搜档网
当前位置:搜档网 › 压电陶瓷的制备及研究

压电陶瓷的制备及研究

压电陶瓷的制备及研究
压电陶瓷的制备及研究

PZT压电陶瓷颗粒的制备:

将市售的压电陶瓷片用蒸馏水洗净,与120℃下烘干。在玛瑙研钵中捣

碎,然后以无水乙醇为介质,在玛瑙罐中球磨24h,烘干,过筛,得到平均粒径为3um 的陶瓷颗粒。陶瓷颗粒制备过程中,未经其它任何物理和化学处

理。

石墨改性

(l)称取适量的石墨粉末,将石墨粉末置于N,N一二甲基甲酞胺(NDF)

中,强烈搅拌并辅以超声分散。

(2)称取适量的PVDF粉末,将PVDF溶于上述含悬浮石墨的NDF中。

(3)称取适量的PZT陶瓷粉末,将PZT粉末加入PVDF的NDF溶液中,

强烈搅拌并辅以超声分散。制得石墨、‘PZT和PVDF分散均匀的体系。

(4)保持搅拌,将一定量的PVDF不良溶剂无水乙醇缓慢加入到上述分

散体系中,直到石墨、PZT和PVDF全部从溶液中沉淀出来。

(5)将沉淀抽滤,烘干,得到均匀的PVDF包裹的石墨和PZT体系。

(6)将分散均匀的复合粉末在200℃、150MPa的钢制模具中热压,冷

却后得到今2um,厚200一300Um的压电复合材料薄膜。

研究的问题:

(l)分别采用了冷压、固化和热压三种工艺制备住一3型PZT用VDF压电复合材料,通过对制备样品压电和介电性能行对比,确定制备0一3型PZT/PVDF压电复合材料的

最佳合成工艺。

(2)研究PZT和PVDF不同质量配比对O一3型PZT护VDF压电复合材料性能的影响,通过对样品压电和介电性能进行对比,确定制备0一3型PZT/PVDF压电复合材料的PZT和PVDF的质量最佳配比。

(3)研究在热压工艺条件下的合成热压温度和热压压力对0一3型PZT/PvDF压电复合材料性能的影响,通过对不同条件下制备样品的压电和介电性能进行对比,确定热压工艺制备O一3型PZT/PVDF压电复合材料的最佳工艺条件。

(4)研究极化条件(极化温度、极化电场和是否保压冷却)0一3型PZT/PVDF压电复合材料性能的影响,确定0一3型PZT/PVDF压电复合材料的最佳极化条件。

(5)采用HP4294A阻抗分析仪测量O一3型PZT/PVDF压电复合材料在不同频率下的阻抗、电容、介电损耗,获得0一3型PZT/PVDF压电复合材料的介电常数。、机电耦合系数、机械品质因数Qm等性能参数,并且分析性能随实验条件的变化规律。

(6)利用XRD、SEM、DSC等测试手段测量了O一3型PZT/PVDF压电复合材料的微观结构,并通过微观结构与压电和介电性能的相关性从理论上解释实验现象。

0一3型PZT/PVDF压电复合材料三种成型工艺流程

(l)称量:选取一定的质量比例的PZT与PVDF在电子天平上进行称量。

(2)球磨:把己称量好的混合物放入球磨罐中,再加入适量的无水乙醇一起放入球磨机中球磨数小时,倒出浆料,磨干备用。

(5)热压成型:配料放入模具中,连同模具一起放入预先设定好温度的烘箱中,保温1.5小时使其配料与烘箱中预先所设定的温度一致,然后迅速取出放入压力机下加压成型,待温度下降到常温即可。

2.4.2镀电极的工艺流程

镀电极的具体步骤如下:

(l)抛光:在玻璃板上放上超细Al2O3,用水调成一定的浓度,然后把己成型好的样品放在上面,用手按住样品并使之在玻璃板上旋转,直到样品的两个平面平整、光滑。

(2)把抛光后的样品先用水清洗,然后再用丙酮清洗干净、晾干。

(3)用玻璃棒沾少许免烧银浆放在清洗干净的样品的一个表面上,然后滚动玻璃棒,使免烧银浆在样品的表面形成均匀的薄层。

(4)把涂好一面免烧银浆的样品放入100℃左右的烘箱中烘烤半小时。

(5)取出样品,采用步骤(3)再涂样品的另一面。

(6)把涂好免烧银浆的样品再次放入l000C左右的烘箱中烘烤2~3小时即可。

极化方式

最常用的极化方法是热极化。即将待极化样品放入有机硅油中加热至100℃,然后在样品两端施加高压直流电场,使其电畴尽可能沿外加电场方向取向。虽然这种极化方法受硅油的沸化温度限制,想利用高温来提高极化效果是有限的,但是这种方法的优点是装置简单、易操作,同时由于压电复合材料中含有有机物受本身的熔点的限制也不容许在很高的温度下进行极化。因此本实验采用此方法来极化压电复合材料样品。图2.7为高压热极

化装置(常州电子仪器厂制造的2671型万能击穿装置和重庆试验设备厂制造的恒温油浴)示意图。

流程图

复合材料的成型工艺

采用三种不同方法制备了压电复合材料,如下所述:

a:冷压机压制工艺:先预压混合料,预压的压力为60MPa,然后将原料与模具一同放入高温烘箱中,调节烘箱温度为190℃,半小时后拿出,再用冷压机迅速加压至100MPa,保压冷却至室温。

b:热压机压制工艺:采用复合模压工艺(也就是常说的热压工艺)。热压的温度为180℃,压力为25MPa,热压时间为25分钟。

c:微波成型工艺:用台钳压制成型混合料,压实后放入微波炉中进行辐照,微波频率.245GHz,辐照时间为20~25分钟。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

(工艺技术)压电陶瓷的压电原理与制作工艺

压电陶瓷的压电原理与制作工艺 1.压电陶瓷的用途 随着高新技术的不断发展,对材料提出了一系列新的要求。而压电陶瓷作为一种新型的功能材料占有重要的地位,其应用也日益广泛。压电陶瓷的主要应用领域举例如表1所示。

2.压电陶瓷的压电原理 2.1 压电现象与压电效应 在压电陶瓷打火瓷柱垂直于电极面上施加压力,它会产生形变,同时还会产生高压放电。在压电蜂鸣器电极上施加声频交变电压信号,它会产生形变,同时还会发出声响。归纳这些类似现象,可得到正、逆压电效应的概念,即:压电陶瓷因受力形变而产生电的效应,称为正压电效应。压电陶瓷因加电压而产生形变的效应,称为逆压电效应。2.2 压电陶瓷的内部结构 材料学知识告诉我们,任何材料的性质是由其内部结构决定的,因而要了解压电陶瓷的压电原理,明白压电效应产生的原因,首先必须知道压电陶瓷的内部结构。 2.2.1 压电陶瓷是多晶体 用现代仪器分析表征压电陶瓷结构,可以得到以下几点认识: (1)压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。 图1 BSPT压电陶瓷样品断面SEM照片 (2)每个小晶粒微观上是由原子或离子有规则排列成晶格,可看为一粒小单晶,如图2所示。 图2 原子在空间规则排列而成晶格示意图 (3)每个小晶粒内还具有铁电畴组织,如图3所示。

图3 PZT陶瓷中电畴结构的电子显微镜照片 (4)整体看来,晶粒与晶粒的晶格方向不一定相同,排列是混乱而无规则的,如图4所示。这样的结构,我们称其为多晶体。 图4 压电陶瓷晶粒的晶格取向示意图 2.2.2 压电陶瓷的晶胞结构与自发极化 (1)晶胞结构 目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、K x Na1-x NbO3、Pb(Zr x Ti1-x)O3等。 该类材料的化学通式为ABO3。式中A的电价数为1或2,B的电价为4或5价。其晶胞(晶格中的结构单元)结构如图5所示。 图5 钙钛矿型的晶胞结构

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电陶瓷材料的制作方法

一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅2030份、二氧化锆25份、碳酸钡25份、氧化铜15份、二氧化钛13份、镍13份。本技术的成分配比合理,易加工,减少了能源消耗,提高产品质量,增强压电陶瓷性能。 权利要求书 1.一种压电陶瓷材料,其特征在于:其组分及各组分的质量份数为:四氧化三铅20-30份、二氧化锆2-5份、碳酸钡2-5份、氧化铜1-5份、二氧化钛1-3份、镍1-3份。 技术说明书 一种压电陶瓷材料 技术领域 本技术属于陶瓷材料领域,特别是涉及一种压电陶瓷材料。 背景技术 压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物。

技术内容 本技术的目的在于提出一种压电陶瓷材料,本技术的制作工艺在坯料成型过程中避免了添加聚乙烯醇,废除了排胶过程,缩短了加工时间,减少了能源消耗,排除在锻烧结晶时的杂质渗入,提高产品质量,增强压电陶瓷性能。 本技术的目的及解决其技术问题是采用以下技术方案来实现。依据本技术提出的一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅20-30份、二氧化锆2-5份、碳酸钡2-5份、氧化铜1-5份、二氧化钛1-3份、镍1-3份。 本技术的成分配比合理,易加工,减少了能源消耗,提高产品质量,增强压电陶瓷性能。 上述说明仅是本技术技术方案的概述,为了能够更清楚了解本技术的技术手段,而可依照说明书的内容予以实施,并且为了让本技术的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例详细说明。 具体实施方式 实施例一: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅20份、二氧化锆2份、碳酸钡2份、氧化铜1份、二氧化钛1份、镍1份。 实施例二: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅30份、二氧化锆5份、碳酸钡5份、氧化铜5份、二氧化钛3份、镍3份。 实施例三: 一种压电陶瓷材料,其组分及各组分的质量份数为:四氧化三铅25份、二氧化锆3份、碳酸

电子工程师必备知识

电子工程师的设计经验笔记(经典) 关键字:电子工程师设计经验 电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 更多阅读:电容性负载的稳定性—具有双通道反馈的RISO(1) 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

压电陶瓷应用

压电陶瓷的市场用途及其发展 压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。这是一种具有压电效应的材料。 所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。这不能不说是压电陶瓷的一大奇功。 压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。塑料甚至金属进行加工。 压电陶瓷的用途主要有以下几个: 1、声音转换器声音转换器是最常见的应用之一。像拾音器、传声器、耳机、蜂鸣器、超声波探深仪、声纳、材料的超声波探伤仪等都可以用压电陶瓷做声音转换器。如儿童玩具上的蜂鸣器就是电流通过压电陶瓷的压电效应产生振动,而发出人耳可以听得到的声音。压电陶瓷通过电子线路的控制,可产生不同频率的振动,从而发出各种不同的声音。例如电子音乐贺卡,就是通过压电效应把机械振动转换为交流电信号。 2、压电引爆器自从第一次世界大战中英军发明了坦克,并首次在法国索姆河的战斗中使用而重创了德军后,坦克在多次战斗中大显身手。然而到了20世纪六七十年代,由于反坦克武器的发明,坦克失去了昔日的辉煌。反坦克炮发射出的穿甲弹接触坦克,就会马上爆炸,把坦克炸得粉碎。这是因为弹头上装有压电陶瓷,它能把相碰时的强大机械力转变为瞬间高电压,爆发火花而引爆炸药。 3、压电打火机现在煤气灶上用的一种新式电子打火机,就是利用压电陶瓷制成的。只要用手指压一下打火按钮,打火机上的压电陶瓷就能产生高电压,形成电火花而点燃煤气,可以长久使用。所以压电打火机不仅使用方便,安全可靠,而且寿命长,例如一种钛铅酸铅压电陶瓷制成的打火机可使用100万次以上。 4、防核护目镜核试验员带上用透明压电陶瓷做成的护目镜后,当核爆炸产生的光辐射达到危险程度时,护目镜里的压电陶瓷就把它转变成瞬时高压电,在1/1000 s里,能把光强度减弱到只有1/10000,当危险光消失后,又能恢复到原来的状态。这种护目镜结构简单,只有几十克重,安装在防核护目头盔上携带十分方便。 5、超声波换能器适用于用于超声波焊接设备以及超声波清洗设备,主要采用大功率发射型压电陶瓷制作,超声波换能器是一种能把高频电能转化为机械能的装置,超声波换能器作为能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,

压电陶瓷片制作工艺

工作原理 当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。 实际应用 压电陶瓷片,俗称蜂鸣片。 压电陶瓷片是一种电子发音元件,在两片铜制圆形电极中间放入压电陶瓷介质材料,当在两片电极上面接通交流音频信号时,压电片会根据信号的大小频率发生震动而产生相应的声音来。压电陶瓷片由于结构简单造价低廉,被广泛的应用于电子电器方面如:玩具,发音电子表,电子仪器,电子钟表,定时器等方面。 超声波电机就是利用相关的性质制成的。 工艺 工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。 一、配料:进行料前处理,除杂去潮,然后按配方比例称量各种原材料,注意少量的添加剂要放在大料的中间。 二、混合磨细:目的是将各种原料混匀磨细,为预烧进行完全的固相反应准备条件.一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。 三、预烧:目的是在高温下,各原料进行固相反应,合成压电陶瓷.此道工序很重要。会直接影响烧结条件及最终产品的性能。 四、二次细磨:目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀性能一致打好基础。 五、造粒:目的是使粉料形成高密度的流动性好的颗粒。方法可以手工进行但效率较低,目前高效的方法是采用喷雾造粒。此过程要加入粘合剂。 六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。 七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。

压电陶瓷测量基本知识

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1 、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为

2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时, 材料内部能量消耗程度的一个参数, 它也是衡 量压电陶瓷材料性能的一个重要参数。 机械品质因数越大, 能量的损耗越小。产生能量损耗 的原因在于材料的内部摩擦。机械品质因数 Q m 的定义为: 谐振时振子储存的机械能 c Qm 谐振时振子每周所 损失的机械能 2 兀 机械品质因数可根据等效电路计算而得 式中 R 1为等效电阻 (Q ) , s 为串联谐振角频率(Hz ), C 1为振子谐振时的等效电容 (F ),L 1为振子谐振时的等效电感。 Q m 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的 Q m 值的要求不同,在大多数的场合下(包括声波 测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的 Q m 值要高。 3、压电常数 压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 tan 1 CR 其中3为交变电场的角频率, R 为损耗电阻,C 为介质电容。 s R 1C 1 s L 1 图1交流电路中电压-电流矢量图(有损耗时)

锆钛酸铅压电陶瓷的制备实验

锆钛酸铅压电陶瓷的制备实验 引言: 压电陶瓷 我们将具有压电效应的陶瓷称为压电陶瓷,而压电效应分为正压电效应和负压电效应。 ★正压电效应:当对某些晶体施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端面将出现数量相等、符号相反的束缚电荷,这种现象称为正压电效应,如下图所示; ★逆压电效应:当在晶体上施加电场引起极化时,将产生与电场强度成比例的变形或机械应力,这种现象称为逆压电效应。 注:实线代表形变前的情况; 虚线代表形变后的情况。 自从十九世纪五十年代中期,由于钙钛矿的 PZT 陶瓷具有比 BaTiO3更为优良的压电和介电性能,因而得到广泛的研究和应用。图 1-1 为 Pb(Zr x Ti 1-x )O 3体系的低温相图[1]。在居里温度以上时,立方结构的顺电相为稳定相。在居里温度以下,材料为铁电相,对于富 Ti 组分(0≤x ≤0.52)为四方相;而低 Ti 组分(0.52≤x ≤0.94)为三方相。两种晶相被一条 x=0.52 的相界线分开。在三方相区中有两种结构的三方相:高温三方相和低温三方相,这两种三方相的区别在于前者为简单三方晶胞,后者为复合三方晶胞。在靠近 PbZrO3组分(0.94≤x ≤1)的地方为反铁电区,反铁电相分别为低温斜方相和高温四方相。 正压电效应示意图

如图 1-2 所示[10],对于四方相,自发极化方向沿着六个<100>方向中的一个方向进行,而三方相的自发极化方向沿着八个<111>方向中的一个方向进行。由于自发极化方向的不同,在不同的晶体结构中产生不同种类的电畴,在四方相中产生 180o 和 90o电畴,三方相中产生 180o、109o、71o电畴。 一、实验目的: 本实验主要是通过对具有压电性能的陶瓷材料PZT(锆钛酸铅)的制备来掌握特种陶瓷材料的整个工艺流程,并掌握一定的性能测试手段。 二、实验仪器: 电子天平、粉末压片机、箱式电阻炉、成型模具、温度控制仪、准静态d33测量仪、极化装置、阻抗分析仪等。 三、实验原理: 实验室制备PZT压电陶瓷的工艺路线为: 配方设计→PZT粉体混合研磨制备→预烧→成型→排塑→烧结→上电极→极化→性能

压电陶瓷的测试--

第二章压电陶瓷测试 2.4 NBT基陶瓷的极化与压电性能测试 2.4.1 NBT基陶瓷的极化 1. 试样的制备 为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。 首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min 以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。 2. NBT基压电材料的极化 利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排

列是杂乱无章的,对陶瓷整体来说不显示压电性。经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。 对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。决定极化条件的三个因素为极化电压、极化温度和极化时间。为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。 2.4.2 NBT基陶瓷的压电性能测试 1.压电振子及其等效电路 图2.11 压电振子的等效电路 利用压电材料的压电效应,可以将其按一定取向和形状制成有电极的压电器件。输入电讯号时,若讯号频率与器件的机械谐振频率f r一致,就会使器件由于逆压电效应而产生机械谐振,器件的机械谐振又可以由于正压电效应而输出电讯号,这种器件称为压电振子,广泛用于制作滤波器、谐振换能器件和标准频率振子。在其谐振频率附近的电特征可用图2.11来表示,它由电容C1,电感L1和电阻R1的串连支路与电容C0并联而成,在谐振频率附近可以认为这些参数与频率无关。 2.压电材料的性能测试 压电参数的测量以电测法为主。电测法可分为动态法、静态法和准静态法。动态法是

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电陶瓷材料的发展及应用

压电陶瓷材料的发展及应用 美国Sandia研究所的Haertling在1964年发现,如果在Pb(Ti,Zr)O 3 中 添加少量的Bi 2O 3 进行热压成型时,烧结得很好,这种多晶材料的铁电电滞回线呈 现明显的矩形特性。此后,兰德(Land)等人发现,这种陶瓷被研磨成薄片时透光度高,随着晶体粒度的不同显示出二种电光学效应,即粒度为2微米以上的极化了的粗晶粒陶瓷片,散射光的强度随着极化轴的角度发生变化;2微米以下的微细晶粒陶瓷片,则呈现出以极化为光轴的单轴性负光学各向异性,双折射率随偏置电压的改变而变化.这种陶瓷是一种很有价值的新型电光学材料.这一发现是铁电性透明陶瓷展的开端。 1971年美国Haertling和Land用La置换一部分Pb的 Pb 1-x La x (Zr y Ti i-y ) 1-(x/4) O 3 组成(简称PLZT)进行热压烧结成型,所得陶瓷研磨的薄片 具有电控双折射、电控可变光散射等特性,可用作关阀、电光调制器和光记忆元件,PLZT是一种很有价值的新型电子材料,是20世纪70年代铁电陶瓷的重大进展。 透明铁电压电陶瓷的问世,一方面是由于客观上性技术的发展对铁电压电陶瓷材料在电光方程面的应用提出了要求,另一方面,是由于长期以来人们对铁电压电陶瓷进行了大量的研究实践(特别是热压工艺)的结果。具体的工作在1967年左右开始,1970年5月宣布了透明铁电陶瓷试制成功,随后报道了各种应用研究,1972年改进了工艺方法,提高了厚片的透明度,1973年又发展了不用热压而用通氧烧结的方法成功地制造了较大面积的透明铁电压电陶瓷。在此期间,陆续报道的各种有关的应用或实验结构有铁电显示器、光阀、光信息存贮器、偏置应变存贮显示器件、反射式偏置应变存贮显示器件、散射式存贮显示器件、染料激光波长选择器件、全息存贮输入器件等等。各方面应用的研究正在不断发展中. 透明铁电压电陶瓷的发展,给铁电压电陶瓷开辟了新的应用领域-电光应用,过去电光器件用的是单晶铁电材料,但由于单晶材料存在一些缺点,例如尺

压电晶体与压电陶瓷的结构、性能与应用Word版

压电晶体与压电陶瓷的结构、性能与应用 摘要:压电晶体与压电陶瓷作为典型的功能材料,具有能实现机械能与电能之间互相转换的工作特性,在电子材料领域占据相当大的比重。本文从压电效应入手,阐述了压电晶体与压电陶瓷的结构原理以及性能特点。针对压电晶体与压电陶瓷在生产实践中的应用情况,综述了其近年来的研究进展,并系统介绍了其在各个领域的应用情况和发展趋势。 关键词:压电晶体压电陶瓷压电效应结构性能应用发展 引言 1880年皮埃尔?居里和雅克?居里兄弟在研究热电现象和晶体对称性的时候,在α石英晶体上最先发现了压电效应。1881年,居里兄弟用实验证实了压电晶体在外加电场作用下会发生形变。1894年,德国物理学家沃德马?沃伊特,推论出只有无对称中心的20中点群的晶体才可能具有压电效应。[1] 石英是压电晶体的代表,利用石英的压电效应可以制成振荡器和滤波器等频率控制元件。在第一次世界大战中,居里的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电应用史的光辉篇章。 除了石英晶体外,酒石酸钾钠、BaTiO3陶瓷也付诸应用。1947年美国的罗伯特在BaTiO3陶瓷上加高压进行极化处理,获得了压电陶瓷的压电性。随后,美国和日本都积极开展应用BaTiO3压电陶瓷制作超声换能器、音频换能器、压力传感器等计测器件以及滤波器和谐振器等压电器件的研究,这种广泛的应用研究进行到上世纪50年代中期。 1955年美国的B.贾菲等人发现了比BaTiO3的压电性优越的PbZrO3-PbTiO3二元系压电陶瓷,即PZT压电陶瓷,大大加快了应用压电陶瓷的速度,使压电的应用出现了一个崭新的局面。BaTiO3时代难以实用化的一些应用,特别是压电陶瓷滤波器和谐振器以及机械滤波器等,随着PZT压电陶瓷的出现而迅速地实用化了。采用压电材料的SAW滤波器、延迟线和振荡器等SAW器件,上世纪70年代末也已实用化。上世纪70年代初引起人们注意的有机聚合物压电材料(PVDF),现在也已基本成熟,并已达到了生产规模。如今,随着应用范围的不断扩大以及制备技术的提升,更多高性能的环保型压电材料也正在研究中。 一、压电晶体与压电陶瓷的结构及原理 压电效应包含正压电效应与逆压电效应,当某些电介质在一定方向上受到外力的作用而发生变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,并且受力所产生的电荷量与外力的大小成正比,而当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应;相反,当在电介质的极化方向上施加交变电场,这些电介质也会发生机械变形,电场去掉后,电介质的机械变形随之消失,这种现象称为逆压电效应。正压电效应是把机械能转换为电能,而逆压电效应是把电能转换为机械能。 1.1压电效应原理

压电陶瓷钛酸钡的制备

化学化工学院材料化学专业实验报告实验实验名称:压电陶瓷材料钛酸钡的制备 年级:材料化学日期:2013-9-26 一、预习部分 1、前言 电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数,低的介质损耗及铁电,压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器,多层陶瓷电容器,PTC热敏电阻,动态随机存储器,谐振器,超声探测器,温控传感器等,被誉为"电子陶瓷工业的支柱". 近年来,随着电子工业的发展,对陶瓷元件提出了高精度,高可靠性,小型化的要求. 为了制造高质量的陶瓷元件,关键之一就是要实现粉末原料的超细,高纯和粒径分布均匀. 研究可以制备粒径可控, 粒径分布窄及分散性好的钛酸钡粉体材料的方法且能够大量生产成为了一个研究热点. 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:Ba CO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀 BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。

PZT压电陶瓷制备方法

PZT压电陶瓷制备方法 摘要:PZTR基压电陶瓷材料具有性能稳定、容易制造、价格低廉等优点,已被广泛应用于电子元器件中。但由于采用传统的高温固相法烧结铅大量挥发,从而导致化学计量比偏离、性能下降。本文介绍了压电陶瓷的几种制备方法。 关键字:;PZT陶瓷制备方法 引言:PZT压电陶瓷由于具有居里温度高、压电性强、易掺杂改性、稳定性好等特点。自20世纪60年代以来,一直是人们关注和研究的热点,在压电陶瓷领域中占主导地位。就PZT压电陶瓷的制备工艺而言,PZT粉体合成和致密化烧结对PZT制品质量影响最大。PZT超微粉体具有粒度细、比表面积大、反应活性高等优点,可降低烧结温度,减少铅挥发,保证准确的化学计量,提高PZT制品性能,因而超微PZT粉体的制备已成为PZT压电陶瓷研究的重点。 近年来对超微PZT粉体制备的研究开发了许多新的方法。固相法除传统周相法外,还包括微波辐射法、机械化学法口、反应烧结法等。液相法具有合成温度低、设备简单、易操作、成本低等优点,纷纷被用于PZT粉体的制备,如溶胶一凝胶法、水热法、沉淀法等。但对PZT压电陶瓷的制备及性能研究仍存在许多不足,主要包括:粉体团聚、化学计量及制品性能易老化等。 2、PZT陶瓷的制备方法 2.1水热法合成制备PZT压电陶瓷粉 实验原料为:Pb(Ac)2·3H20、ZrOCl2·8 H20、Ti(OC4H9)4、Na()H(均

为分析纯试剂),全部配制成水溶液使用。按照Pb(Zr0.58Ti 0.42)O3的组成配制水热反应混合溶液。铅的成分适当过量添加。反应在NaOH 水溶液介质中进行,反应设备采用100mI。反应釜,反应温度分别设定为240摄氏度、反应时间为4 h,反应结束后用定鼍滤纸进行过滤,然后用离子交换水超声波二遍清洗,生成物在100摄氏度下干燥24 h,以备测定各种性能。采用RIGAKU公司生产的D/MAX RB型X射线粉末衍射仪分析产物的物相组成,采用JSM一5010I。V型扫描电镜观察f)z1、粉末的形貌,最后采用Gemini 2360测试仪用BET、法测定粉末的比表面积。 2.2湿声化学法制备PZT(52/48)压电陶瓷粉体 实验用原料:乙酸铅(纯度为99.5%),钛酸丁酯(纯度为98%),二氧化锆和柠檬酸(纯度为99.5%).按照Pb(Zr0.52Ti0.48)O3的化学计量比称量各种原料.将乙酸铅和钛酸丁酯分别溶解在去离子水和乙醇溶液中,磁力搅拌(X85—2S恒温磁力搅拌器)20 min使其均匀混合将柠檬酸水溶液缓慢倒入乙酸铅和钛酸丁酯的混合溶液中,并加入少量氨水调节其pH值以使其形成溶胶.将二氧化锆加入到溶胶中并磁力搅拌30 min,再用超声雾化设备(25 kHz,150 W,自行研制)对混合物雾化处理3次.将雾化处理后的混合物在120℃干燥10 h形成干凝胶,将干凝胶在300—800℃下煅烧(马弗炉,SX-1)一定时间后得到PZT粉体材料. 2.3溶胶一凝胶法制备PZT超细粉体 1、按Pb(Zr0.52Ti0.48)03比例称取乙酸铅、硝酸氧锆,分别溶于冰

压电陶瓷性能及PZT制备工艺

压电陶瓷性能及PZT制备工艺 王幸福无机非金属材料工程 80308113 摘要: 简单综述了压电陶瓷的性能及锆钛酸铅压电陶瓷制作方法,重点分析了锆钛酸铅压电陶瓷的掺杂改性的机理和作用。以及压电陶瓷PZT未来发展的前景。 关键词: 锆钛酸铅;制作方法。 引言 锆钛酸铅一Pb(Zr,Ti)03:(PZT)是一种具有多种应用功能的钙钦矿型ABO3结构铁电材料,是由铁电相PbTiO3(Tc=490℃)和反铁电相PbZrO3(Tc=230℃)组成的固溶体。PbZrO3一PbTiO3:系固溶体(PZT)相图中,在x约为0.52一0.53附近存在一个铁电四方相(FT)和菱形相(FR)的交界区,就是我们通常称之为的准同型相界(MPB)。在PZT的MPB上具有高的压电和介电特性,具有高的的居里温度,因此受到国内外相关研究者的广泛重视,使之成为迄今为止,应用最广的压电陶瓷材料。 一、PZT压电陶瓷结构特征及特点 1.1钙钛矿结构特征 PZT 陶瓷是指锆钛酸铅( PbZr x Ti1 - xO3 , PZT)陶瓷,它是ABO3 型钙钛矿(perovs kites) 结构,Zr ,Ti 处于氧八面体的中心,Pb 处于氧八面体的间隙。单元结构如图1 所示[1]。 1.2锆钛酸铅(PZT)结构特点 PZT压电陶瓷是属于钙钦矿结构的压电晶体。向PbTIO3:中掺入Zr形成锆钛酸铅(PZT)陶瓷材料,用途广泛。Ti与Zr在结构中呈完全类质同像,但Z/rTi比值不同使材料的结构也不同,在铁电四方和三方相界附近,PZT材料具有优良的压电、介电和热电性能。锆钛酸铅固溶体相图如图1.4所示[2],在相变温度以下,当错/钦比z/rTi=53/47时,存在一条准同型相界。准同型相界的右边(富钦一边)为四方晶相,左边(富错一边)为三方晶相。实际上,准同型相界有一定的宽度范围,在此范围内,两相共存,数量关系遵从“杠杆定理”。

电子工程师必备基础知识

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应 1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。 电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。

相关主题