搜档网
当前位置:搜档网 › 激光雷达测距测速原理

激光雷达测距测速原理

激光雷达测距测速原理

精心整理

激光雷达测距测速原理

1.激光雷达通用方程

激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下:

r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r 分别是发射系统和接收系统的透过率,t 为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,

为目标的雷达截面,r D 为接收孔径。

方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。

其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,

通过求解激光雷达方程获得有关大气性质的信息。

2.激光雷达测距基本原理

2.1脉冲法

脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,

激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是

t ,光速为c ,那么测距公式为L=tc/2。

时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确

定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡

T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发

的。因此时间间隔t=N T 。由此可得出L=NC/2f 。

图1脉冲激光测距原理图

2.2相位法

雷达测速与测距

雷达测速与测距标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,B=?f=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 δr=c 2τ() 在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间内所输出的功率称脉冲功率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值,用Pav表示。它们的关系为 P tτ=P av T r()脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨力,因而能较好地解决作用距离与分辨能力之间的矛盾。 在脉冲压缩系统中,发射波形往往在相位上或频域上进行调制,接收时将回波信号加以压缩,使其等效带宽B满足B=?f?1/τ。令τ0=1/B,则 δr=c 2τ0() ()式中,τ0表示经脉冲压缩后的有效脉宽。因此脉冲压缩雷达可用宽度τ的发射脉冲来获得相当于发射有效宽度为τ0的简单脉冲系统的距离分辨力。发射脉冲宽度τ跟系统有效(经压缩的)脉冲宽度τ0的比值便成为脉冲压缩比,即 D=τ τ0 ()则

连续波雷达测速测距原理.doc

连续波雷达测速测距原理 一.设计要求 1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频 波的调制周期和信号采样率; 2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。 二.实验原理和内容 1.多普勒测速原理 x a (t) x(n) FFT P(k ) 峰值f d A/D 谱分析搜索 图频域测速原理 f d max max | f m f d | f s / 2N v r max f d max / 2 f s / 4N/ 4T 依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz。2.连续波雷达测距基本原理 设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 ) ] 则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0 若目标距离与时间关系为:③R ( t ) R 0 v r t

则延迟时间应满足以下关系 :④ t 2 v t) r ( R c r v r 将④代入②中得到 x R f 0 (t ) cos{ 2 f 0 [ t 2 (R 0 v r t )]0 } c v r cos[2 ( f 0 f d 0 )t 2 f 0 2R 0 ] c f d 0 2 v r f 其中 c 根据上图可以得到,当得到 t ,便可以实现测距,要想得到 t ,就必须测得 fd 。 已知三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35( m/s),则可以通过 :③ R ( t ) R 0 v r t ④ t 2 v t ) r ( R c 0 r v r 分别计算出向三个目标发出去信号,由目标反射回来的信号相对 发射信号的延迟时间。

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

雷达测距、测角、测速基本原理

雷达测距、测角、测速基本原理 目标在空间的位置可以用多种坐标系表示。最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。在雷达应用中,测定目标坐标常采用极(球)坐标系统. 目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。 如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。;高度H, 球坐标系与圆柱坐标系之间的关系如下: D=RcosB H=RsinB a=a 上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。 现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。它由发射机、发射天线、接收机和接收天线组成。发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。 脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

雷达测速测距原理简介

雷达测速测距原理简介 一、FMCW模式下测速测距 1、FMCW模式下传输波特征 调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。 2、FMCW模式下基本工作原理 一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。 反射波与发射波的形状相同。只是在时间上有一个延迟,t与目标距离R的关系为: Δt=2R/c公式1 其中 Δt:发射波与反射波的时间延迟 R:目标距离 c:光速c=3×108m/s 发射信号与反射信号的频率差为混频输出中频信号频率f如图所示:

根据三角关系,得: ΔtT2= ΔfB公式2 其中: Δf:发射信号与反射信号的频率差为|f1-f0| T:调制信号周期——1.5ms B:调制带宽——700MHz 由以上公式1和公式2得出目标距离R为: R=cTΔf 4B公式3 3、FMCW模式下测距原理 由公式3可以得出,目标距离R与雷达前端输出的中频频率f成正比 4、FMCW模式下测速原理 当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移fd,如图所示: 此时发射信号与接收信号的频率差如图所示:

在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为: f+= f-fd 公式4 f-= f+fd 公式5 其中 f为目标相对静止时的中频频率 f+代表前半周期正向调频的差频 f-代表后半周期负向调频所得的差频 fd为针对有相对运动的目标的多普勒频移 根据多普勒效应得: fd=2fc 公式6 其中: 为目标和雷达的径向速度 f0为发射波的中心频率 由公式4、5、6可得: f+f f=+2 公式7 c|f-f|v=2f02 公式8 速度v的符号与相对运动方向有关系,当目标物相对雷达靠近时v为正值。当目标相对雷达离开时v为负值。 由公式3和公式7进一步得出: cTf+fR=4B2 公式9

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.sodocs.net/doc/9f6658434.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

雷达测速的应用与基本原理

雷达测速的应用与基本原理 应用 在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。其中后两者属于携带容易而且精确度高的方法,因此广受采用。 超速行车在交通违规中占有极大比例,此一现象可从高速公路过去四年间违规告发项目中,超速案件比例均在三分之二左右看出端倪,而超速行车一直被认为是肇事之重要因素之一;因此从交通执法观点而言,取缔超速系比较具体的维护交通安全之手段。国内取缔违规超速一向以雷达测速枪当工具,径行举发案件则辅以照相设备;只是近年来,雷达侦测器盛行,价格普及化之后,即使法规明令禁止使用,一般民众仍趋之若鹜,因为其价格只需逃避一至两次取缔的机会即可完全回收成本。以交通工程观点来看,驾驶人若装有雷达侦测器,则路边定点所测得的车速即会因驾驶人感知受测速,误以为警察人员执行取缔而有普遍减速现象;除造成数据失真外,并因而有引起事故之可能。 折叠编辑本段基本原理 雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。 雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。 镭射的英文为Laser,这个字是由Light Amplification by Stimulated Emission of Radiation的第

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

雷达测速测距原理分析报告

雷达测速测距原理分析 一、FMCW模式下测速测距 1、FMCW模式下传输波特征 调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。 2、FMCW模式下基本工作原理 一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。

反射波与发射波的形状相同。只是在时间上有一个延迟,t ?与目标距离R 的关系为: c R /2=t Δ 公式1 其中 t Δ:发射波与反射波的时间延迟 R :目标距离 c :光速8103×=c m/s 发射信号与反射信号的频率差为混频输出中频信号频率f ?如图所示: 根据三角关系,得:

B T 2 =f t ΔΔ 公式2 其中: f Δ:发射信号与反射信号的频率差为|f1-f0| T :调制信号周期——1.5ms B :调制带宽——700MHz 由以上公式1和公式2得出目标距离R 为: f c ΔB T R 4= 公式3 3、FMCW 模式下测距原理 由公式3可以得出,目标距离R 与雷达前端输出的中频频率f 成正比 4、FMCW 模式下测速原理 当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移d f ,如图所示:

此时发射信号与接收信号的频率差如图所示: 在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为: d +f -f f ?= 公式4 d -f f f +=? 公式5 其中 f ?为目标相对静止时的中频频率 +f 代表前半周期正向调频的差频

-f 代表后半周期负向调频所得的差频 d f 为针对有相对运动的目标的多普勒频移 根据多普勒效应得: c f f d ν 02= 公式6 其中: ν为目标和雷达的径向速度 0f 为发射波的中心频率 由公式4、5、6可得: 2 f f f -+=+? 公式7 2 0|f -f |2f c v -+×= 公式8 速度v 的符号与相对运动方向有关系,当目标物相对雷达靠近时v 为正值。当目标相对雷达离开时v 为负值。 由公式3和公式7进一步得出:

雷达测速仪使用说明书

VELOCITY(10-1911CM)型手持式雷达测速仪 简要说明: 人类乐忠于速度,但问题是很难去测量它!如今,难题已成为了历史!BUSHNELL最新推出了VELOCITY型性能优越的雷达测速仪!以其外型轻巧、操作简便、迅速受到广大测速爱好者的欢迎。超大清晰的LCD显示屏,读数清晰方便!享受无穷测速乐趣! 操作方法: 正确安装电池后,合上电池后盖,轻按显示屏下方电源开关,沿物体运动方向瞄准物体并按下操作键,即时,运动物体的速度便会实时显示在显示屏上面! 单位切换: 当用户想要进行单位切换时,只需将液晶显示屏下方的电源按钮及仪器下方的发射按钮同时按下,即可进行MPH(英里/小时)于KPH(公里/小时)的单位切换。 测速范围汽车:10-200 英里/小时(即:16-320公里/小时) 高尔夫、网球等:10-110英里/小时(即:16-177公里/小时)测量距离汽车: 0~450米 高尔夫、网球等:0~27米 精度+/- 1.0 MPH (+/-2.0KPH) 单位显示:英里/小时(MPH)或公里/小时(KPH) 显示:LCD数显 尺寸:109x213x512mm

注意事项: 1.若雷达与被测的目标在同一方向上,则测试的速度是准确的,由于实际测试过程存 在夹角的问题,会产生测试的误差,随着角度的增加,误差也在增大,这种现象被称为余弦效应。 故在测量物体速度时,请尽量与被测物体的运动路线保持一致或者尽量减小发射波路线与运动物体路线间的夹角。使测量更加精确稳定! 2. 原仪器不带电池,用户可自配。 3.电池寿命根据电池性能及使用频率而定。 4.保修条款: 所有型号的产品自售出之日起,均享受一年的免费维修服务,但是人为造成的误操作或者使用不当除外。此外,保修期内的维修,客户需负担产品邮寄到美国总公司的运费,维修之后返回客户所需的邮寄费用由我们承担。 对于保修期之外的维修服务,对每台仪器还将收取相关的维修费用。

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: 212222124 (44) t a t a r r r t KPT T D P R R ππθπηη=Γ r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分 别是激光雷达发射系统到目标和目标到接收系统的大气透过率, t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡

?T=1/f,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N?T。由此可得出L=NC/2f。 图1 脉冲激光测距原理图 2.2相位法 相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 2D t = c

测速测距雷达系统

315 5.8测速、测距雷达系统 5.8.1HD-375SR 型毫米波铁路驼峰测速雷达 HD -375SR 型毫米波铁路驼峰测速雷达是在原T .JL1-8型驼峰流放速度检测器的基础上,增加圆极化器和正交模耦合器,使之工作于圆极化收发状态,用以改善线极化对目标外形的选择性和消除二次反射信号对测量信号的干扰。从而提高驼峰流放速度检测器的工作稳定性、测速精确度和改善对不同车型的测量选择性。该速度检测器工作于8mm 波段,利用运动目标对毫米波的多普勒效应,提取速度信息,用来测量驼峰编组场车辆流放速度的设备,其适应于全天候条件连续工作,可以为半自动、自动化调速系统提供车辆溜放的速度信息。其主要特点是:采集信息量大、测速精度高、工作稳定性好以及体积小、重量轻、安装位置灵活、检修维护方便,是铁路驼峰测速雷达更新换代的新型产品。 5.8.2HD-320WBLSY 型流速仪 本仪器用于对河水的流速进行实时的监控,其工作原理如下:由8mm 稳频振荡器产生的毫米波信号经由收发双工器、圆极化器和天线,不间断的向外发射毫米波信号,与此同时,接收来自天线波束之内,通过目标反射的信号,此反射信号经天线、圆极化器、收发双工器到混频器,在混频器中与来自信号发生器的泄漏信号(本振信号)混频,检到因目标径向移动所引起的d F 信号。此多普勒信号d F 经由放大,整形,分频等环节,形成一幅度稳定方波,计算机对这一包含速信息的方波进行处理,即可转换成被测目标的速度值。

316 5.8.3HD-240RWM 系列雷达测距仪 本雷达测距仪采用雷达测距原理,由天线发射微波脉冲信号,在被测物表面产生反射,反射的回波信号又被雷达系统所接收。天线接收被测物表面反射回的微波脉冲信号,并将其传输给电子部件,通过微处理器对信号进行处理,识别微波脉冲在物料表面所产生的回波信号,根据时间行程原理自动计算获得雷达测距仪和目标的距离信息,经数据滤波处理、显示、固态存储,最后由通信接口输出距离信息数据和仪器状态等。 参数名称 型 号 HD-240RWM20 HD-240RWM30 HD-240RWM40 频率24GHz 24GHz 24GHz 测量距离20米 30米40米 测距原理调频连续波FMCW 精度±3mm ±4mm ±5mm 分辨率0.3mm 供电电压DC 12V/1A 数据通信接口协议 CAN 通信协议输出电缆屏蔽数据线天线喇叭天线(铝合金材质) 外壳材料铝合金外壳防护等级IP65总重量 2.5kg 3kg 5kg

连续波雷达测速测距原理

连续波雷达测速测距原理 一. 设计要求 1、当测速精度达到s ,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率; 2、若调频信号带宽为50MHz ,载频24GHz ,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab 对算法进行仿真。 二. 实验原理和内容 1. 多普勒测速原理 依据芯片参数,发射频率为24GHz ,由上式可以得出,当测速精度达到s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz 。 2.连续波雷达测距基本原理 设天线发射的连续波信号为:① 则接收的信号为:② 若目标距离与时间关系为:③ ) 2cos()(000?π+=t f t x f T ] )(2cos[)(000 ?π+-=r f R t t f t x t v R t R r -=0)(图 频域测速原理 N f f f f s d m d 2/||max max =-=?max max /2/4/4r d s v f f N T λλλ?=?==

则延迟时间应满足以下关系:④ 将④代入②中得到 其中 2 f c v f r d = 根据上图可以得到,当得到 t ?,便可以实现测距,要想得到 t ?,就必须测得fd 。 已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③ ④ 分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。 02() r r r t R v t c v =--} )](2 [2cos{)(0000?π+---=t v R v c t f t x r r f R ] 22)(2cos[00 000?ππ+-+=c R f t f f d t v R t R r -=0)(02()r r r t R v t c v =--

激光雷达测距测速原理.doc

1.激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: 4KPT ta1 t T a 2 D r2 r P r t2 R12 . . 4 R22 . 4 P r为回波信号功率, P t为激光雷达发射功率,K是发射光束的分布函数, T a1T a 2分 别是激光雷达发射系统到目标和目标到接收系统的大气透过率, t r 分别是发射 系统和接收系统的透过率, t 为发射激光的发散角,R1R2分别是发射系统到目标和目标到接收系统的距离,为目标的雷达截面,D r 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2.激光雷达测距基本原理 2.1脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激 光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为 L,激光脉冲往返的时间间隔是t ,光速为 c,那么测距公式为L=tc/2 。 时间间隔 t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器 和脉冲计数器来确定时间 t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N T。由此可得出

L=NC/2f。 图 1 脉冲激光测距原理图 2.2相位法 相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光 和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测 量。回波的延迟产生了相位的延迟,测出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为 c,往返的间隔时间为t ,则有: 2D t c 图 2 相位法测距原理图 假设 f 为调制频率, N 为光波往返过程的整数周期,为总的相位差。则间隔时间 t 还可以表示为: t N 1 2 f 所以: D 1 ct c N 2 2 f 2 定义 c L 为测尺或刻度,N 为余尺2 f 2 则: D L N N

DSP多普勒雷达测速测距(精)

DSP实验课大作业设计 一实验目的 在DSP上实现线性调频信号的脉冲压缩、动目标显示(MTI)和动目标检测(MTD),并将结果与MATLAB上的结果进行误差仿真。 二实验内容 2.1 MATLAB仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB产生16个脉冲的LFM,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD,输出16个多普勒通道 2.2 DSP实现 将MATLAB产生的信号,在visual dsp中做脉压,MTI、MTD,并将结果与MATLAB作比较。 三实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC)采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。

相关主题