)() n n S f a =与1() n n S f a +=的区 别 递推关系: (1)1 () n n a a f n +=+ Exe1.已知1 1a =,1 n n a a n +=+,求n a 2.已知1 1a =,12n n n a a +=+,求n a 3.已知11 a =,1 2n n n a a n +=++,求n a 4.已知1 1 a =,11 (1) n n a a n n +=+ +,求n a (2)1 () n n a a f n += Exe1.已知1 1 a =,11 n n n a a n +=+,求n a 2.已知1 1 a =,12n n n a a n ++=,求n a 3.已知1 1 a =,1 n n a na +=,求n a (3)1 n n a Aa B +=+ (1A ≠) Way1:1()11n n B B a A a A A +- =--- Way2. 111 n n n n n a a B A A A +++=+

由递推关系求数列通项问题—“不动点”法

由递推关系求数列通项问题—“不动点”法 由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究。笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助. 1 不动点的定义 一般的,设的定义域为,若存在,使成立,则称为的 不动点,或称为图像的不动点。 2 求线性递推数列的通项 定理1 设,且为的不动点,满足递推关系,,证明是公比为a的等比数列。 证:∵是的不动点,所以,所以,所以,∴数列是公比为的等比数列。 例1 已知数列的前项和为,且, (1)证明:是等比数列;(2)求数列的通项公式,并求出使得成立的最小正整数. 证:(1) 当n 1时,a1 14;当时,a n S n S n 1 5a n 5a n 1 1,即 即,记,令,求出不动点, 由定理1知:,又a1 1 15≠0,所以数列{a n 1}是等比数列。 (2)解略。 3 求非线性递推数列的通项

定理2 设,且是的不动点,数列满足递推关系,,(ⅰ)若,则数列是公比为的等比数列;(ⅱ),则数列是 公差为的等差数列。 证:(ⅰ)由题设知; 同理 ∴, 所以数列是公比为的等比数列。 (ⅱ)由题设知=的解为,∴且=。所以 ,所以数列是公差为的等差数列。 例2设数列的前项和为,且方程有一根为。求数列的通项公式。 解:依题,且,将代入上式,得

数列的递推关系

数列的递推关系 数列的递推关系 1. 数列递推公式的概念( 2. 会根据给出的递推公式写出数列的前n项( , 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列(这种表示方法叫做递推公式法或递推法( , 教学难点: 1(根据数列的首项和递推公式写出它的前几项,关归纳出通项公式( ,SS,(n,2)nn,1,a2(的关系 ( aS,nnnS(n,1),1 , 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划)( 二、递推公式 钢管的例子 a,n,3 n a,4(n,1)1 ?从另一个角度,可以: a,a,1(n,2)nn,1 ,,“递推公式”定义:已知数列a的第一项,且任一项a与它的前一项a(或前n项)nnn,1间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式( a,a,4a例1(已知,求( a,2n,1nn1 a,,6 解一:可以写出:,,,,?? a,2a,,2a,,103124 a,2,(n,1)(n,4),2,4(n,1) 观察可得: n a,a,,4 解二:由题设: n,1n 1 4a,a,,nn,1 4a,a,,n,1n,2 ? 4a,a,,n,2n,3 ?? ,)a,a,,421 a,a,,4(n,1)n1 ? a,2,4(n,1)n S,S(n,2),nn,1a,例2(若记数列的前n项之和为S试证 明: ,,an,nnS(n,1)1,

n,1 证:显然时, a,S11 n,1n,2当即时, S,a,a,?,aS,a,a,?,an12nn,112n,1 ,SS,(n,2)nn,1a, ? ? S,S,a,nnn,1nS(n,1),1 注意:1: 此法可作为常用公式; 2: 当时满足时,则( a,S,SS,Sa(,S)nn,1nnn,111 22例3(已知数列,,的前n项和为? ? ,求数列,,的aS,2n,naS,n,n, 1nnnn 通项公式( n,1 解:1(当时, a,S,111 22n,2 当a,2n,n,2(n,1),(n,1),4n,3时, n n,1 经检验时也适合 a,4n,3 a,1n1 n,1 2(当时, a,S,311 22n,2a,n,n,1,(n,1),(n,1),1,2n 当时, n 3,(n,1)a, ? ,n(n,2)n2, a,2aa例4(已知,求( a,2n,1nn1 2 232 解一: a,2,2,2a,2a,2,2,2132 n 观察可得: a,2n an,2 解二:由 ? 即 a,2aa,2an,1nnn,1an,1 aaaan,1nn,1n,22,,,,,2?? ? aaaan,1n,2n,31 n,1n ? a,a,2,2n1 三、本课小结 1(递推公式(简单阶差、阶商法)( 2(由数列和求通项( 四、练习 1( 根据下面数列{a}的首项和递推公式写出它的前4项,并归纳出通项公式( n 1) a=1,a=1+a (n?1); (11n+1n2 *(2) a=0, a= a+(2n-1)(n?N)( 1n+1n 2. 已知数列{a}满足a=2,a=5,a=23,且a=αa,β,求实数α、β的值( n124n+1n 2f(n),1*n,N3(已知,(),求的值( f(1),2f(101)f(n,1),2 n,14(已知数列{a}的前n 项和,试求其通项a( S,(,1)nnn 225(已知数列{a}的前n 项和为n+Pn数列{b}的前n项和为3n-2n( nn (1) 若a=b,求P的值; 1010

【二轮复习材料】概率问题中的递推数列

概率问题中的递推数列 一、a n =p ·a n -1+q 型 【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开 关第一次闭合后,出现红灯和绿灯的概率都是1 2,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是1 3,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是3 5,出现绿灯的概率是2 5,记开关第n 次闭合后出现红灯的概率为P n 。 (1)求:P 2; (2)求证:P n <1 2 (n ≥2) ; (3)求lim n n P 。 解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二

次才是红灯。于是P 2=P 1·13+(1-P 1)·35=7 15 。 (2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·13+(1-P n -1)·35=-415P n -1+3 5 , 再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919 ∴{P n -919}为首项为(P 1-919)、公比为(-4 15)的等比数列 P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1 ∴当n ≥2时,P n <919+138=1 2 (3)由(2)得lim n n P =9 19。 【例2】 A 、 B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点 数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A

常见递推数列通项公式的求法(说课稿)

常见递推数列通项公式的求法(说课稿) 江超 一、学情分析和教法设计: 1、学情分析: 学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据递推公式求出数列的项,并能运用累加、累乘、化归等方法求数列的通项公式,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。 2、教法设计: 本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。 在教学过程中采取如下方法: ①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性; ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 二、教学设计: 1、教材的地位与作用: 递推公式是认识数列的一种重要形式,是给出数列的基本方式之一。对数列的递推公式的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。 2、教学重点、难点: 教学重点:根据数列的递推关系式求通项公式。 教学难点:解题过程中方法的正确选择。

相关主题