搜档网
当前位置:搜档网 › 风电叶片真空灌注成型工艺

风电叶片真空灌注成型工艺

风电叶片真空灌注成型工艺
风电叶片真空灌注成型工艺

风电叶片真空灌注成型工艺

一、叶片成型

1.模具清理(QA check:工序的正确性;各工序涂抹到位。)

1.1 洁模剂

清洁模具表面,除油除污渍。

1.2 封孔剂

密封模具表面小气孔,防止在真空灌注过程中由于模具的漏气而造成产品气孔率大,影响产品质量。

1.3 脱模剂

在模具表面形成一层致密层,使模具更容易与产品分离,达到脱模的效果。

2.壳体外表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。)

铺覆两层玻璃纤维布,由于叶片形状特殊,纤维布不是整体的,某些部位会断开,这就需要两块纤维布之间进行搭接,搭接尺寸10—20cm。

3.预埋件铺放(QA check:预埋件定位准确;打磨到位;表面清洁。

3.1 主梁

主梁是在单独的模具上成型的,铺放主梁时需用工装对其进行精确定位,并保证经过打磨处理及表面清洁。

3.2 壳体泡沫芯材

PVC泡沫板有轻质高强的作用,上下两层纤维布,中间包覆泡沫板形成三明治结构,铺放时保证各快板材之间连接紧密。

3.3 根部预埋块

由于根部铺层太多、太厚,根部做二次成型,在单独的模具上成型,要保证经过打磨处理及表面清洁。

4.壳体内表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。)

内表面纤维布铺放时注意不要让铺好的预埋件错位,其余同外表面玻璃纤维铺层。

5.真空材料的铺放及布置(QA check:铺放位置正确。)

5.1 免打磨布

在合模过程中粘接部位需要打磨处理,提前在这些部位铺放免打磨布可以避免更多的工序,带来更好的工作环境。

5.2 脱模布

在树脂固化以后真空材料也会粘接在产品表面,不易撕除,表面经过特氟龙处理的脱模布可以更容易的去除真空材料,可以节省大量的人工并使产品表面不致被破坏。

5.3 导流网

真空灌注的时候,树脂在纤维布里的流动速度远低于在导流网上,这样可以更快的浸透更大面积的纤维布。

5.4 灌注通道

灌注通道的布置至关重要,这会影响到叶片整体的浸胶速度及质量。

5.5 真空袋

把模具及整个产品密封起来,使整个系统处于负压状态,这样就可以把树脂吸进系统,达到真空灌注的工艺。

6.真空灌注(QA check:真空度检测;树脂混合比例、温度;各注胶口的灌注时间;模具温度。) 6.1 真空度检测

在整个系统抽真空达到极限状态时,需要断开真空泵来做整个系统的气密性测试,达到要求才可以进行下道工序。

6.2 配树脂

环氧树脂A、B组分比例若不正确会导致树脂固化不完全,强度达不到要求,整张叶片就会被报废,所以树脂的温、湿度及比例要严格控制,混胶机每次开关都要做比例抽样试验。

6.3 灌注

灌注过程中要求不能有空气进入,所以每个灌注口应该保证有足够的树脂,且每个灌注口的开关时间应有严格的限制。

7.去除真空材料(QA check:树脂是否固化。)

从脱模布开始把真空材料撕掉,免打磨布等到合模工序前去除。

8. 加强筋的定位及粘结(QA check:定位精确;粘结保证强度。)

加强筋是在单独的模具上成型的,粘接加强筋时需用工装对其进行精确定位,并保证粘接强度。

9.合模(QA check:胶黏剂的用量及各部位的形状。)

将粘接部位涂抹适量胶黏剂,利用铰链合模系统将模具合模,压实。

10. 后固化(QA check:模具温度;手糊树脂的比例;纤维布的尺寸。)

10.1模具升温

模具温度和加热时间应符合树脂固化工艺要求。

10.2 内部加强带的糊制

糊制内部加强带需要增稠的手糊树脂,且要用快速固化剂,需要把握好时间,在树脂升温固化前把加强带做好。

11. 脱模

后固化完成后需要等模具温度降到常温才可以脱模,热脱模会导致产品变形。

二、后处理

1. 前后缘切割、打磨、修补(QA check:修型圆滑处理;补强处纤维布的尺寸。)

1.1 前后缘翻边切割、打磨

根据前后缘的分型线轨迹来划线切割,叶尖部位不明显的地方用专门的卡具来画,根部由于工具问题不能切割到位的,将其磨平。

1.2 根部外表面合模逢补强同内部加强带糊制。

2. 根部切割、打孔(QA check:整体长度及孔径尺寸精确。)

2.1 环向切割

定位叶片长度要精确,叶片要调好水平。

2.2 环向打孔

根据叶片零度位置定位第一个环向孔。

2.3 轴向打孔

根据环向孔位置对应的打轴向孔。

3. 打磨、喷漆(QA check:环境温、湿度记录,空气清洁;喷涂均匀,无桔皮、流胶)3.1 打磨

用气动打磨工具80-120#的砂纸打磨。

3.2 刮腻子

将打磨出来的小孔用腻子刮平,腻子晾干后重复打磨、刮腻子。

3.3 底漆

喷涂底漆,使一些肉眼观测不到的缺陷暴露出来,尽享进一步处理。

3.4 面漆

所有修补完成后进行面漆的喷涂,注意喷涂的厚度与手法。

风电叶片灌注树脂固化性能的影响

风电叶片灌注树脂固化性能的影响 刘魁1,杨孚标2,冯学斌1,雷志敏1,杜雷1,梁自禄1 (1.时代新材料科技股份有限公司,湖南株洲412007;2. 国防科学技术大学航天与材料工程学院,湖南长沙410073) 摘要:采用不同固化条件固化环氧浇铸体,对其进行玻璃化转变温度和静力学性能测试,研究不同固化条件对环氧固化物性能的影响。测试结果显示Tg存在最佳值。通过测试结果可知环氧树脂在40℃10h预固化后再经过70℃3h后固化测得的拉伸强度、弯曲强度和压缩强度分别较40℃10h固化提高了11.64%、14.72%和20.61%,可以达到更好的固化性能。通过研究环氧浇铸体拉伸和弯曲载荷-位移曲线,发现固化后的环氧树脂经过更高温度的后固化可以有效降低体系内的应力,获得更好更均匀的性能。 关键词:环氧树脂;固化工艺;力学性能;玻璃化转变温度 Study on the curing properties of wind blade epoxide resin LIU Kui1,YANG Fubiao2,FENG Xuebin1,LEI Zhimin1,DU Lei1,LIANG Zilu1 (1.Zhuzhou Times New Materials Science and Technology Co,Ltd,Zhuzhou 412007,China;2.National Univ. of Defense Technology ,College of Aerospace and Material Engineering , Changsha 410073,China) Abstract: Cured the epoxide resin castings under different processes, tested the static mechanical properties and glass transition temperatures to study the influence on epoxide resin casting properties by different curing processes. The test results show that the best value of Tg is existing. The tensile strength, flexural strength and compressive strength of the epoxide resin casting under the process of 40℃ 10h pre-curing and 70℃3h post-curing are increased by 11.64%, 14.72% and 20.61% respectively comparing with the one under the curing process of 40℃10h. Obviously, the former one has better properties. It is found that the internal stress of epoxide resin casting can be effective reduced by post-curing process of a higher temperature, and this process also bring us better and more homogeneous epoxide resin properties. Keywords:epoxide resin, curing process, mechanical property, glass transition temperature 1概述 随着风电叶片的快速发展,环氧树脂大量的应用于叶片的生产中,环氧树脂作为叶片成型的主要基体材料能提供良好的力学性能[1]。固化温度对固化物的性能具有重要影响[2],同一种树脂在不同固化条件下固化可能性能相差极大,因此需要寻求最佳固化制度[3]。固化不好的环氧树脂存在交联密度不均一、内应力大、质脆和抗冲击性差等缺点,在很大程度上限制了它在风电叶片上的应用。 固化反应属于化学反应,受固化温度影响很大,温度升高反应速度加快,但固化温度过高常使固化物性能下降,所以存在固化温度上限,必须选择合适的固化速度和固化物性能折中的温度作为合适的固化温度。按固化温度可以把固化剂分为四类:1)在室温下固化的固化剂;2)在室温至50℃固化的室温固化剂;3)在50℃-100℃的中温固化剂;4)在100℃以上的高温固化剂[4]。为了更好的保证环氧灌注树脂在叶片 作者简介:刘魁,男,硕士,高级工艺师,主要从事复合材料风力发电叶片的工艺研究

真空灌注-包括轻质rtm和真空导流-工艺方法及问题处理

真空灌注工艺(LRTM、真空导流工艺方法及问题处理)关于玻璃钢的新工艺方法,注射工艺较多,从最初的压力注射,到现在的真空注射,走过了很多的弯路。由于玻璃钢的特点,它易于成型,进入门槛比较低。在汽车工业、环卫领域、风能领域,都有极大的市场。 管路简图 图解:1、高压真空吸合模具边缘;2、低压真空从模具内流

向真空筒;3、模具出胶时用大力钳锁紧出口;4、用丙酮涮洗真空管,并封住进口;5、最后卡住所有出胶口。继续保持高压锁模;6、产品固化后脱模。 一、正面模具的制作: 正面模具是制作模具的基础,只有正面模具,他直接影响模具的结构形式,他的表面质量在翻制反模时并不起作用。但是他的表面胶衣质量要求很高,因为在一个封闭的空间里,玻璃钢固化放出的热量很多,积聚在模具内部灼伤磨具表面。除了选用好的胶衣材料外,应当注意的还有以下几点。 1、分型面的确定 一个产品的分型面,当然选取最大部分,但是如果产品如下图,中间分型面是选用那个面呢,应该选用下面,因为同样的能出产品,选用下面分型,可以很好的铺层,在铺层时有了参考边,否则,切割线被胶衣遮盖,铺层时没有依据。 2避免针孔: A.首先,选用优质的模具胶衣。合适的的模具胶衣。胶衣的流平性、消泡性、粘度和触变性固化特性稳定。好的胶衣除基体树脂优

异外,还有一定的消泡剂和流平助剂。选用优秀的模具胶衣有很好的助剂类,可以有效降低针孔数量。 B.胶衣的固化体系容易产生针孔的原因之一,首先要防止固化时间过短,而且固化剂的比例添加适当。为了更符合比例,建议采用预促进型,另外好的固化剂过氧化氢少,在引发聚合反应时分解的水分子少,从而提高了胶衣固化程度,减少针孔现象。 C.胶衣厚度均匀。尽量使厚度均匀,所以采用喷涂方式,比手刷有利于气泡的排除,也是减少真空和气泡的方法之一。 D.喷涂用的压缩空气清洁度不高也是产生真空的原因之一,要使用干净的空气,避免油滴和水气造成针孔。 E.喷涂的方法。有利于气泡排除,首遍的首层薄喷,间隔1-2 分钟后再涂盖前面的喷涂方法,易于气泡排除,另外,尽量减少或不用苯乙烯、丙酮稀释。最佳的方法是提高环境温度和胶衣温度,18-30 度的室温,和35%-50%的湿度是胶衣喷涂的最佳条件。 F.良好的木型表面。疏松粗糙的表面不利于胶衣施工,也不利于气泡排出。所以尽量提高表面的致密度和硬度,做到表面光洁。G.在木型完工后,尽量马上检验,并进行下一步施工,或是用屏蔽物加以遮盖。如果空气尘粉或随喷涂落在模具表面,造成了一定的质量隐患。 3、了解模具的关联尺寸; 这个问题大家都会注意的,就像机械行业的公差配合,关联尺寸的要求是与别的产品相互影响的,单独的尺寸。

风电叶片制造工艺现状及我国目前市场格局

风电叶片制造工艺现状及我国目前市场格局 目前国外风机叶片大量采用复合材料制造,并向大型化、低成本、高性能、轻量化、多翼型和柔性化方向发展。而国内的风机叶片起步晚,离高性能叶片的要求有一定的距离。目前国外大的风力机叶片厂家已积极抢滩中国,如LM、Vestas、Gamesa以及Suzlon等均已入驻天津,就地生产叶片,占据了很大的市场份额。国内的主要厂家如中复连众、保定惠腾等均有引进技术。国家对可再生清洁能源的支持,加快了风力发电的发展速度,也为我国的大型复合材料叶片开发提供了一个不可多得的发展机遇。面临着巨大的市场需求和强劲的国际竞争,我国大型复合材料叶片有着巨大的发展机遇与挑战。 风电叶片制造工艺发展现状 传统复合材料风力发电机叶片多采用手糊工艺制造。手糊工艺的主要特点在于以手工劳动为主,简便易行、成本低,但效率亦低、质量不稳定且工作环境差,多用于中小型叶片的成形。因此手糊工艺生产风机叶片的主要缺点是产品质量对工人的操作熟练程度及环境条件依赖性较大,生产效率低,而且产品质量均匀性波动较大,产品的动静平衡保证性差,废品较高。特别是对高性能的复杂气动外型和夹芯结构叶片,还往往需要黏接第二次加工,黏接工艺需要黏接平台或型架以确保黏接面的贴合,生产工艺更加复杂和困难。 叶片最新发展的成型方法是RTM,即树脂转移模塑成型法。将纤维预成型体置于模腔中,然后注入树脂,加温加压成形。RTM是目前世界上公认的低成本制造方法,发展迅速,应用广泛。应该指出的是RTM是该法的一个总称,其中可有多种分支。生产大型叶片多用的是VARTM和SCRIMP法。VARTM即真空辅助RTM一边抽真空一边注入树脂,此时只用单面模具,另一面用真空袋。SCRIMP即西曼复合材料熔塑成形法,为美国人西曼所发明,仅需单面模具且要求简单,另一面亦为真空袋,适用于制造大型复杂制件。TPI Composites公司已用该法制造了30m长的叶片。Vestas公司和Gamesa公司都采用了预充填的方法,该方法将预充填层切裁成合适的尺寸并放进上、下模段中,一个空心的翼梁也被分层覆盖在一个芯轴柄上。塑料薄膜被铺在三个模型之上,并利用真空法将多层纤维压缩在一起并挤走任何隐蔽的气泡。在真空状态时将模型加热到120 ℃,环氧树脂聚合物将变成黏度非常低的材料,空气释放有助于预充填层固紧在一块,几分钟后,升温使环氧树脂聚合物固化,固化之后,将塑料薄膜移走,将叶片部件黏合成一体。 随着叶片技术的发展,热塑材料得到了应用。LM Glasfibre公司用玻璃钢、碳纤维和热

风电叶片质检工序步骤

风电叶片质检工序步骤 质检员:做好工序检验,及时纠正工序差错,保证过程质量,减少返工、返修浪费;负责调查质量检验技术现状;参与质量分析、编制质量控制计划,设计质量控制卡,确定质量控制点;负责确认质量事故现象,参与调查质量事故,分析质量事故原因,编制质量事故报告;负责产品质量状态标识工作,严格控制不良品,确定质量问题、跟踪验证质量问题的解决情况 1、模具清理 叶片脱模后,用刀具清理模具上沾的真空膜以及残留的胶,或用吸胶毡擦拭模具上的粉层,擦拭干净后会用洁膜剂清理模具(通常只是边缘)。 2、脱模剂 模具清理好后,涂一层脱模剂,其固化需要等待一段时间方可铺层。脱模剂的作用在于在模具表面形成一个致密层,使得模具更加容易和叶片分离,达到脱模的效果。 3、部件 整只叶片一般可分为蒙皮、主梁、翻边角、叶跟、粘接角等各个部件,其中主梁、翻边角、叶跟、粘接角等用专用模具进行制作。等将各个部件制好后,在主模具上进行胶接组装在一起,合模后加压固化后制成一整只叶片。 4、主梁 主梁是在单独的模具上成型的,铺放主梁时需要工装对其进行精确定位,并保证经过打磨处理及表面清洁。主梁在切割车间转运到蒙皮车间后需要人工脱模,然后要剥离脱模后残余的一些附着物。最后用布擦拭表面。 5、腹板 PVC泡沫有较高的剪切模量,组成的结构有良好的刚度特性,主要增加截面刚度。上下两层纤维布,中间是泡沫板形成夹芯结构,铺放时需要保证各块PVC板材之间连接紧密。 6、玻璃纤维铺层制作 首先铺脱模布,然后是覆盖整个模具的大布,叶根区域铺设错层,主梁的错层与叶根错层镶嵌。主梁下面需要铺设连续毡,以便导流。主梁通过工装定位后,两旁的轻木和泡沫的位置就有了基准,芯材的位置正确之后,才能保证前缘的单向布铺设正确。此过程需要注意铺放位置正确,搭接尺寸足够。另外还需注意(抽真空时也要留意),叶根增强铺层有几十层,是最容易产生对结构强度影响比较大的褶皱的地方。 7、真空材料 纤维布铺设完成后,需要依次铺设脱模布、带孔隔离膜、导流网、导流管和螺旋管、溢流管、一层真空、吸胶毡、二层真空。脱模布和隔离膜主要起真空灌注工艺结束后更好地去除真空辅料的作用。导流网能更好地排除真空体系中残留的空气,并且能够使树脂均匀地渗透到所生产产品各部位,对灌注的效果和速度都有较大影响。在导流网上方布置有导流管,导流管通过进胶盘连通进胶管;在远离且低于导流管的位置有流管,流管连接抽气管,抽气管连接真空泵和压力表。在以上材料的上方盖至少一层真空袋。打两层真空袋是为了确保抽真空的效果。一层真空上方可放吸胶毡以加快抽真空。真空袋把整个产品密封起来,使得整个系统处于负压状态,以便达到真空灌注的工艺要求。 8、粘接角工装

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

风力发电叶片制作工艺介绍

风力发电叶片制作工艺 介绍 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

风力发电叶片制作工艺介绍风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型发电机的叶片长44m,采用碳纤维代

【CN109968689A】一种用于预埋型风电叶片叶根的灌注系统及灌注成型工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910338747.0 (22)申请日 2019.04.25 (71)申请人 株洲时代新材料科技股份有限公司 地址 412000 湖南省株洲市天元区海天路 18号 (72)发明人 郭志强 侯彬彬 蒋华 崔志刚  王运河 黄怀勇 葛凯  (74)专利代理机构 长沙朕扬知识产权代理事务 所(普通合伙) 43213 代理人 钱朝辉 (51)Int.Cl. B29C 70/36(2006.01) B29C 70/54(2006.01) (54)发明名称 一种用于预埋型风电叶片叶根的灌注系统 及灌注成型工艺 (57)摘要 本发明公开了一种用于预埋型风电叶片叶 根的灌注系统,包括铺设于叶根壳体内表面玻纤 布上的一层或多层导流网,所述导流网表面设有 真空袋膜,所述导流网与真空袋膜之间设有相交 且垂直布置的展向注胶欧姆管和弦向注胶欧姆 管,所述展向注胶欧姆管和弦向注胶欧姆管相交 处设有注胶口。本发明还相应提供一种风电叶片 叶根的灌注成型工艺。本发明的灌注系统采用呈 T型布置的展向注胶欧姆管和弦向注胶欧姆管, 仅需2根注胶管和1个注胶口,树脂有展向流动和 弦向的流动配合,保证叶根灌透,灌注过程只需 开管一次易于操作控制,解决了多根注胶管开关 时机不易控制,而出现包流导致浸润不良的问 题, 同时也降低了多个注胶口灌注漏气风险。权利要求书1页 说明书4页 附图2页CN 109968689 A 2019.07.05 C N 109968689 A

权 利 要 求 书1/1页CN 109968689 A 1.一种用于预埋型风电叶片叶根的灌注系统,其特征在于,包括铺设于叶根壳体内表面玻纤布(1)上的一层或多层导流网(2),所述导流网(2)表面设有真空袋膜,所述导流网(2)与真空袋膜之间设有相交且垂直布置的展向注胶欧姆管(3)和弦向注胶欧姆管(4),所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设有注胶口(5)。 2.根据权利要求1所述的灌注系统,其特征在于,所述导流网(2)包括慢速导流网(21)和快速导流网(22),所述导流网(2)为两层,由下至上依次为慢速导流网(21)和快速导流网(22)。 3.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)为160±10g/m2的编织型慢速导流网,所述快速导流网(22)为200±10g/m2的挤压型快速导流网。 4.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)的展向起点与叶根部法兰盘(10)之间的距离d1为100±20mm,展向终点与叶根部法兰盘(10)之间的距离d2为1100±20mm,弦向与叶根部前后缘分型线之间的距离d3分别为50±20mm。 5.根据权利要求2所述的灌注系统,其特征在于,所述快速导流网(22)的展向起点与叶根部法兰盘(10)之间的距离h1为150±20mm,展向终点与叶根部法兰盘(10)之间的距离h2为1050±20mm,弦向与叶根部前后缘分型线之间的距离h3分别为100±20mm。 6.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)的展向起点与叶根部法兰盘(10)之间的距离f1为200±20mm,展向终点与叶根部法兰盘(10)之间的距离f2为1050±20mm,弦向与大梁后缘边平齐。 7.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述弦向注胶欧姆管(4)的展向起点与叶根部法兰盘(10)之间的距离k1为200±20mm,弦向与叶根部前后缘分型线之间的距离k3分别为150±20mm。 8.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述内表面玻纤布(1)表面、导流网(2)底部还设有脱模布和带孔隔离膜,所述脱模布设于内表面玻纤布(1)表面,所述带孔隔离膜设于脱模布表面。 9.根据权利要求1-5中任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)下铺放有防压痕板。 10.一种风电叶片叶根的灌注成型工艺,其特征在于,包括以下步骤: (1)在成型模具上依次铺设叶根壳体外表面玻纤布(6)、预埋螺栓套(7)、内表面玻纤布 (1),再在内表面玻纤布(1)表面依次铺设脱模布与带孔隔离膜; (2)在带孔隔离膜表面铺设导流网(2); (3)在导流网(2)上布设展向注胶欧姆管(3)和弦向注胶欧姆管(4),并在展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设置注胶口(5); (4)覆盖真空袋膜,制作真空系统; (5)利用真空灌注法从注胶口(5)灌注,固化成型,脱模即得到风电叶片叶根。 2

真空灌注工艺

真空灌注工艺 简介 真空灌注工艺是指树脂通过真空的力量来灌注的。材料是平铺在模具上,树脂在抽完真空以后导入。要达到完全的真空,树脂通过管子逐层渗透到铺层,此工艺需根据不同厂家和材料进行分类。 传统的手糊工艺,将加强层平铺在模具上,用毛刷、辊子或其他功能一样的浸润压实,能够提高的方法就是利用真空袋将多余的树脂吸出来,真空袋能够很大地提高树脂对玻璃丝的渗透率,主要结果是让产品更强更轻。如果对真空袋不是很熟悉的话,我们建议阅读我们的手册,关于真空袋设备及技术应用,及真空成型工艺应用的经验及原理。 真空灌注的优点 真空灌注比传统的真空袋法工艺有一定的改进,主要优点如下: ?更高的树脂纤维比 ?减少浪费的树脂 ?树脂用量的一致性; ?减少准备时间; ? 清洁 真空灌注工艺的纤维树脂比比真空袋法好。传统的手糊工艺是含100%的纤维加树脂,单独的树脂是很易碎的,所以过多的树脂实际上更容易碎。真空袋能够减少这方面的问题,但是也不能解决其他额外的问题。

真空袋法对于手糊来说,确实是一大提高,但还是和手糊有关。因为这样,碾压一直处于饱和的状态。真空气压使多余的树脂吸出,但大多数的清除还要靠加强层,树脂,时间等其他的因素。 真空灌注的不同方式是,当抽成真空状态时,纤维都还是干的。从以上的观点,树脂是通过真空的力量导入,比刚开始就将多余的树脂吸入的好。真空灌注开始时没有让树脂导入。实际上,多余的树脂通过真空管导出,结果就是只有最少的树脂导入,这样就可以减轻重量,提高强度,最大化地节约树脂与纤维。部件通过真空灌注成型的可以达到很平整的水平。 由于通过真空灌注成型,树脂用量变得可计算了。当标准的手糊树脂用量,因不同的操作这而变化,真空灌注的树脂用量却是一致的。既使当制造一个大产品, 树脂用量也是高度的可重复。这样的结果是减少树脂的浪费,更重要的是减少浪费钱。 真空灌注需要注意的另一个重要因素:时间。经常发生问题是真空灌注的时间。有很多树脂的储存期约30分钟,尽管有些树脂(比如环氧树脂)的储存期是2小时,即使如此,这个时限(储存期)也是真空灌注的关键因素。大的项目很容易达到2小时的时限,即使小的,表面简单项目在出现真空泄漏时很不容易被发现,当安装好真空袋时,树脂就可能在部件间流动了。 真空灌注没有时间方面的限定,因为抽真空时,加强层还是干的,直到所有的树脂都完成。安装真空袋以后,泄漏很快会被找出来,如果有些地方不合适的,可能重新灌真空和重调。直到它不灌输树脂时,

复合材料真空灌注成型制造流程

1.模具表面处理 1.1模具表面检查 检查模具表面有无缺陷,如砂眼、伤痕等。如有则避开此位置(伤痕处做好标识,待以后修补)。 1.2模具表面清洁 先用高压气体把表面吹干净,保证气体不能带水分。然后用干净的布把表面擦拭干净。 1.3脱模材料处理 1.3.1表面依次打洁模剂、封孔剂、脱模剂 2、结构铺层 2.1玻纤铺层 将玻纤平整地铺设在模具上搭接的区域不超过1cm,注意每层接缝错开50mm 左右。 2.2辅料(脱模布+带孔隔离膜+导流网)铺层 2.2.1将脱模布平整的铺在最上层复合毡的上面,注意脱模布要平整,无折痕。 脱模布有效尺寸为产品长/宽方向各+15cm。 2.2.2将带孔隔离膜、导流网依次按顺序平整铺在脱模布上面,并用豆粒大小的 密封胶条将其固定平整。带孔隔离膜、导流网有效尺寸为产品长/宽方向 各-3cm。 2.3胶条+缠绕管+欧姆管+真空袋铺设 2.3.1在美纹纸外侧周围5到6厘米的位置铺设一圈缠绕管并用豆粒大小的密封 胶条将其固定住。用覆盖在产品上最外侧的脱模布将缠绕管盖住,尺寸须刚刚完全遮住缠绕管。 2.3.2在缠绕管外侧四周距离5到6厘米的位置铺设一圈密封胶条,注意先不要 将隔纸撕下。 2.3.3注胶口设在顶部中间位置,欧姆管即设在顶部一条。截取一根Ω管并将Ω 管边缘的毛刺打磨光滑,再将Ω管从中间锯断,套上三通,三通与欧姆管连接的地方贴一层胶条。然后缠绕3-4圈密封胶条于三通直通底部上

2.3.4剪取一块长宽均大于密封胶条粘接区域20cm的真空袋膜,将真空袋膜抬到 产品上侧慢慢放下,从一边开始留足2cm余量后慢慢边扯掉缠绕管四周的密封胶条上的隔纸边铺好真空袋膜。 2.3.5使用抽气管将真空系统与树脂收集器连接。 2.4 真空保压 2.4.1开启真空泵,把真空袋膜理顺留足余量后,再把三通进胶口位置的真空袋膜 剪个口,然后在三通底座端头用密封胶条缠绕两圈,将真空袋膜与三通完全密闭,再将进胶管与欧姆管连接密封,最后用硬纸封住进气口。 2.4.2将真空表密封固定抽气管的抽气口。 2.4.3开启真空泵,检测真空系统的密封性,真空系统压力抽至20mbr以下,关闭 真空泵保压15分钟后检测压力,若压力增加不超过5mbr,方可进入下一步骤,如真空压力未达到上述要求则需不停检漏,直至无漏气点达到上述的要求。 注意:①收集器,真空泵,管连接真空密封必须保证密封②整个真空袋膜系统保证不漏气③压力必须达到标准后在灌注树脂。 3、产品制造 3.1配置树脂 配制环氧树脂:固化剂。每次配制需使用干净无杂质的配胶桶,将树脂与固化剂搅拌均匀,搅拌次数不得低于三次。 3.2真空灌注 将进胶管端部折三折,保证不漏气,然后将进胶口插入树脂中,然后再慢慢松开弯折。注意整个过程需不断检查,不要漏气。 3.3固化 3.4脱模 撕去真空辅材,注意操作时要小心,避免产品变形。然后将产品轻抬脱模,注意不要损伤产品面。 4、后处理 4.1产品切割

风力发电叶片制作工艺介绍

风力发电叶片制作工艺介绍 风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型

3.0MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型2.0MW发电机且为39m长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节

风电叶片真空灌注成型工艺

风电叶片真空灌注成型工艺 一、叶片成型 1.模具清理(QA check:工序的正确性;各工序涂抹到位。) 1.1 洁模剂 清洁模具表面,除油除污渍。 1.2 封孔剂 密封模具表面小气孔,防止在真空灌注过程中由于模具的漏气而造成产品气孔率大,影响产品质量。 1.3 脱模剂 在模具表面形成一层致密层,使模具更容易与产品分离,达到脱模的效果。 2.壳体外表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。) 铺覆两层玻璃纤维布,由于叶片形状特殊,纤维布不是整体的,某些部位会断开,这就需要两块纤维布之间进行搭接,搭接尺寸10—20cm。 3.预埋件铺放(QA check:预埋件定位准确;打磨到位;表面清洁。 3.1 主梁 主梁是在单独的模具上成型的,铺放主梁时需用工装对其进行精确定位,并保证经过打磨处理及表面清洁。 3.2 壳体泡沫芯材 PVC泡沫板有轻质高强的作用,上下两层纤维布,中间包覆泡沫板形成三明治结构,铺放时保证各快板材之间连接紧密。 3.3 根部预埋块 由于根部铺层太多、太厚,根部做二次成型,在单独的模具上成型,要保证经过打磨处理及表面清洁。 4.壳体内表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。) 内表面纤维布铺放时注意不要让铺好的预埋件错位,其余同外表面玻璃纤维铺层。 5.真空材料的铺放及布置(QA check:铺放位置正确。) 5.1 免打磨布 在合模过程中粘接部位需要打磨处理,提前在这些部位铺放免打磨布可以避免更多的工序,带来更好的工作环境。 5.2 脱模布 在树脂固化以后真空材料也会粘接在产品表面,不易撕除,表面经过特氟龙处理的脱模布可以更容易的去除真空材料,可以节省大量的人工并使产品表面不致被破坏。 5.3 导流网 真空灌注的时候,树脂在纤维布里的流动速度远低于在导流网上,这样可以更快的浸透更大面积的纤维布。

真空灌注培训课件

真空灌注机舱罩、轮毂罩成型工艺培训课件 一、真空袋成型工艺 概述:真空袋成型工艺是将产品密封在真空袋和模具之间,通过抽真空使体系形成负压,从而使铺层受压,产品更加密实,力学性能更好的成型工艺。 该工艺可分为湿法和干法两种,可配备手糊、喷涂、预浸料等成型工艺,可配备烘箱辅助加热和热压罐的使用。 二、真空袋成型工艺特点 1、纤维含量高、产品力学性能更好; 2、有效控制含胶量和产品厚度,比手糊作业节约胶量约12%左右; 3、体系均匀受压一次成型,产品层间结合性能和整体性好; 4、消除产品气泡、裂纹等缺陷; 5、90%微毒控制在真空袋内,全面改善生产环境; 6、减轻劳动人员的工作强度。 三、真空袋湿法成型 真空袋湿法成型,是利用真空负压将已浸树脂的增强材料压实,并将多余的树脂吸出,从而达到控制产品树脂含量,减少气泡,增加层间粘接强度和力学性能的成型工艺。 该工艺主要用于预浸料成型,轻木、泡沫、蜂窝等夹芯铺垫。 四、真空树脂导入法 真空树脂导入法是将纤维、夹芯等增强材料预先在模具上铺好,然后用真空袋膜、密封胶带等将体系密封并抽真空,利用体系内外压差将树脂导入并浸润增强材料的成型工艺。 1、真空袋成型的辅助材料 (1)真空袋膜:PA材质,最高耐温120~200℃,气密性好,高拉伸强度和 断裂延伸率,柔韧性好,以片状、筒状供货。 (2)密封胶带:橡胶,最高耐温120~232℃,耐侵蚀性好,适合于聚酯、 环氧、酚醛等树脂体系,密封性好,容易从模具上撕下。 (3)脱模布:尼龙或聚酯材料,最高耐温160~200℃,脱模效果、抗撕裂 性能好,高温稳定性好,表面清洁,无转移,易于后续粘接处理。 (4)纤维胶带:粘接固定每层纤维材料,更加环保。 (5)导流网:主体编制结构,有利于空气和树脂流动,成本低。 (6)吸胶粘:接固定每层纤维材料。 (7)隔离膜:用于将层压制品和透气毡隔开,起到脱模和控制树脂含量的 作用,分有孔和无孔两种。 (8)透气毡:吸收多余的树脂同时将空气、溶剂和树脂固化产生的气体趋 向真空抽气孔。 (9)管路和接头树脂管直径8~16mm,缠绕管直径8~20mm,欧迷伽管直径 16~25mm,三通接头直径8~12mm。 (10)大力钳/止流钳:控制空气、树脂流动。 五、胶黏剂6100—W—3结构胶 一种高韧性乙烯基预促进型结构胶黏剂,适合较大范围和高动态载荷下玻璃钢制品粘接。

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

风电叶片的改进

风电叶片的改进 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适

风电叶片设计流程

叶片设计流程 一. 空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 .风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1 IEC61400-1标准规定的载荷情况 2.2 风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M Xb、挥舞方向的剪力Q b和弯矩M Jb以及与变浆距力矩平衡的叶片俯仰力矩M b。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct,通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷 (4)操纵载荷

2 )轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等) 的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2 风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法 是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后稳定性判别归结为状态转移矩阵的特征值 计算。 1.风力机气动弹性模型 1)结构模型

相关主题