搜档网
当前位置:搜档网 › 相似三角形经典练习题

相似三角形经典练习题

相似三角形经典练习题
相似三角形经典练习题

相似三角形经典练习题

 

一.选择题(共9小题)

1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )

A.B.C.D.

2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )

A.1:3B.1:4C.1:D.1:2

3.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为( )

A.B.C.D.

4.如图,?ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=( )

A.4:3 B.4:7 C.3:4 D.3:7

5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )

A.B.

C.D.

6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )

A.B.C.D.

7.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )

A.B.10

C.或10D.以上答案都不对

8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )

A.B.C.D.

9.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C

落在AB边上的C′处,并且C′D∥BC,则CD的长是( )

A.B.C.D.

 

二.填空题(共11小题)

10.a=4,b=9,则a、b的比例中项是 .

11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 (填序号).①AC?BC=AB?CD;②AC2=AD?DB;③BC2=BD?BA;④CD2=AD?DB.

12.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则

AD= .

13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= .

14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长

线交于F,与CD交于G,若AE=4,EG=3,则EF= .

15.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .

16.如图,若∠B=∠DAC,则△ABC∽ ,对应边的比例式是 .

17.如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD?BC;④

;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ,结论是 .(注:填序号)

18.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= .

19.如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 度.

20.一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 张.

 

三.解答题(共10小题)

21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.

22.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.

23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.

求证:CF2=GF?EF.

24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.

25.如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.

(1)求证:;

(2)计算CD?CB的值,并指出CB的取值范围.

26.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC 于点E.

(1)求的值;

(2)若AB=a,FB=EC,求AC的长.

27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,

(1)求矩形EFGH的周长y与x的函数关系式;

(2)求矩形EFGH的面积S与x的函数关系式.

28.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么

(1)设△POQ的面积为y,求y关于t的函数解析式;

(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;

(3)当t为何值时,△POQ与△AOB相似.

29.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC 方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?

30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)求t=15时,△PEF的面积;

(2)当t为何值时,△EOP与△BOA相似.

 

相似三角形经典练习题20161115

参考答案与试题解析

 

一.选择题(共9小题)

1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )

A.B.C.D.

【考点】勾股定理.

【分析】本题主要利用勾股定理和面积法求高即可.

【解答】解:∵在直角三角形中,两直角边分别为3和4,

∴斜边为5,

∴斜边上的高为=.(由直角三角形的面积可求得)

∴这个三角形的斜边与斜边上的高的比为5:=.

故选A.

【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.

 

2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )

A.1:3B.1:4C.1:D.1:2

【考点】相似三角形的判定与性质.

【分析】根据已知及相似三角形的面积比等于相似比的平方,即可求解.

【解答】解:∵∠ADC=∠ADB=90°,∠C=∠BAD

∴△ACD∽△BAD

∵S △CAD =3S △ABD ,且这两三角形高相等

∴AB :AC=1:故选C .

【点评】本题考查了三角形的面积公式,及相似三角形的判定及性质. 

3.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1,S 2,那么

的值为( )

A .

B .

C .

D .

【考点】三角形中位线定理;相似三角形的判定与性质.【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得的值.

【解答】解:根据三角形的中位线定理,△ADE ∽△ABC ,DE :BC=1:2,所以它们的面积比是1:4,所以

=

,故选C .

【点评】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. 

4.(2012秋?桐城市校级月考)如图,?ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ :CQ=4:3,则AP :PR=( )

A .4:3

B .4:7

C .3:4

D .3:7

【考点】相似三角形的判定与性质;平行四边形的性质.

【分析】利用“平行线法”证得△ADQ∽△RCD,则对应边成比例:=;同

理,证得△ADP∽△RBP,则=,即=.

【解答】解:如图,∵在?ABCD中,AD∥BC,且AD=BC,

∴△ADQ∽△RCD,

∴=,即=,

∴RC=AD.

同理,△ADP∽△RBP,则=,即=,

∴==,即AP:PR=4:7.

故选:B.

【点评】本题考查了相似三角形的判定与性质,平行四边形的性质.平行四边形的性质:

①边:平行四边形的对边相等.

②角:平行四边形的对角相等.

③对角线:平行四边形的对角线互相平分.

 

5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )

A.B.

C.D.

【考点】相似三角形的性质.

【分析】本题可根据相似三角形的性质求解,已知了∠AED和∠B对应相等,因此AD、AC是对应边,AE、AB是对应边,DE、BC是对应边,根据相似三角形的对应边的比例相等,即可判断哪个选项正确.

【解答】解:∵△ADE∽△ACB,且∠AED=∠B

∴AD、AE、DE的对应边分别是AC、AB、BC

因而有

故本题选A.

【点评】本题主要考查了相似三角形的性质,找准相似三角形的对应边是解题的关键.

 

6.(2008?安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )

A.B.C.D.

【考点】勾股定理;等腰三角形的性质.

【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.

【解答】解:连接AM,

∵AB=AC,点M为BC中点,

∴AM⊥CM(三线合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,

∴根据勾股定理得:AM===4,

又S△AMC=MN?AC=AM?MC,

∴MN==.

故选:C.

【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.

 

7.(2012秋?杞县校级期末)如图,△ABC,AB=12,AC=15,D为AB上一

点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC 相似,则AE等于( )

A.B.10

C.或10D.以上答案都不对

【考点】相似三角形的性质.

【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.

【解答】解:如图

(1)当∠AED=∠C时,即DE∥BC

则AE=AC=10

(2)当∠AED=∠B时,△AED∽△ABC

∴,即

AE=

综合(1),(2),故选C.

【点评】会利用相似三角形求解一些简单的计算问题.

 

8.(2009?新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )

A.B.C.D.

【考点】相似三角形的判定.

【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.

【解答】解:根据题意得:AB==,AC=,BC=2,

∴AC:BC:AB=:2:=1::,

A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;

B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;

C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;

D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.

【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.

 

9.(2006?大兴安岭)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )

A.B.C.D.

【考点】翻折变换(折叠问题).

【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.

【解答】解:设CD=x,

根据C′D∥BC,且有C′D=EC,

可得四边形C′DCE是菱形;

即Rt△ABC中,

AC==10,

EB=x;

故可得BC=x+x=8;

解得x=.

故选A.

【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.

 

二.填空题(共11小题)

10.a=4,b=9,则a、b的比例中项是 ±6 .

【考点】比例线段.

【分析】根据比例中项的概念,设a、b的比例中项是c,则c2=ab,再利用比例的基本性质计算得到c的值.

【解答】解;设a、b的比例中项是c,则c2=ab

∵a=4,b=9,

∴c2=ab=36,

解得:c=±6;

故填: 6或6.

【点评】此题考查了比例中项,关键是理解比例中项的概念,当比例式中的两个内项相同时,即叫比例中项.

 

11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 ①③④ (填序号).①AC?BC=AB?CD;②AC2=AD?DB;③BC2=BD?BA;④CD2=AD?DB.

【考点】相似三角形的判定与性质.

【分析】由在△ABC中,∠ACB=90°,CD⊥AB,易证得∠BDC=∠BCA=∠CDA=90°,又由∠A=∠A,∠B=∠B,根据有两角对应相等的三角形相似,即可证得△ACD∽△ABC,△BDC∽△BCA,则可得△ACD∽△CBD,根据相似三角形的对应边成比例,即可求得答案.

【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB,

∴AC?BC=AB?CD,

即∴AC?BC=AB?CD,故①正确;

∵△ABC中,∠ACB=90°,CD⊥AB于点D,

∴BC2=BD?BA,故③正确;

∴△ACD∽△CBD,

∴,

∴AC2=AD?AB,CD2=AD?DB,

故②错误,④正确.

故答案为:①③④.

【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意对应线段的对应关系与比例变形.

 

12.(2011春?武侯区校级期末)如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= 6.4 .

【考点】相似三角形的判定与性质;勾股定理.

【分析】由于AC⊥BC,CD⊥AB,可得一组对应角相等,再加上一对公共角,可证△ACD∽△ABC,利用比例线段可求AD.(可先利用勾股定理求出AB)

【解答】解:∵AC⊥BC,CD⊥AB,

∴∠ACB=90°,∠ADC=90°,∠A=∠A,

∴△ADC∽△ACB,

∴=,

又∵在Rt△ABC中,AB===10,

∴=,AD=6.4.

【点评】解答此题不仅用到相似三角形的性质,还要结合勾股定理求出相应的边长,方可进行计算.

 

13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= 8 .

【考点】相似三角形的判定与性质;平行线的性质.

【分析】根据DE∥AC,证得△BED∽△BCA,再由相似三角形对应线段成比

例可得出答案.

【解答】解:由DE∥AC可得△BED∽△BCA,∴==,

又AC=12,可得DE=8.

故填8.

【点评】本题考查平行线的知识,注意相似三角形对应线段成比例的性质.

 

14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .

【考点】相似三角形的判定与性质;平行四边形的性质.

【分析】由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;根据相似三角形对应边成比例得出①,再证明△BEG ∽△DEA,得出②,等量代换得到,于是得到结论.

【解答】证明:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ABE=∠FDE,∠EAB=∠EFD,

∴△ABE∽△FDE,

∴①,

∵四边形ABCD是平行四边形,

∴AD∥BC,

∴∠GBE=∠ADE,∠G=∠DEA,

∴△BEG∽△DEA,

∴②,

由①②可得,,

∵AE=4,EG=3,

∴EF=.

故答案为:.

【点评】此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.

 

15.(2012?通州区校级模拟)如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= 5:3:12 .

【考点】相似三角形的判定与性质;平行四边形的性质.

【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.

【解答】解:由已知得:△AMP∽△CDP,

∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①

△ANQ∽△CDQ,

∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②

解①、②得:AQ=AC,PQ=AQ AP=AC,QC=AC AQ=AC,

∴AP:PQ:QC=5:3:12.

【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.

 

16.(2014秋?肥西县期末)如图,若∠B=∠DAC,则△ABC∽ △DAC ,对

应边的比例式是 == .

【考点】相似三角形的性质.

【分析】根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.

【解答】解:在△ABC和△DAC中,

∵∠C=∠C,∠B=∠DAC;

∴△ABC∽△DAC;

∴==

【点评】考查相似三角形的判定定理:

(1)两角对应相等的两个三角形相似.

(2)两边对应成比例且夹角相等的两个三角形相似.

(3)三边对应成比例的两个三角形相似.

 

17.(2012?牡丹江模拟)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD?BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ① ,结论是 ③或④ .(注:填序号)

【考点】命题与定理.

【分析】根据相似三角形的判定和性质进行分析.

【解答】解:因为若∠BAD=∠C,则△ABC∽△DBA,故=,=,条件是①,结论是③或④.

【点评】解答此题的关键是要熟知真命题与假命题的概念.

真命题:判断正确的命题叫真命题;

相似三角形练习题,提高

相似三角形练习题,提高 一、填空题: 1、若a?3m,m?2b,则a:b?_____。 xyz ??,且3y?2z?6,则x?____,y?______。56 3、在Rt△ABC中,斜边长为c,斜边上的中线长为m,则m:c?______。 1 4、反向延长线段AB至C,使AC=AB,那么BC:AB= 2 2、已知 5、如图,已知△ABC中,EF∥GH∥IJ∥BC,则图中相似三角形共有对. 5题题 6、如图2,E为平行四边形ABCD的边BC延长线上一点,连结AE,交边CD于点F.在不添加辅助线的情况下,请写出图中一对相似三角形:.、如右图,添上条件:_______,则△ABC∽△ADE。D B A2 E C

8题题 8、如图,?1??2,添加一个条件使得?ADE∽?ACB .、如图,在?ABC中,D是AB边上一点,连接CD,要使?ADC与 ?ABC相似,应添加的条件是。 10、如图所示,平行四边形ABCD中,E是边BC上的点,?AE?交BD于点F,如果 BE2BF =,那么=______. BC3FD 11、已知三个边长为2,3,5的正方形按图4排列,则图中阴影部分的面积为_______. 10题 11题12题 12、将三角形纸片按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC =4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是. 二、选择题: 1、等边三角形的中线与中位线长的比值是 A、:1 B、:C、1: 2 2 D、1:3 2、已知直角三角形三边分别为

a,a?b,a?2b,?a?0,b?0?,则a:b? A、1: B、1: C、2:1 D、3:1 3、△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是 A、B、1C、18D、20 4、已知a,b,c是△ABC的三条边,对应高分别为ha,hb,hc,且a:b:c?4:5:6,那么 ha:hb:hc等于 A、4:5: B、6:5: C、15:12:10 D、10:12:15、下列判断正确的是 A、不全等的三角形一定不是相似三角形 B、不相似的三角形一定不是全等三角形 C、相似三角形一定不是全等三角形 D、全等三角形不一定是相似三角形、如图,用放大镜将图形放大,应该属于A.相似B.平移C.对称D.旋转 8、CD是Rt△ABC斜边上的高,则图中相似三角形的对数有 A.0对 B.1对 C.对 D.3对 9、下列各组图形有可能不相似的是. A.各有一个角是50°的两个等腰三角形 B.各有一个角是100°的两个等腰三角形 C.各有一个角是50°的两个直角三角形 D.两个等腰直角三角形 10、如图,小正方形的边长均为1,则下列图中的三角形与△ABC

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

初中数学经典相似三角形练习题(附)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?

(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. 5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似? 7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.

8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似? 9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似. 10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

相似三角形提高练习(一)

相似三角形提高练习(一) .选择题 1. 如图,在正 方形网格中,每个小正方形的边长均相等. 网格中三 个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆 盖的网格线中,竖直部分线段长度之和记为m,水平部分线 段长度之和记为n则这三个多边形中满足m=n的是() A .只有② B .只有③ C .②③ D .①②③ 2. 如图,在△ ABC中,AB=AC=a BC=b ( a> b).在厶ABC内依次作 / CBD=Z A,/ DCE=Z CBD, / EDF=Z DCE 贝U EF 等于() 3. 将一副三角尺(在Rt A ACB 中,/ ACB=90°, / B=60°;在Rt A EDF 中,/ EDF=90° / E=45° 如图摆放,点D为AB的中点,DE交AC于点P, DF经过点。将厶EDF 绕点D顺时针方 向旋转角代丁―.60)。釦交AC于点M,珂'交BC于点N,则驚的值为( ) 4. 如图,在四边形ABCD 中,AD // BC,/ ABC=90°, E是AB上一点,且DE丄CE .若 AD=1 , BC=2 , CD=3,贝U CE与DE的数量关系正确的是() 1 2 3 么EF的长是()A . - B. C.- 3 3 4 6. 如图,矩形ABCD , AD=a, AB=b,要使BC边上至少存在一点 第3题 A. ./I B. b33 B. C.笛 4 D.岂 2 a b3 A. CE=.「DE B. CE= -DE C. CE=3DE D. CE=2DE 5.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB = 1 , CD = 3,那 P, ?使厶ABP △ APD △ CDP A.

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形练习题

相似三角形练习题 一、填空题: 1、若b m m a 2,3==,则_____:=b a 。 2、已知 6 53z y x ==,且623+=z y ,则__________,==y x 。 3、在Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。 4、反向延长线段AB 至C ,使AC =2 1 AB ,那么BC :AB = 。 5、如果△ABC ∽△A ′B ′C ′,相似比为3:2,若它们的周长的差为40厘米,则 △A ′B ′C ′的周长为 厘米。 6、如图,△AED ∽△ABC ,其中∠1=∠B ,则()()() AB BC AD _________==。 第6题图 第7题图 7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。 若BC =6,AB =10,则BD = ,CD = 。 8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。 第8题图 第9题图 9、如图,四边形ADEF 为菱形,且AB =14厘米,BC =12厘米,AC =10厘米,那BE = 厘米。 10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。 二、选择题: 11、下面四组线段中,不能成比例的是( ) A 、4,2,6,3====d c b a B 、3,6,2,1=== =d c b a C 、10,5,6,4====d c b a D 、32,15,5,2====d c b a E A D C 1 C B D A D C M P N Q A B

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

相似三角形经典的基本图形及练习题

D A B C 相似中的基本图形练习 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。 而识别(或构造)A 字型、X 字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A 字型及变形 △ABC 中 , AD=2,BD=3,AE=1 (1)如图1,若DE ∥BC , 求CE 的长 (2)如图2,若∠ADE=∠ACB , 求CE 的长 2. X 字型及变形 (1)如图1,AB ∥CD ,求证:AO :DO=BO :CO (2)如图2,若∠A=∠C ,求证:AO ×DO=BO ×CO 3. 母子相似型及变形 (1)如右图,在△ABC 中, AD 把△ABC 分成两个三角形△BCD 和△CAD ,当∠ACD =∠B 时,说明△CAD 与△ABC 相似。 说明:由于小三角形寓于大三角形中,恰似子依母怀,故被称为“母子三角形” (2)如图, Rt △ABC 中 ,CD ⊥AB, 求证:AC 2=ADxAB,CD 2=ADxBD, 4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似 A D B

练习题 1、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC DE = ;S △GED :S △GBC = ; 2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题 6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO 7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE AE =3, 且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9 8、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。 9、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2 =AD ·BE 。 A B C D E G 图1 A B C D E 图2 A B C M 图3 A B C D E 图4 A B C D F 图5 G E A E C D O A B C D E C A B D E A B C D E

相似三角形经典题集锦

相似三角形经典题集锦 姓名 1、(开放题)如图l -4-31,已知Rt △ABC 与Rt △ DEF 不相似,其中∠C 、∠F 为直角,能否分别将这两个三角形各分割成两个三角形,使AABC 分成的两个三角形与ADEF 所分成的两个三角形分别对应相似?如果能,请你计设出一种分割方案. 2、(探究题)如图l -4-32,在△ABC 中,BA=BC=20cm ,AC=30cm ,点P 从A 点出发,沿AB 以每秒4cm 的速度向B 点运动,同时点Q 从C 点出发,沿CA 以每秒3㎝的速度向A 点运动,设运动的时间为x. ⑴当x 为何值时,PQ ∥BC ? ⑵当P 13BCQ B Q AB C ABC S S S S ????=时,求的值。 ⑶ΔAPQ 能否与ΔCQB 相似?若能,求出AP 的长,若不能,请说明理由. 3、如图,在yABCD 中,过点B 作BE ⊥CD , 垂足为E ,连结AE ,F 为AE 上一点,且 ∠BFE =∠C .⑴ 求证:△ABF ∽△EAD ; ⑵ 若AB=4,∠BA=30°,求AE 的长; ⑶ 在⑴、⑵的条件下,若AD=3,求BF 的长. 4、如图,Rt 三角形ABC 中,∠BAC=90度,AB=AC=2,点D 在BC 上运动(不能经过B 、C ), 过D 作∠ADE=45度,DE 交AC 于E 。 (1)图中有无与三角形ABD 一定相似的三角形,若有,请指出来并加以说明 (2)设BD=x,AE=y,求y 与x 的函数关系,并写出其定义域; (3)若三角形ADE 恰为等腰三角形,求AE 的长

5、已知:∠A=90°,矩形DGFE 的D 、E 分别在AB 、AC 上,G 、F 在BC 上 (1)如果DGFE 为正方形,BG=22,FC=2,求正方形DGFE 的边长; (2)若AB=12cm,AC=5cm ,DGFE 的面积为 y 平方厘米,写出y 关于x 的函数解析式,并求由矩形面积为10平方厘米时, 求AD 的长 6、如图,矩形EFGD 的边EF 在ABC ?的BC 边上,顶点D 、G 分别在边AB 、AC 上. 已知5AB AC ==,6BC =,设BE x =,EFGD S y =矩形. (1)求y 关于x 的函数解析式,并写出自变量x 的取值范围; (2)联结EG ,当GEC ?为等腰三角形时,求y 的值. 7、在Rt ABC ?中, ∠ACB =90°, CD AB ⊥,垂足为D . E 、F 分别是AC 、BC 边上一点, 且CE =1 3AC ,BF =1 3BC . (1 )求证∶AC BC =CD BD . (2 )求EDF ∠的度数. F E D C B A A D G B E F C

(完整版)相似三角形提高练习(经典)

第四章相似图形1 1.等边三角形的一边与这边上的高的比是___________ 2.已知a 、b 、c 为△ABC 的三条边,且a :b :c=2:3:4,则△ABC?各边上的高之比为______. 3.在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为________. 4.已知四条线段a 、b 、c 、d 成比例,若a=2,b=3,c=33,则 d=________. 5.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A.a ∶d=c ∶b B.a ∶b=c ∶d C.d ∶a=b ∶c D.a ∶c=d ∶b 6.如果b a =43,那么b b a 2+=____;b b a 2-=____; a b a 3-=____;a b b a 3-2+=____ 7.如果53=-b b a ,那么b a =________b b a 2+=____;b b a 2-=____;a b b a 3-2+=____ 8.若d c b a ==3(b+d ≠0),则d b c a ++=_______,d b c a 3-23-2=_______ 9.若3x -4y = 0,则y y x +的值是____________ 10.若8 75c b a ==,且3a -2b+c=3,则2a+4b -3c 的值是____________ 11.若6 54 3 2+==+c b a ,且2a -b+3c=21. ,则2a+4b -3c 的值是___________ 12.x :y :z=3:5:7,3x +2y -4z =9则x +y +z 的值为___________ 13.如果 k c b a d d b a c d c a b d c b a =++=++=++=++,则k 的值是___________。 14.在长度为10的线段上找到两个黄金分割点P、Q.则PQ=_________ 15.当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身 长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 cm 16.顶角为360 的等腰三角形称为黄金三角形.如右图,△ABC, △BDC, △DEC 都是黄金三角形.若AB=1则DE=_ 17.如图以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上, (1)求AM 、DM 的长. (2)求证:AM 2 =AD ·DM. (3)根据(2)的结论你能找出图中的黄金分割点吗? 18.以下五个命题:①所有的正方形都相似 ②所有的矩形都相似 ③所有的三角形都相似 ④所有的等腰直角三角形都相似 ⑤所有的正五边形⑥所有的菱形⑦所有的平行四边形都相似.,其中正确的命题有_______ 19.下列判断中,正确的是( ) (A )各有一个角是67°的两个等腰三角形相似(B )邻边之比都为2:1的两个等腰三角形相似 (C )各有一个角是45°的两个等腰三角形相似(D )邻边之比都为2:3的两个等腰三角形相似 20.如图在一矩形ABCD 的花坛四周修筑小路,使得相对两条小路的宽均相等。花坛AB =20米,AD =30米,试问小路的宽x 与y 的比值为________时,能使小路四周所围成的矩形A`B`C`D`能与矩形ABCD 相似?请说明理由。 21.把矩形对折后,和原来的矩形相似,那么这个矩形的长、宽之比为______ 22.如图所示相片框(长和宽不等,阴影宽度相等),内外两个矩形是否相似? 23.把一个矩形剪去一个正方形,若剩余的矩形和原矩形相似,则原矩形的宽与长的比为______. 17题 20题 22题 24题 25题 24.如图已知DE ∥BC ,△ADE ∽△ABC ,则 AB AD =________=________.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

相似三角形经典的题目型

实用标准文案 精彩文档 相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段 b a,的长度分别为n m,,那么就说这两条线段的比是 n m b a , 或写成n m b a ::.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说 a 是d c b ,,的第四比例项,那么应得比例式为: a d c b . ②()a c a b c d b d 在比例式 ::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即a b b d ::那么b 叫做a 、d 的比例中项,此时 有2 b ad 。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC ,且使AC 是BC AB 和的比例中项,即2 AC AB BC ,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5≈0.618AB .即 512 AC BC AB AC 简记为: 51 2 长短==全长注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为 0) (1)基本性质: ①bc ad d c b a ::;②2 ::a b b c b a c . 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad ,除 了可化为d c b a ::,还可化为d b c a ::,b a d c ::,c a d b ::,c d a b ::,b d a c ::,a b c d ::,a c b d ::. (2)更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ,交换内项,交换外项.同时交换内外项(3)反比性质(把比的前项、后项交换): a c b d b d a c .

初三数学相似三角形练习题集

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 初三数学相似三角形练习题集 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

相似三角形练习题 1.如图所示,给出下列条件: ①;②;③;④. 其中单独能够判定的个数为() A.1 B.2 C.3 D.4 2.如图,已知,那么下列结论正确的是() A.B.C.D. 3. 如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为 1:4.其中正确的有:() A.0个B.1个C.2个D.3个 4.若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为() A.1∶4B.1∶2C.2∶1D.1∶ 5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值() D B C A N M O

A.只有1个 B.可以有2个 C.有2个以上但有限 D.有无数个 6.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD 的中点,连接OM、ON、MN,则下列叙述正确的是() A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 7.如图,在方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是() A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 8.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为() A.12.36cm B.13.6cm C.32.36cm D.7.64cm 9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米, AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 () A.3米B.0.3米C.0.03米D.0.2米 10、在比例尺为1︰10000的地图上,一块面积为2cm2的区域表示的实际面积是()

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

相似三角形练习题含解析

相似三角形练习题 一、选择题 1、下列各组图形中不是位似图形的是() A.B. C.D. 2、若2:3=7:x,则x=() A.2B.3C.3.5D.10.5 3、两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是() A.36cm2B.85cm2C.96cm2D.100cm2 4、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为() A.(1,-2)B.(-2,1)C.()D.(1,-1) 5、如图,已知点A在反比例函数y=(x < 0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为( )

A .8 B .12 C .16 D .20 6、如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=-的图象交于点C,若BA:AC=2:1,则a的值为() A.2B.-2C.3D.-3 7、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于( ) A .6 B .5 C .9 D .

8、如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( ) A .5∶8 B .3∶8 C .3∶5 D .2∶5 9、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=; ④=AD?AB.其中单独能够判定△ABC∽△ACD的个数为( ) A .1 B .2 C .3 D .4 10、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从 点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P 关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之 间的函数图象大致为()

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相似三角形提高练习经典

1文档收集于互联网,已整理,word 版本可编辑. 第四章相似图形1 1.等边三角形的一边与这边上的高的比是___________ 2.已知a 、b 、c 为△ABC 的三条边,且a :b :c=2:3:4,则△ABC?各边上的高之比为______. 3.在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为________. 4.已知四条线段a 、b 、c 、d 成比例,若a=2,b=3,c=33,则 d=________. 5.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A.a ∶d=c ∶b B.a ∶b=c ∶d C.d ∶a=b ∶c D.a ∶c=d ∶b 6.如果b a =43,那么b b a 2+=____;b b a 2-=____;a b a 3-=____;a b b a 3-2+=____ 7.如果53=-b b a ,那么b a =________b b a 2+=____;b b a 2-=____;a b b a 3-2+=____ 8.若d c b a ==3(b+ d ≠0),则d b c a ++=_______,d b c a 3-23-2=_______ 9.若3x -4y = 0,则y y x +的值是____________ 10.若8 75c b a ==,且3a -2b+c=3,则2a+4b -3c 的值是____________ 11.若65432+==+c b a ,且2a -b+3c=21. ,则2a+4b -3c 的值是___________ 12.x :y :z=3:5:7,3x +2y -4z =9则x +y +z 的值为___________ 13.如果k c b a d d b a c d c a b d c b a =++=++=++=++,则k 的值是___________。 14.在长度为10的线段上找到两个黄金分割点P、Q.则PQ=_________ 15.当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身 长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 cm 16.顶角为360的等腰三角形称为黄金三角形.如右图,△ABC, △BDC, △DEC 都是黄金三角形.若AB=1则DE=_ 17.如图以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上, (1)求AM 、DM 的长. (2)求证:AM 2=AD ·DM. (3)根据(2)的结论你能找出图中的黄金分割点吗? 18.以下五个命题:①所有的正方形都相似 ②所有的矩形都相似 ③所有的三角形都相似 ④所有的等腰直角三角形都相似 ⑤所有的正五边形⑥所有的菱形⑦所有的平行四边形都相似.,其中正确的命题有_______ 19.下列判断中,正确的是( ) (A )各有一个角是67°的两个等腰三角形相似(B )邻边之比都为2:1的两个等腰三角形相似 (C )各有一个角是45°的两个等腰三角形相似(D )邻边之比都为2:3的两个等腰三角形相似 20.如图在一矩形ABCD 的花坛四周修筑小路,使得相对两条小路的宽均相等。花坛AB =20米,AD =30米,试问小路的宽x 与y 的比值为________时,能使小路四周所围成的矩形A`B`C`D`能与矩形ABCD 相似?请说明理由。 21.把矩形对折后,和原来的矩形相似,那么这个矩形的长、宽之比为______ 22.如图所示相片框(长和宽不等,阴影宽度相等),内外两个矩形是否相似? 23.把一个矩形剪去一个正方形,若剩余的矩形和原矩形相似,则原矩形的宽与长的比为______. 17题 20题 22题 24题 25题 24.如图已知DE ∥BC ,△ADE ∽△ABC ,则AB AD =________=________. 25.如图△AED ∽△ABC ,其中∠1=∠B ,则AD ∶________=________∶BC =________∶AB . 26.△ABC ∽△A ′B ′C ′,如果∠A=55°,∠B=100°,则∠C ′的度数等于__________ 27.如果两个三角形的相似比为1,那么这两个三角形________ 28.若△ABC ∽△A ′B ′C ′,AB=2,BC=3,A ′B ′=1,则B ′C ′=_________ 29.若△ABC 的三条边长的比为3∶5∶6,与其相似的另一个△A ′B ′C ′的最小边长为12 cm ,那么△A ′B ′C ′的最大边长是________ 30.已知△ABC 的三条边长分别为3 cm,4 cm,5 cm,△ABC ∽△A ′B ′C ′,那么 △A ′B ′C ′的形状是______,又知△A ′B ′C ′的最大边长为20 cm ,那么△A ′B ′C ′的面积为________. 31.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,如果△ABC ∽△A ′B ′C ′,那么△A ′B ′C ′的第三边的长应等于__________

相关主题