搜档网
当前位置:搜档网 › 第六章 材料光学性能分析

第六章 材料光学性能分析

第六章 材料光学性能分析
第六章 材料光学性能分析

第六章 材料光学性能分析

一、教学目的

理解并掌握各光学性能、光谱的概念,掌握各光谱仪的测试方法和光谱分析方法。了解光谱仪的结构和测试原理。

二、重点、难点

重点:固体发光原理、荧光光谱测试技术。 难点:荧光光谱测试技术。 三、教学手段 多媒体教学 四、学时分配 6学时

第一节 透射光谱和吸收光谱

材料的光学性能主要包括对光的折射、反射、吸收、透射以及发光等诸多方面,光学性能与材料的某些应用领域密切相关,比如用作反射镜、光导纤维窗口、透镜、棱镜、滤光镜、激光探测器件等。鉴于篇幅,本章着重介绍折射率、色散、透过、吸收以及激发、发射、亮度、效率等发光性能的测试。

一、基本概念

光作为一种能量流,在穿过介质时,能引起介质的价电子跃迁或影响原子的振动而消耗能量。

即使在对光不发生散射的透明介质如玻璃或水溶液中,光也会有能量的损失,即光的吸收。

1.吸收光谱

设有一厚度为x 平板材料,入射光强度设为I 0,通过此材料后光强度为I ′。选取其中一薄层,并认为光通过此薄层的吸收损失-dI 正比于此处光强度 I 和薄层厚度dx ,即:

则可得到光强度随厚度呈指数衰减规律,即朗伯特定律:

α为物质对光的吸收系数,单位为cm-1。

d I I d x

α-=??'

0x

I

I e

α-=?

α的大小取决于材料的性质和光的波长。对于相同波长的光波,α越大,光被吸收得越多,能透过的光强度就越小。

α随入射光波长(或频率)变化的曲线,叫作吸收光谱。 2.透射光谱

透光性是表征材料被光穿透能力的高低,透光性的好坏可用透过率指标T 来衡量。 透过率T 是指光通过材料后,透过光强度占入射光强度的百分比。剩余光强度应是从初始入射光强度I 0中扣除造成光能衰减的表面上的反射损失、试样中的散射损失和吸收损失等。

一般地,反射、吸收和透过的关系可用下式表示:

T ——透过率;R ——反射系数;α——吸收系数; d ——试样厚度,单位cm 。

透过率T 随波长变化的曲线即称为透射光谱曲线。 透射光谱曲线可用分光光度计来测定。

光强的大小用光透过试样照到光电管上产生的电流的大小来表示。 某个波长的光通过空气(作为空白样)后的光强设为I 0,再通过一定厚度

的试样后的光强设为I ′,即可通过I ′/ I 0得到针对该波长的透过率Tλ,如此依次测得其他各波长的透过率就可得到透过率T 随波长变化的透射光谱。 二、光谱测试

1.测试仪器:分光光度计

图6-1 721型分光光度计的光学系统示意图

1—光源 2, 8—聚光透镜 3—反射镜 4—狭缝 5, 12—保护玻璃 6—准直镜 7—色散棱镜 9—比色皿 10—玻璃试样 11—光门 13—光电管

2.透射光谱测试

2

(1)exp()

T R d α=--?

由光源发出的连续辐射光线,经过聚光透镜汇聚到反射镜,转角90°反射至狭缝内。由此入射到单色器内准直镜的焦面上,被反射后,以一束平行光射向色散棱镜(棱镜背面镀铝),光在棱镜中色散,入射角在最小偏角时,入射光在铝面上反射后按原路返回至准直镜,再反射回狭缝,经聚光透镜再次聚光后进入比色皿中,透过试样到光电管。光电管所产生的电流大小表示试样的透过率,直接从微安表读出,从而可得T—λ曲线,即透射光谱。

图6-2 ZnSe晶体的透过率曲线

3.吸收光谱测试

若试样为粉末状,精确测量粉末试样的吸收光谱存在很大困难,由于粉末层足够厚时,透射很少,可以忽略,光在粉末中通过无数次折射和反射,最后不是被吸收就是折回到入射那一侧,因此通常通过测试其反射光谱来粗略地估计他们对光的吸收。Rλ为被测材料的反射系数,可以认为散射、透射很小,则吸收系数α近似等于(1-Rλ),这样,就可以通过测量材料表面对各波长入射光的反射率来确定其吸收光谱。

图6-3 Cr3+: Al2O3透明陶瓷的室温吸收光谱

第二节荧光材料的光谱特性

一、激发光谱与发射光谱

1.激发光谱与发射光谱概念

发光材料的发射光谱(也称发光光谱)是指发光的能量按波长或频率的分布。由于发光的绝对能量不易测量,通常实验测量的都是发光的相对能量,因此在发光光谱图中,横坐标为波长(或频率),纵坐标为单位波长间隔(或单位频率间隔)里的相对能量(相对强度)。

激发光谱是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线,横轴代表激发光波长,纵轴代表发光的强弱。发光材料在指定方向的单位立体角内所发出的光通量称为发光材料在该方向的发光强度,简称光强,单位为坎德拉(cd)。

2.激发光谱与发射光谱测试

发光光谱和激发光谱通常使用荧光分光光度计测量。

光源多选用氙灯。激发单色仪用于选择激发光源的波长和调节激发光源的发射能量。发射单色仪用来测量材料发光的波长,精度比激发单色仪高。所使用的光电倍增管要求其波长响应范围宽、灵敏度高。

由光源发出的光,通过激发单色仪后变成单色光,而后照在荧光池中的被测样品上,由此激发出的荧光被发射单色仪收集后,经单色器色散成单色光而照射在光电倍增管上转换成相应的电信号,再经放大器放大反馈进入A/D转换单元,将模拟电信号转换成相应的数字信号,并通过显示器或打印机显示记录下被测样品的谱图。以上就是荧光分光光度计的基本工作原理。荧光分光光度计的工作原理如所示:

图6-4荧光分光光度计工作原理图

二、亮度

1.概念

亮度:发光材料在指定方向上的单位投影面、单位立体角中发射的光通量称为发光材料在该方向的亮度。单位:cd/m2。

光通量:发光材料的辐射通量对人眼引起的视觉强度称为光通量,单位为流明(lm)。光通量实质上就是用眼睛来衡量光的辐射通量。

辐射通量:光材料在单位时间内所辐射的能量。单位:W

2.亮度测量

图6-5亮度计原理示意图

图中,O——物镜,P——带孔反射板,H——小孔,F——滤光片,D——探测器,FD的组合使D的光谱灵敏度和人眼视觉函数V(λ)一致。I/V——交换器,A——放大器,R——显示器。图的上部由反射镜P′和目镜系统E组成,用于观察和对准被测目标。

表6-1 国内外几种亮度计的主要性能指标

三、余辉特性

(1)光致发光材料在激发光停止后,仍可持续发光,但发光强度逐渐减弱,直到完全消失,这一过程就是发光衰减。激发停止后所持续发出的光称为余辉。 (2)余辉持续的时间称为余辉时间。习惯上,把激发停止后发光亮度降至人眼可辨认最小值(0.32mcd/m 2)的这段时间称为余辉时间。

(3)光致发光材料都具有余辉特性,只不过是衰减快慢、余辉长短不同而已,甚至差别很大。发光衰减特性可以用余辉衰减曲线表示。余辉衰减曲线是指激发停止后发光强度(或相对强度)随时间变化的曲线。

发光衰减特性

若发光衰减是指数式,表示:

式中B 是激发停止后t 时间的发光亮度;B0是t=0时的发光亮度;a 是一常数。 若发光是双曲线式的衰减,表示:

其中a 、b 是常数,a <2。 余辉衰减曲线表示:

横轴为时间,纵轴为相对发光亮度。

激发作用刚停止时的时间为零、亮度最大,随时间延长亮度逐渐降为零。直观,较为常用。

目前文献中所给出的余辉时间数据,多是指激发停止后发光亮度下降到起始发光亮度10%所经过的时间。激发停止后发光强度随时间变化的曲线。横坐标为时间,纵坐标为发光强度(或相对发光强度)。

200

400

600

800

1000

020406080100120140

16

0i n s t e n s i t y /a .u .

t/s

图6-6绿色长余辉材料SrAl2O4:Eu2+,Dy3+ 的余辉衰减曲线

at

e

B B -?=0bt

a B B +=

根据余辉时间的长短,可对发光材料进行以下分类: 极长余辉 余辉时间大于1秒;

长余辉 余辉时间小于1秒大于10-1秒; 中余辉 余辉时间小于10-1秒大于10-3秒; 短余辉 余辉时间小于10-3秒大于10-6秒; 超短余辉 余辉时间小于10-6秒。

长余辉发光材料余辉时间的测量比起短余辉材料要简单、容易得多,其测试装置由激发光源、样品盘、亮度计、数据处理系统等组成。

图6-18是蓝色长余辉材料CaAl 2Si 2O 8:Eu 2+的余辉衰减曲线。由图可知:衰减曲线由三个衰减寿命组成,并且它们之间相差较大,可能来自三个不同能级之间的跃迁,从而证明材料中至少存在三个不同Eu 2+的发光中心[12]。

图6-18 CaAl 2Si 2O 8:Eu 2+

的余辉衰减及拟合曲线

四、发光效率

发光材料的发光效率通常有三种表示方法:即量子效率q η,能量效率(或功率效率)p η和流明效率(或光度效率)l η。

量子效率q η是指发光材料发射的光子数N 发光与激发时吸收的光子数N 吸收之比,即:

q N N η=

发光吸收

(6-20)

但我们知道,一般总有能量损失,激发光光子的能量通常大于发射光光子的能量,尤其是当激发光波长比发光波长短很多时,这种能量损失(斯托克斯损失)会很大。然而量子效率不能反映发光材料在被激发和发光过程中的能量损失,比

如用254nm紫外光激发某一发光材料产生550nm的绿色可见光发射,该过程的量子效率可高达90%以上,但是激发能量却相应损失50%以上。为此要引入能量效率定义。

能量效率

p

η是指发光材料发光的能量与吸收的能量之比,即:

p E E

η=发光

吸收

(6-21)作为发光材料或发光器件发出的光来说,总是作用于人眼的。人的眼睛只能感觉到可见光,而且在可见光范围内,对于不同波长的光的敏感程度也是差别极大的。人眼对不同波长的光的反应可用光谱光效能K(λ)表征,K(λ)表示在某一波长的单位功率可产生多少流明的光通量。在可见光光谱范围内,K(λ)随波长λ变化而变化。

人眼在几个尼特(cd/m2)以上的强光环境下的亮适应所形成的视觉称为明视觉,在百分之几尼特的弱光环境下的暗适应所形成的视觉称为暗视觉。在明视觉条件下,经过实验测试人眼对波长为555nm的黄绿光最敏感,即λ=555nm时K(λ)达到最大值,可用K m表示。对K m值进行归一化,其他波长的K(λ)与K m 之比值V(λ)就称为视见函数。在暗视觉条件下,人眼对波长为507nm的绿光最敏感。

不同波长光波的视觉颜色对人眼的视见函数的明视曲线和暗视曲线如图6-19所示。

图6-19人眼视见函数的明视曲线和暗视曲线(A—明视曲线;B—暗视曲线)

显然,能量效率很高的发光材料发出的光,人眼看起来不见得很亮。因此,用人眼来衡量某一发光材料的发光效果时,就必须引进另一个发光效率定义,即流明效率。

流明效率

l

η是指发光材料发射的光通量L(以流明为单位)与吸收的总功率

之比,即:

l L P η=

吸收

(6-22)

对于光致发光来说,如果激发光是单色或接近单色的,波长为λ吸收,发射光也是单色或接近单色的, 波长为λ发射

, 则能量效率和量子效率之间的关系可推导

如下:

p q q E N h E N h λννηηηννλ?=

=

=?

=?

?吸收发光发光发光发光吸收

吸收吸收

吸收

发射

对于大多数光致发光材料(上转换发光材料除外)来说,λ吸收

<λ

发射

,由上

式可知,能量效率要比量子效率低。

下面介绍一种发光材料能量效率的测试方法。

直接测量粉末发光材料的吸收能量,在实验技术上是无法做到的,通常是通过测量反射能量的方法,来得到吸收能量值。

图6-20是测量能量效率的实验装置示意图[13]。

图6-20 测量能量效率的实验装置示意图

由激发光源发出的光经单色仪分光后,分出所需要的激发光,照射到样品盘位置的 MgO 标准白板,由MgO 标准白板反射的激发光到光电倍增管和检流计,可测出光电流I 0值。I 0与激发光能量E 激发成正比。给定波长激发光照射光电倍增管对应的光谱灵敏度用K λ表示,给定波长的MgO 反射值用R MgO 表示, 则激发光能量E 激发为:

0M gO

I E K R λ=

?激发

(6-23)

以材料的吸收系数K 吸收乘上激发光能量E 激发,就可得出吸收的激发光能量E

吸收

,即

0M gO

K I E K E K R λ?=?=

?吸收吸收吸收激发 (6-24)

为了测量发光能量,将样品盘位置上的MgO 白板,换上待测发光材料,经同一波长激发光照射后,测出检流计上的读数I 1,I 1包括两部分光电流:由材料发光所引起的I 1′和没有被发光材料吸收的那部分激发光(即反射的激发光)的光电流I 1",即

I 1= I 1′+ I 1"

(6-25) I 1′= I 1- I 1"

(6-26) I 1"可用发光材料的反射系数R 反射乘上I 0表示,于是:

I 1′= I 1 - I 0·R 反射

(6-27)

以系数A 乘上发光材料的发光所引起的光电流值I 1′,就是材料的发光能量E

发光

,即

E 发光=A·I 1′

(6-28)

上式中的A 值由发光材料的发射光谱分布?λλd I 和光电倍增管的光谱灵敏度确定:

I d A I K d λλλλλ

=

?? (6-29)

式中,I λ为给定波长的发光强度;K λ为光电倍增管的光谱灵敏度系数。 上述各参数测出后,即可求得待测发光材料的能量效率p η: '

10M g

O

p A I K R E E K I

λ

η???=

=

?发光吸收

吸收 (6-30)

如前所述,量子效率q η与能量效率p η的关系式为: q p ληηλ=?

发射吸收

则由测得的p η即可求出量子效率q η。

由p η或q η的公式可知,影响能量效率或量子效率精度的主要因素是对各参数的准确测量,另外与测试方法、测试技术也有密切关系。

由此可知,测试材料的发光效率比较复杂,对于已开发应用的发光材料来说,可采用与具有同一组分的标样进行对比测试的方法,来测定其发光效率。这里所指的标样不仅要和待测材料样品具有相同组分、相同发光光谱,而且其发光效率(能量或量子)已经过标准计量单位进行标定。所用的测量装置和相对发光亮度

测试仪相同,在相同的测试条件下(光源的激发条件及材料位置不变),分别测出标样和待测样的光电流值I 0、I 1,则待测样的量子效率q η应等于: 1()0

q q I I ηη=?

标样 (6-31)

五、光通量

前面已提过,发光材料在单位时间内所辐射的能量称为辐射通量,单位为W 。发光材料的辐射通量对人眼引起的视觉强度称为光通量,单位为流明(lm )。光通量实质上就是用眼睛来衡量光的辐射通量。

随着稀土三基色荧光粉的产业化和电子镇流器的完善,一种电子一体化紧凑型照明在市场上开始显示优越性。因此,关于这类灯的总光通量测量技术和方法就显得特别重要,下面介绍照度计法测紧凑型荧光灯总光通量的测试方法[14]。

自紧凑型荧光灯(CFL )问世以来,出现了诸多类型的CFL ,目的不外是提高紧凑程度和增大功率,以便在更大范围内更多地取代白炽灯。因此,CFL 的线度和体积都应接近白炽灯。正是基于这种考虑,CFL 总光通量的测量就沿用了白炽灯总光通量测量的设备和方法,即利用球形光度计测量其总光通量。实际使用的积分球应满足如下要求:

(1)球体。球体应采用不易变形、不易受环境影响的材料制成;球的内表面应圆滑,力求各处曲率半径都相等;球的密闭性要好,不允许有漏光现象。

(2)窗口。为了便于测量照度,常常在球的赤道上开一小圆孔作为窗口,其直径不宜过大,以20~40mm 为宜。圆孔上镶一片双面毛玻璃,毛玻璃向球内的一面应与球内壁一致,不得突出或缩进。

(3)灯的安装。为了减少测量误差,标准灯(白炽灯)和待测灯(CFL )都分别装在球心位置。灯的供电线和支架应尽量减少体积和件数。

(4)挡屏。为了能测得球壁多次反射光建立的照度,必须在球心和窗口之间加一挡屏,挡住灯射向窗口的直射光。挡屏的中心在球心与窗口中心的连线上,离球心1/3~1/2球半径的位置均可。挡屏面与连线垂直。挡屏的大小以能挡住灯的直射光为宜,不能过大。

(5)球的内壁涂料。积分球内壁的表面状态对其漫反射特性和光谱选择性有很大影响,因此内壁涂料的选择十分重要。其中以硫酸钡配成的涂料较常用,它的优点是化学稳定性好,不易变色和玷污,使用时间较长。其光谱选择性也较小。涂料的配比见表6-5。

表6-5 积分球内壁涂层配方

为了检验内壁涂层的漫反射特性,在与窗口相对的球壁上开一小口,安装涂料样板,与整个球内壁一起喷涂。喷涂层厚度约0.5~1mm。

(6)测光系统。测光系统装在窗口外侧,通常由快门、可变光阑、中性减光片、V(λ)修正滤光片、光电探测器及示数仪表等组成。可变光阑用于读数的微调。中性减光片用于大范围调节读数。近年来,多采用硅光电池作探测器,粗调和微调都可在光电流的测量线路上实现,因此简化了测光系统的结构,测量操作更为方便。

由于测光系统装在积分球之外,实际测量的是窗口毛玻璃的亮度,而它的亮度与向球内的一面上的照度成正比,因此所测得的读数也与球壁的反射照度成比例了。图6-21是球形光度计的示意图。

图6-21球形光度计示意图

(7)用球形光度计测CFL总光通量

①测量前,球内点燃一支适当功率的白炽灯烘烤球内壁,除去潮气,使球壁的反射比稳定,同时预照探测器使其灵敏度趋于稳定。

②总光通量标准灯的选择。总光通量标准灯是用于复现和传递光通量单位量值的量具。它是按特定技术条件制造的发光稳定的白炽灯,其量值由计量部门按照国家有关检定规程的规定检定给出。

目前我国总光通量白炽标准灯有两种,一种是BDT型,一种是BDP型,它们的光电参数,见表6-6和表6-7。

表6-6 BDT 型总光通量标准灯光电参数

型 号 标称电压 / V

电流(参考值)

/A 额定色温 光通量(±12%)/ lm

BDT-1 100 0.76 2353K 400 BDT-2 1.2 2788K 1500 BDT-3

2.7

2856K

4000

表6-7 BDP 型总光通量标准灯光电参数

型 号 额定电压 / V 功率(标准值)/ W 电流(参考值)/A 光通量(参考值)

/ lm 备 注

BDP-15 220 15 0.071 110 真空 BDP-25 220 25 0.11 220 BDP-40

220

40

0.18

350

充气

③ 功率适当的总光通量白炽灯标准灯按规定的要求在球心位置点亮,稳定15min 后,读数字照度计读数E 0 ,经国家有关计量部门标定的总光通量为L 0 。取待测CFL ,按规定要求在球心位置点亮,稳定15min 后,读数字照度计读数E x 。取待测CFL 的总光通量L x ,则:

L x = L 0 E x / E 0 (6-32)

(6-32)式是球形光度计法测量光源总光通量的基本公式。

④ 球形光度计法测量CFL 总光通量的色修正。由于总光通量白炽标准灯与待测CFL 的光谱功率分布差异很大,必须进行色修正,色修正系数K 由下式给出:

760

760

400

400760760

400

400

()()()()

()()

()()

X

A

A

X

P

V P

S K P

V P

S λλλλλλλλ=

∑∑∑∑ (6-33)

式中,P X (λ)是任意待测荧光粉的光谱功率分布,P A (λ) 是2856K 标准灯的光谱功率分布,V(λ)是人眼视见函数,S(λ)是探测器的光谱响应。

《材料物理性能》考前笔记 第四章 材料的光学性质

第四章材料的光学性质 1.光吸收的本质 光作为一种能量流,在穿过介质时,引起介质的价电子跃迁,或使原子振动而消耗能量。此外,介质中的价电子吸收光子能量而激发,当尚未退激时,在运动中与其他分子碰撞,电子的能量转变成分子的动能亦即热能,从而构成光能的衰减。即是在对光不发生散射的透明介质,如玻璃、水溶液中,光也会有能量的损失,这就是产生光吸收的原因。 2.图4.19金属、半导体和电介质的吸收率随波长的变化。 3.光的色散材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为折射率的色散。 4.光的散射 光通过气体、液体、固体等介质时,遇到烟尘、微粒、悬浮液滴或者结构成分不均匀的微小区域,都会有一部分能量偏离原来的传播方向而向四面八方弥散开来,这种现象称为光的散射。光的散射导致原来传播方向上光强的减弱。 5.弹性散射散射前后,光的波长(或光子能量)不发生变化的散射称为弹性散射。 σλ1 ∝s I (I s 表示散射光强度,参量σ与散射中心尺度大小a 0有关) a.Tyndall 散射当a 0>>λ时,0→σ,即当散射中心的尺度远大于光波的波长,散射光强与入射光波长无关。 B.Mie 散射当a 0λ≈时,即散射中心尺度与入射光波长可以比拟时,σ在0~4之间,具体数值与散射中心尺度有关。 C.Rayleidl 散射当a 0<<λ时,4=σ。换言之,当散射中心线度远小于入射光的波长时,散射强度与波长的4次方成反比(4 /1λ=s I )。这一关系称为瑞利散射定律。 6.非弹性散射当光束通过介质时,从侧向接收到的散射光主要是波长(或频率)不发生变化的瑞利散射光,属于弹性散射。除此之外,使用高灵敏度和高分辨率的光谱仪器,可以发现散射光中还有其他光谱成分,它们在频率坐标上对称地分布在弹性散射光的低频和高频侧,强度一般比弹性散射微弱得多,这些频率发生改变的光散射是入射光子与介质发生非弹性碰撞的结果,称为“非弹性散射”。从波动观点来看,光的非弹性散射机制乃是光波电磁场与介质内微观粒子固有振动之间的耦合,可激 发介质微观结构的振动或导致振动的淬灭,以至散射光波频率相应出现“红移”(频率降低)或“蓝移”(频率升高)。通常能产生拉曼散射的介质多由相互束缚的正负离子所组成。正负离子的周期性振动导致偶极矩与光波电磁场的相互作用引起能量交换,发生光波的非弹性散射。布里渊散射是点阵振动引起的密度起伏或超声波对光波的非弹性散射,也可以说是点阵振动的声学声子(声学摸)与光波之间能量交换的结果。 ωs R AS

《金属材料的物理特性》参考教案

金属材料的物理特性 一、教学设计思路 金属材料是与我们的生活密切联系的教学内容,本课题围绕学生熟悉的生活用品开展学习,通过学生分组实验、讨论、归纳总结得出金属的一些共同的物理性质和各自的特性,通过阅读课文了解常见金属与合金的主要成分性能和用途,让学生体会到化学就在我们的生活中,增强学生发现生活、感受生活的意识,从而实现“教学生活化”的教学理念。 教学过程围绕课程目标的三个维度(知识与技能、过程与方法、情感态度与价值观),注意培养学生从化学视角观察生活的习惯,教会学会将化学知识应用于生活实践的方法,使他们能对化学有关的生活问题做出合理的解释,感受学习化学的乐趣,体会学习化学的价值。 教学目标 知识技能:使学生了解金属的物理性质,了解常见合金的成分性能和用途。 能力培养:通过情景设置,使学生具有较强的问题意识,能够发现和提出有探究价值的化学问题。通过学生动手实验,培养学生的实验能力和分析问题的能力。 科学品质:通过实验激发学生学习化学的兴趣,培养学生实事求是的科学态度。培养学生将化学知识应用于生活实践的意识,能够对与化学有关的社会问题和生活问题做出合理的解释。 科学方法:指导学生用实验的方法认识事物的性质,培养学生科学的认知方法。 美育渗透:从生活中的金属制品,感受其丰富多彩的形状、颜色美。 重点 1、金属材料的物理性质 2、物质性质与用途的关系 3、合金的物理性质 难点 1、培养学生运用探究方法得出相关结论的能力 2、提高学生综合分析问题的能力

教学方法 采用实验探究法:按照问题—实验—观察—分析—结论的程序实行探究式讨论教学。 仪器、药品 铁片、铜片、铝片、干电池、小灯泡、导线、酒精灯、火柴、砂纸、黄铜、铜,与钛有关的资料和新型的合金的资料。

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

《无机材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。如采用四元件模型来表示线性高聚物的蠕变过程等。 ). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0 1 2 3 4 5 0.0 0.20.40.60.81.0 σ(t )/σ(0) t/τ 应力松弛曲线 012345 0.0 0.2 0.4 0.6 0.8 1.0 ε (t )/ε(∞) t/τ 应变蠕变曲线 )(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82 332min 2MPa Pa N F F f =?=? ? ??=?=? ???=?? ?? = πσπ τπτ:此拉力下的法向应力为为: 系统的剪切强度可表示由题意得图示方向滑移

金属的物理性能测试

金属的物理性能测试 金属材料的性能一般可分为使用性能和工艺性能两大类。使用性能是指材料在工作条件下所必须具备的性能,它包括物理性能、化学性能和力学性能。物理性能是指金属材料在各种物理条件任用下所表现出的性能。包括:密度、熔点、导热性、导电性、热膨胀性和磁性等。化学性能是指金属在室温或高温条件下抵抗外界介质化学侵蚀的能力。包括:耐蚀性和抗氧化性。力学性能是金属材料最主要的使用性能,所谓金属力学性能是指金属在力学作用下所显示与弹性和非弹性反应相关或涉及应力—应变关系的性能。它包括:强度、塑性、硬度、韧性及疲劳强度等。 1密度:密度就是某种物质单位体积的质量。 2热性能:熔点:金属材料固态转变为液态时的熔化温度。 比热容:单位质量的某种物质,在温度升高1℃时吸收的热量或温度降低1℃时所放出的热量。 热导率:在单位时间内,当沿着热流方向的单位长度上温度降低1℃时,单位面积容许导过的热量。 热胀系数:金属温度每升高1℃所增加的长度与原来长度的比值。 3电性能: 电阻率:是表示物体导电性能的一个参数。它等于1m长,横截面积为1mm2的导线两端间的电阻。也可用一个单位立方体的两平行端面间的电阻表示。 电阻温度系数:温度每升降1℃,材料电阻的改变量与原电阻率之比,称为电阻温度系数。 电导率:电阻率的倒数叫电导率。在数值上它等于导体维持单位电位梯度时,流过单位面积的电流。

4磁性能: 磁导率:是衡量磁性材料磁化难易程度的性能指标,它是磁性材料中的磁感应 强度(B)和磁场强度(H)的比值。磁性材料通常分为:软磁材料(μ值甚高,可达数万)和硬磁材料(μ值在1左右)两大类。 磁感应强度:在磁介质中的磁化过程,可以看作在原先的磁场强度(H)上再 加上一个由磁化强度(J)所决定的,数量等于4πJ的新磁场,因而在磁介质中的磁场B=H+4πJ的新磁场,叫做磁感应强度。 磁场强度:导体中通过电流,其周围就产生磁场。磁场对原磁矩或电流产生作 用力的大小为磁场强度的表征。 矫顽力:样品磁化到饱和后,由于有磁滞现象,欲使磁感应强度减为零,须施 加一定的负磁场Hc,Hc就称为矫顽力。 铁损:铁磁材料在动态磁化条件下,由于磁滞和涡流效应所消耗的能量。 其它如力学性能,工艺性能,使用性能等。

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

金属材料的物理特性教案及练习题

教学案例 学校名称:乌丹五中 课程名称:化学 内容主题:6、1金属材料的物理特性教材版本:科学粤教版 教师姓名: 456 教龄: 26年

《6、1金属材料的物理特性》问题导读——评价单 班级:姓名:学号:设计者:审核者: 1、通读教材,勾划知识点 2、精读课文,完成填空。 金属共有并区别于非金属的物理性质是、、、。金属还具有各自的特性:最难熔的金属是,最易熔的金属是,最重的金属是,最轻的金属是,最硬的金属是。 3、金属之最: 最早被人类广泛利用的金属——铜 目前世界年产量最高的金属——铁 地壳含量最高的金属元素——铝 人体中含量最高的金属元素——钙 导电、导热性最好的金属——银 延性最好的金属——铂 展性最好的金属——金 4、什么是合金 5、合金有什么特性 我的问题是: 《6、1金属材料的物理特性》问题训练——评价单:

一:填空题 1、金属共有并区别于非金属的物理性质是、、 、。 2、最难熔的金属是,最易熔的金属是,最重的金属是,最轻的金属是,最硬的金属是。 二、选择题 1、下列物质属于金属单质的是() A、水 B、木炭 C、氮气 D、铜 2、钨用来制造灯丝,因为钨具有导电性且() A、密度大 B、熔点高 C、硬度大 D、延展性好 3、铁是一种应用广泛的金属,下列有关铁的说法中,正确的是() A、铁丝在氧气中燃烧生成氧化铁 B、钢是一种纯净物 C、铁是地壳里含量最多的金属元素 D、用铁锅炒菜可使食物中增加微量的铁元素 4、钛和钛合金被认为是21世纪的重要材料,它们具有很多优良的性能,如 熔点高、密度小、可塑性好、易于加工,钛合金与人体有很好的“相容性”。 根据它们的主要性能,下列用途不切合实际的是() A、用来作保险丝 B、用来制造航天飞机 C 、用来制造人造骨 D、用于制造船舶 三、简答题 1、为什么菜刀、锤子等通常用铁制而不用铜制或铅制 2、银的导电性比铜好,为什么导线一般用铜制而不用银制

晶体光学性质的观测分析(预习)

晶体光学性质的观测分析(预习报告) 一、实验目的 熟悉单期自晶光学性质, 晶体的消光现象, 干涉色级序 了解偏光显微镜原理及掌握其使用方法 观察晶体的类别、軸向和光性正负等过程, 估计晶片光程差 二、实验原理 折射率与光的传播方向和光矢振动方向有关的晶体称为各向异性晶体。除立方晶系的晶体外,所有的晶体都是各向异性晶体。如:方解石、水晶、KDP、LiNb03, BaTi03等都是各向异性晶体。 当光通过各向异性晶体时, 会产生双折射现象, 并表现出偏振性质。当光沿各向异性晶体传播时, 总存在一个或画个方向不发生双折射现象, 此方向称为晶体的光轴, 按晶体的光轴分,各向异性品体又可分为単轴晶和双軸晶,单轴晶只有一个光轴,如:四方晶系、六方晶系、三方晶系的晶体;而双軸晶则有西个光抽,如:正交晶系、単斜晶系、三斜晶系的晶体。其中,折射率不随入射光方向而变的称为寻常光或o光(折射率为n。),折射率随入射光方向而变的称为非寻常光或e光(折射率为ne)。o光和e光都是偏振光,并且它们的振动方向互相垂直。 光波各矢量间关系较复杂, 因此需要用一些图形来直观地表示出晶体中光波各矢量间的方向关系, 及各传插方向相对应的光速或折射率在空间的取值分布, 这些几何图形称为晶体光学示性曲面。.折射率椭球(或光率体) 就是描述晶体最常用的晶体光学示性曲面, 它是以主折射率为主值的椭球。 在偏光显微镜中,当上下偏光镜的振动面互相垂直时,称为正父偏光镜。如在正交偏光镜间不放任何介质或放入各相同晶体时, 光线无法通过正交偏光镜, 所以视域是黑暗的; 当' 在正交偏光镜间放人各相异晶体后, 由于晶体双折射效应和晶片厚度、晶抽取向的不同而产生不同的干涉现象。如图4- l -4所示:在正交偏光镜之间加入一晶片,其中PP表示起偏镜(下偏光镜) 的振动方向, AA表示检偏镜(上偏光镜)的振动方向, 00表示晶片光轴方向(00平行于晶片,垂直于透光方向)。如透过起偏镜的偏振光振幅为Aoe, 光线到达厚度为d的晶片后, 分解成振幅分别为Ae和Ao的e光和o光, e光和o光的振动方向分别平行和垂直00方向, 00与PP的夹角为a,则e光和o光的振幅分别为: Ae=Aoe cosα, Ao= Aoe sinα。再经检偏镜(上偏光镜)后, Ae和Ao在检偏镜AA方向的投影。由于各相异晶体e光和o光的折射率不同,其差值为Δn= (ne -n0),所以当它们透过厚度为d的晶片后,必产生光程差Δ=d(ne-n。)

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

无机材料物理性能重点

一·辨析 1. 铁电体与铁磁体的定义和异同 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。铁磁体是指具有铁磁性的物质。 2. 本征(固有离子)电导与杂质离子电导 答:本征电导是源于晶体点阵的基本离子的运动。这种离子自身随着热振动离开晶体形成热缺陷。这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。 相同点:二者的离子迁移率 和电导率 表达形式相同 不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量 B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B 比本征电导低一些 C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高 3. 离子电导和电子电导 答:携带电荷进行定向输送形成电流的带点质点称为载流子。载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导 不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动 B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏 C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子 D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加 4.铁电体与反铁电体 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料 不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列 2.反铁电体具有双电滞回线,铁电体具有电滞回线 3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计 铁电体 铁磁体 自发极化 自发磁化 不含铁 含铁 电畴 磁畴 电滞回线 磁滞回线

液晶的光学特性分析

液晶的光学特性分析 光的偏振性 光矢量 麦克斯韦在电磁波理论中指出电磁波是横波,由两个相互垂直的振动矢量即电场强度E和磁场强度H来表征,由于人们从光的偏振现象认识到光是横波,而且光速的测量值与电磁波速的理论计算值相符合,所以肯定光是一种电磁波,大量试验表明:在光波中产生感光作用和生理作用的是电场强度E,所以规定E 为光矢量,我们把E的振动称为光振动,光矢量E的方向就是光振动的方向。自然光: 一个原子或分子在某一瞬间发出的光本来是有确定振动方向的光波列,但是通常的光是大量原子的无规率发射,是一个瞬息万变、无序间歇过程,所以各个波列的光矢量可以分布在一切可能的方位,平均来看,光矢量对于光的传播方向成对成均匀分布,没有任何一个方位较其它方位更占优势,这种光就叫自然光。 自然光在反射、散射或通过某些晶体时,其偏振状态会发生变化。例如阳光是自然光,但经天空漫射后是部分偏振的,一些室内的透明塑料盒,如录音带盒,在某些角度上会出现斑澜色彩,就是偏振光干涉的结果。 自然光的分解: 在自然光中,任何取向的光矢量都可分解为两个相互垂直方向上的分量,很显然,自然光可用振幅相等的两个相互垂直方向上的振动来表示。 应当指出,由于自然光中振动的无序性,所以这两个相互垂直的光振动之间没有恒定的位相差,但应注意的是不能将两个相位无关联的光矢量合成为一个稳定的偏振光,显然对应两个相互垂直振动的光强各为自然光光强的一半。 如果采用某种方法能把两个相互垂直的振动之一去掉,那就获得了线偏振光,如果只能去掉两个振动之一的一部分,则称为部分偏振光。

偏振光 线偏振光:如果光矢量在一个固定平面内只沿一个固定的方向振动,这种光称为线偏振光,也叫面偏振光或全偏振光,线偏振光的光矢量方向和传播方向构成的平面称为振动面,线偏振光的振动面是固定不变的。 部分偏振光: 这是介于偏振光和自然光之间的一种偏振光,在垂直于这种光的传播方向的平面内,各方向的振动都有,但它们的振幅不相等。 值得注意的是,这种偏振光的各方向振动的光矢量之间也没有固定的相位关系,与部分偏振光相对应,有时称线偏振光为完全偏振光。 圆偏振光和椭圆偏振光: 这两种光的特点是在垂直于光的传播方向的平面内,光矢量按一定频率旋转(左旋或右旋),如果光矢量端点的轨迹是一个圆,这种光叫圆偏振光;如果光矢

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

相关主题