搜档网
当前位置:搜档网 › 近世代数第9讲

近世代数第9讲

近世代数第9讲
近世代数第9讲

置换群(pormutation group)

本讲的教学目的和要求:置换群是一种特殊的变换群。换句话说,置换群就是有限集上的变换群。由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。这一讲主要要求:

1、弄清置换与双射的等同关系。

2、掌握置换—轮换—对换之间的联系和置换的奇偶性。

3、置换的分解以及将轮换表成对换之积的基本方法要把握。

4、对称群与交错群的结构以及有限群的cayley定理需要理解。

本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。

注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。所以,一般研究抽象群用的还是直接的方法。并且也不能一下子把所有群都不得找出来。因为问题太复杂了。人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非

变换群等等。对每个群类进行研究以设法回答上述三个问题。可惜 , 人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解决。

变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。

一. 置换群的基本概念

定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A

是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。

有限集合A 的若干个置换若作成群,就叫做置换群。

含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。通常记为n S .

明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。

现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。

即π: 1a 2a ,2a 3a , 3a 1a ,利用本教材中特定的表示方法有:21a a =π

,32a a =π

,13a a =π

.

由于映射中只关心元素之间的对称关系.而不在乎元素的具体内容.故可证{}3 , 2 , 1 =A .故此. π:1 2,2 3,3 1.稍

做修改: π:21↓ 32↓ 1

3

↓ ? π=????

??132321 .用π=???? ??132321

来描述A 的一个置换的方便之处是显而易见的.当然,上述的置换可

记为????

??123312 ,???

? ??321213

…,但习惯上都将第一行按自然序列排写这就可以让我们都统一在一种表示置换的方法内进行研究工作了.习惯上称它为三元置换.

二.置换的乘积.

设{}3 , 2 , 1 =A 的任二个置换

???

? ??=132321

π,???? ??=213321 τ,那么由于π和τ都是一一变换,于是

πτ

也是A 的一一变换.且有 πτ:1→1,2→2,3→3.

用本教材的记法为:11=πτ,22=πτ,33=πτ.

换句话说:???

? ??=???? ?????? ??=321321123321132321

τπ

例1. 计算下列置换的乘积: (1) πτ, (2) 2π, (3) 2πτ. 解: ???? ??=???? ?????? ??=321321132321213321 πτ

???? ??=???? ??????

??=2133213213213213212

π

()ττ

πτπτ=???? ??=???? ?????? ?

?==2133213213212133212

注意:置换乘积中,是从左到右求变换值,这是与过去的习惯方法不同的.

例2. 设{}3 , 2 , 1 =A ,那么A 的全部一一变换构成的三次对称群为

{}5432103,,,,,ππππππ 

=S .其中 ???? ??=3213210

π, ???? ??=2313211

π, ???? ??=3123212

π ???? ??=1323213

π, ???? ??=2133214

π, ???

? ??=1233215

π 所以b S ==!33.其中0π是恒等变换.即0π是3S 的单位元.

定理1.n 次对称群n S 的阶是!n .

由于置换群也是变换群,故必蕴含着变换群的一切特征.

譬如,不可交换性:

???

? ?????? ??=???? ??≠???? ??=???? ?????? ??231321312321213321132321312321231321

三 循环置换及循环置换分解. (1)循环置换(轮换)

前面我们已经引入了置换的记法,下面,再介绍一种记法.设有8元置换???? ?

?=8761253487654321

π

,π的变换过程为

153241→→→→→,即其他元素都不改变,若将不发生改变的

文字都删掉,那么上述置换可写成循环置换的形式:()53241 =π

注意:①循环置换是置换的另一种表达形式,它以发生变化的文字的

变化次序为序,表达成轮换的形式.虽然表达形式简捷,但所含置换的原有文字的数目可能反映不出来.这要求事先予以说明.例如.“8元置换()53241 =π”

②.一般地,每个循环的表达方法不唯一,例如.

()()() ====324154153253241 π

这是 因为,每个循环置换都可视为一个首尾相接的圆环:

所以,循环中的每个文字都可以置于首位.一旦首位确定后,整个循环置换的表达形式也就确定了.

但习惯上,总是将循环置换中出现的最小文字置在首位. ③.8S 的单位(恒等置换)()()() ====3210π同上,习惯写成()10=π.

定义2. n S 中的一个将1i 变到2i ,2i 变到k i i ,,3 变回到1i 而其余文字(如果还有其他文字)不发生变化的置换,叫做k —循环置换(或称k —循环),记为(k i i i i 321,,) 例3.在5S 中.

()3215413254321 =???? ?

? 叫作3—循环置换.

()543211543254321 =???? ?

? 叫作5—循环置换.

()15432154321=???

? ?? 叫作1—循环置换.

(2)循环置换分解

很容易发现,并不是每个置换都能成为循环置换.比如5元置换???

? ??=1254354321

τ

不可能是循环置换,但我们会发现 ()()(*)

42531523415432114523543211254354321

=???

? ?????? ??=???? ??=τ 可见,τ虽不是循环置换,但它是循环置换之积。 定义3. 设()k i i i ,,,21 =π和()s j j j ,,,21 =τ都是循环置换. 如果π与τ不含相同的文字,那么称π与τ是不相连的. 定理2. 每一个n 元置换都可以写成若干个不相连的循环置换的乘积.(循环置换分解定理)

【证明】.设π是n S 中任一个n 元置换,下面对π中改变文字的个数用数学归纳法。

如果π使{}n ,,3,2,1 中每个文字都不发生改变,则π是恒等置换.即()1=π,定理2成立.

假设π最多变动)(1n r r ≤-个文字时,定理成立。现考察π变动了r 个元的情形:

首先在被π变动的文字中随意取一个文字1i ,从1i 出发找到1i 在π下的象2i ,再找2i 的象3i ,… ,直到找到k i ,其中:

1i i k ?→?π

.于是1321i i i i i k ?→??→??→??→??→?

πππππ

因为π只变动了r r

个文字,故r k ≤.如果r k =,则π本身就是

一个r —循环置换:()k i i i ,,,21 =π定理证毕。如果r k <,模仿(*)的做法。

???

?

??=++++n r r k n r r k k i i i i i i i i i i i i i i 1''11321121 π ()()1

211''11111211''11111111321121πk n r r k k n r k k n n r r k k n r r k k n r r k n r r k k i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i =?

??

?

??=?

???

?????? ??=++++++++++++

由于π中只变动了r 个文字,1π∴中只能变动r k r <-个文字.由归纳假设,1π必可以写成若干个不相连的循环置换之积:m ηηηπ 211=

还需特别说明:1π中的所有循环置换m ηηη,,,21 中不可能再出现k i i i ,,,21 ,否则,

当 ()k p i i g p t ≤= η

因为m ηηη,,,21 是互不相连,p i ?只在t η中出现.1π ? 将g p

i i →,但前面已有?

???

??=++++n r r k k n r r k k i i i i i i i i i

i i

i i i 1''12

111211 π 即1π将使p i 保持不动,这样就导出了矛盾. 这恰说明:

()m k i i i ηηηπ2121 =是互不相连的循环置换之积.

明示:将置换写成不互相连的循环置换之积是表示置换的第二种方法.

四.循环置换的性质

问题1.3S 是一个3阶群(三次对称群),所以3S 中每个元素的阶自然都是以有限的,那么具体是多少呢?比如:

()321132321 =???

?

??=π,则()()()2313213212 ==π, ()()()132123123 ==πππ.∴3=π

这里π是3-循环置换,恰好π的阶是3.这不是巧合,我们有:

结论1. k —循环置换()k i i i 21=π的阶就是k

解释:k —循环置换()k i i i 21=π的一次方则将1i 变成2i ,二次方则将1i 变成3i ,k 次方则将1i 变回到1i ,其余文字也是如此。所以,当k m <时,()1≠m π而()1=k π. ∴k =π

.

问题 2.每个置换π都是双射,那么π的逆置换也必是双射?

必也是置换,那么1-π会是什么样子呢? 设

???? ??=???? ??=????? ??=-3145254321543212351423514543211

ππ 若将π表成循环置

()()43521253411 -?=ππ

说明:循环置换π的逆置换1-π就是将每个文字的变动方向反向.

结论2:k —循环置换()k i i i 21=π的逆置换也是循环置换且()1211i i i i k k --=π

问题3.由前已知,两个变换一般是不能交换的,所以,两

个置换一般也不能交换的.但是我们会发现.

设()()τπ

πτ

τπ=?== 54,231

结论3.两个不相连的k —循环置换是可以交换的。 结论4.任一个k —循环置换

()()()()()()()()()k k k k k k k k i i i i i i i i i i i i i i i i i i i 1321111312121--=== π

定义4.每个2—循环置换都叫做一个对换. 利用结论4,我们有:

定理3.每个n 元置换都能表示成若干个对换的乘积。 例4.

()

)

71)(73)(75)(72()72)(12)(32)(52(71352 ===π

结论4是“因地制宜”——用现有的文字构成对换之积,有时我们需要一些其他文字“加入”对换之中,于是有了

结论5.设()k i i i j 21?.且()()()12121i j i i i j i i i k k = 五.置换的奇偶性.

虽然由结论4,5可知,每个置换都能写成对换之积.且对换之积的表示形式不是唯一的.

(比如()()()()4321432143124321

==???

? ??) 但对换个数的奇偶性是不会改变的。

结论6.任意一个置换表成对换之积时,表示式中对换个数的奇偶性不变.

定义5.一个置换π叫做偶(奇)置换π?可以表成偶(奇)数个对换之积.

利用结论4知.我们能很容易地判断出循环置换的奇偶性. 结论7.一个k —循环置换π是偶(奇)置换k ?为奇(偶)数. 考察下面的例子:24!44

==S .而4S 中全部偶置换共有

12

个:);341();431();241();421();231();321();1{( 4)}32)(41();42)(31();43)(21();342();432(A = 那么4

A 就是4S 中的一切偶置换组成的集合,对于置换的乘法,

能发现:

● 4

A 中乘法封闭

● 4

A 中乘法满足结合律 ● 4A 中有单位元()1

4

A 中每个置换有逆元, 逆元也在4

A 中(由结论2)所

以4

A 是一个群,这个特殊的置换群习惯是上称为4次交换群. 定义 6.n 次对称群n S 中全部偶置换组成的集合n A 构成一个

群.叫做n 次交错群.其中:2

!

21n S A n n

==

. 定义7 n

次对称群n S 中两个置换,,ρσ称1ρσρ-为σ的共轭 。 定义8 设1212,0,s s n r r r r r r =+++≤≤≤≤ 称12(,,,)s r r r 为n 的一个划分。设n 元置换表示为互不交换的轮换的乘积

1

1

1

2

1

1

1

121()()(),s s

r r r r r r r r a a a a a a a σ-++++++=

其中12(,,,)s r r r 为n 的一个划分,称它是由σ确定的划分。 结论8 n S 中两个置换,,ρσ共轭?它们确定的划分相同。 (证明略)

课堂训练:给出下列6元置换.

???

? ??=???? ??=???? ??=254613654321;456132654321;245316654321

ρτπ 1) 求1-π,1-ρ,1-τ; 2) 求πτ, τρ

3) 求π, τ和ρ的组织置换表达式,并求出τπ1-和1-ρτ,πτ. 4) 求π,τ,ρ.

5) 将π,τ,ρ和πρ写成对换之积,并判断其奇偶性. 解:1);

; ???? ??=???? ??=--4562136543211453626543211

1τπ ???

?

??=3541626543211-

ρ 2)???

? ??=???? ?????? ??=365124654321456132654321245316654321

πτ ???? ??=???? ??????

??=452361654321254613654321456132654321

τρ 3)()()()()()26316432154261 ; ;

===ρτπ ()()()()()()65423164321546211

==-τπ ()()()()()365416432154261

==πτ 4)[][]46236234=====ρτ; ,; ,

5)()()()()()()()()()216131643121542161 ; ;

===ρτπ ()()()()()()()()()

54613121546321263154261 ===πρ ∴π是奇置换;τ是奇置换;ρ是奇置换;πρ是偶置换.

对称性变换与对称群

例1 证明等腰三角形的两底角相等。 定义1:保持长度不变的变换称为正交变换。

定义2; 平面上(空间中)图形Γ,若平面上(空间中)的一个正交变换把Γ变成与自己重合,称此变换是Γ的对称性变换。

命题1 图形Γ的全体对称性变换在变换的乘法下是一个群。(Γ的对称性群)。

例1 正方形的对称性群。(4个旋转,4个反射)。 例2等边三角形的对称性群。(3个旋转,3个反射). 定义 3 设12(,,,)n f x x x 为域F 上一多项式,σ为任意n 元置换,若在12(,,,)n f x x x 的各文字的脚标上进行置换后不变,称12(,,,)n f x x x 为域F 上一个n 元对称多项式。 例3 2212121212(,)f x x x x x x x x =++

定义4设12(,,,)n f x x x 为域F 上一多项式,σ为任意n 元置换,若1212(,,,)(,,,),n n f x x x f x x x σ= 换后不变,称σ为

12(,,,)n f x x x 的一个对称变换。

命题2 12(,,,)n f x x x 的全体对称性变换在变换的乘法下是一个群。(12(,,,)n f x x x 的对称性群)。

例4 考虑12341234(,,,)f x x x x x x x x =+的全部对称性变换。 介绍晶体及晶体对称性定律。

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

近世代数 第17讲

第17 讲 §交换律、单位元、零因子、整环. (Commutatine Law,unity,divisor of zero and integral domain) 讲本讲教学目的和要求:由环的定义,环{}?+,,R是在某集合R上定义了两种代数运算,而这二个运算是通过分配律建立了彼此的联系.很明显,环中的这两种运算立法机关的要求是很不平衡的.特别是环中的乘法只要求满足半群—乘法封闭和结合律.所以为环在乘法方面留下了很大的余地,一旦某些乘法方面再满期点头其它一些条件,则变成了一些特殊的类型的环.本节主要介绍交换环有单位元的环,没有零因子的环和整环,扩大环论的知识面.在学习方面要求掌握: 1、交换环仅是对乘法而言,可交换的一种环.由此可得到什么新结果. 2、有单位元的环(习惯上称心内幺元)具有的一些重要性质. 3、零因子的概念以及没有零因子与满足消去律的等价性. 4、什么是整环,什么是除环和域,它们之间的差别和联系. 本讲的重点和难点:零因子是一个新的概念,要真正了解并掌握它不是件易事.而”没有零因子”与”有消去律”之间的等价性的证明是难点. 一.交换环

设},;{?+R 为环,已知R 关于加法”+”而言,已可以交换,至于对于乘法”·”,R 也有满足交换律的可能(比如数环,多项式环等),所以我们有 定义1.如果环},;{?+R 关于乘法满足交换律:R b a ∈?, 都有ba ab =,那么称此环是交换环. 例1.易知,在§1中所介绍的所有数环,一元多项式][x F ,和剩余类环m Z 都分别是变换环.但n 价矩阵环)(F M n 不是变换环. 例2.设环},;{?+R 的加法群是循环群,那么环F 必是变换环. 证明: };{+R 是循环群,即}|{)(R n na a R ∈== ∴,,,ma y na x R y x ==?∈? ∴))((ma na xy = 22][)]([nma ma n ma a n ===, 而 ))((na ma yx = 222][)]([nma mna na m na a m ==== ∴yx xy =. 明示1.在第二章中已知:每个阶5≤的群必是交换群.而一旦环R 中元素个数3≤,那么R 必是变换环. 交换环的性质:设R 是交换环.R b a ∈?,.那么 (1)n n n b a ab N n =∈?)(, (2) R 中满足:222 2)(b ab a b a +±=±,))((22b a b a b a -+=- ))(()(2233b ab a b a b a +±=± (3) R 中满足二项式公式: n n n n n n n n n n b ab C b a C b a C a b a +++++=+----1122211)( 二. 无零因子环

近世代数课后习题参考答案(张禾瑞)1

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 12)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

近世代数9

题 号 一 二 三 四 五 六 是否缺考 题 分 15 20 15 10 20 20 得 分 《近世代数》试卷 一、填空题(每空2分,共20分) 1、设G =)(a 是15阶循环群,则G 的子群的个数为_________. 2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____. 3、4次对称群4S 的阶是___,在4S 中,(134)(12)=_______,(1324)1 =_______,元素(1234)的阶 是______. 4、在剩余类环18Z 中,[11]+[8]=_______,[5][6]=_______. 5、整数环Z 上的一元多项式环][x Z 中的理想_______不是一个主理想. 6、_______是整数环Z 的一个商域. 二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分) 1、( )一个阶是13的群只有两个子群。 2、( )交换群的子群是不变子群。 3、( )全体整数的集合对于普通减法构成一个群。 4、( )无零因子环的特征不可能是2007。 5、( )群G 的指数是2的子群一定是不变子群。 6、( )模15的剩余类环15Z 是域。 7、( )在一个环中,若左消去律成立,则右消去律成立。 得分 评卷人 复查人 得分 评卷人 复查人

8、( )除环的中心是域。 9、( )欧氏环一定是主理想整环。 10、( )无零因子环的同态象无零因子。 三、解答题(第1题15分,第2,3题各10分,共35分) 1、设)}13(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是 3S 的不变子群?为什么? 得分 评卷人 复查人

近世代数复习

一、选择题(每题2分,共16分) 1.若(),G a ord a n ==,()则下列说法正确的是 2.假定φ是A 与()A A A =Φ间的一一映射,A a ∈,则)]([1a φφ-和)]([1a -φφ分别为 3.若G 是群,,()18,a G ord a ∈=则8()ord a = 4.指出下列那些运算是二元运算 5.设12,,,n A A A 和D 都是非空集合,而f 是12n A A A ???到D 的一个映射,那么 6.设是正整数集合N +上的二元运算,其中max(,)a b a b =,那么在Z 中 7.在群G 中,G b a ∈,,则方程b ax =和b ya =分别有唯一解为 8.设H 是群G 的子群,且G 有左陪集分类{,,,}H aH bH cH .如果[:]6G H =,那么G = 9.设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 10.设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的 11.设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。 12、G 是12阶的有限群,H 是G 的子群,则H 的阶可能是 13、下面的集合与运算构成群的是 14、关于整环的叙述,下列正确的是 15、关于理想的叙述,下列不正确的是 16.整数环Z 中,可逆元的个数是 17. 设M 2(R)=????????? ??d c b a a,b,c,d ∈R ,R 为实数域??? 按矩阵的加法和乘法构成R 上的二阶方阵环,那么这个方阵环是 18. 设Z 是整数集,σ(a)=?????+为奇数时当为偶数时 当a ,2 1a a ,2a ,Z a ∈,则σ是R 的 19、设A={所有实数x},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集 的 同态满射的是( ). 20、设 是正整数集Z 上的二元运算,其中{}max ,a b a b =(即取a 与b 中的最大者),那么 在Z 中( ) 21.设3S ={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则3S 中与元(1 2 3)不能交换的元的个数是( ) 22、设(),G 为群,其中G 是实数集,而乘法:a b a b k =++,这里k 为G 中固定的常数。那么群(),G 中的单位元e 和元x 的逆元分别是( ) 23、设H 是有限群G 的子群,且G 有左陪集分类{},,,H aH bH cH 。如果H =6,那么G 的阶G = 16.整数环Z 中,可逆元的个数是( ). 24、设12:f R R →是环同态满射,()f a b =,那么下列错误的结论为( )

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数第二章答案

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

近世代数讲义(电子教案)

《近世代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

近世代数 第11讲

第11 讲 §8 子群(Subgroups) 本讲教学目的和要求:对于群这个新的教对象,应该如何入手,从哪几个方面去研究它,这一直是我们所关心的问题。概括些说,对群的研究,可分为互相联系的两个方面:群的结构和群的表示。与集合比较,群就是多了一个运送(正是这个运算才给群带来了生命力),所以群论研究的初步可以仿照集合论去讨论,只是关系群的一切讨论都要围绕这个运送展开,子群是非常重要的概念,了解子群是了解群的结构的一个重要渠道,本讲中要求: 1、能判断子群的构成和掌握彼此等价的判断条件 2、有限群的判断定理 3、子群(集)的乘积和生成子群的概念 4、循环群的子群所具有的特性 本讲的重点和难点:为了更好的学习下一讲内容,本讲中增添了部分内容(也都是群论中最基本的内容)。循环群的子群的性质;子群之积的性质,…都是本讲中的要点和难点,通过这方面的训练可使我们对子群有一个更深入的了解。生成子群的概念在本教材中谈的很少,本讲中也作了适当地加强。结合高等代数中生成子空间的理论,会使我们有一种温故而知新的感觉。此外,本讲中还引入了中心,中心化子,正规化子等概念,以便拓宽知识量。

一、 子群的定义及判定条件 定义1、设G 是一个群,而φ≠?H G H ,,如果H 关于G 中的运算本身也能作成群,则称H 是G 的一个子群记为 例 1 设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。如果G 除了平凡子群外还有其他子群,那就称为G 的真子群,记为G H <。 例2 Z 是整数加群,而一切偶数构成的集合为Z 2,其中: },4,2,0,2,4,{2 --=Z ,那么关于整数的加法有Z Z ≤2 明示1:任取一个整数m ,那么}|{Z n n m mZ ∈??=为一切m 的倍数构成的集合,可知Z mZ ≤. 例3 设}0|||)({≠∈=A R M A L n 表示一切可逆n 阶方阵组成的集合,用 矩阵通常的乘法可知: ? L 中方阵对乘法封闭(任二个n 阶可逆阵之积仍可逆) ? L 中方阵满足乘法结合律 ?单位元为E ?A L A ?∈.的逆元为A A —1-的逆阵 所以L 是个群。 若????? ???????= k k k kE 令为L 中的n 阶数乘阵,那么}0,|{≠∈?=k R k kE K 是L 的非空子集,且必有L K ≤。 例4 设)}132(),123(),23(),13(),12(),1{(3=S 为三次对称群,令)} 12(),1{(=H

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

2.3近世代数

§2.3循环群和生成群、群的同构 §2.3.1 循环群和生成群 设G 是群,,令 G a ∈ H ={ | } k a Z k ∈此时,称H 为由a 在G 中生成的子群。 注:1°易验证H 确实为G 的子群,1 2 1()k k a a H ?∈。 2°记H =< a >,a 称为它的生成元;若G =< a >,则称群G 为循环群。 定义1 (生成子群)设S 是群G 中的一个非空子集,G 的含有S 的最小子群称为由S 生成的子群,记为< S >,S 称为它的生成元集。 注:1°< S >可表示为 < S >={ …| 2 1 21ε εa a k k a εZ S a i i ∈∈ε,, k=1,2,3…} 这个表达式是合理的:设右式为H ,易见H ?S ,并且H ≤G ;要证明任何包含S 的子群K 必然包含H 。由于S K ,而K 为群G 的子群,所以;这也就是说H =< S >。 ?K a k i i i ∈∏=1 ε 2)如果群G =< S >,且K S ??,>≠,它的极

小生成元集为{a , b }。 (2) (Z ,+)=<1>=<-1>,它是可由1或-1生成的无限阶的循 环群。 (3) (,+)≌,它们都为n 阶循环群。 n Z n U (,+)=< [1] >;= < n Z n U ξ >。 (4) 二面体群>=<0,πρn D =ρ ???????1...22110n ??? ??????11 (2211) 0n n n n=6时: 不难证明,()2k i k n i π=+? (mod n ) k π, 上下均模n 。 l k l ?=ρπ较复杂的例子: P56 例1、设??????=?∈? ? ????=1,,,,)(2bc ad Z d c b a d b c a Z SL 证明: >?? ? ?????????=<1011,1101)(2Z SL 证明: , ??????=1101A ?? ? ???=1011B 有: ,,??????=101k A k ?? ????=101k B k Z k ∈ ? ? ?????=??????????????=????????????????????==??011010110111101111011011 11AB B Q

近世代数第3讲

第 3 讲 §7—9 一一映射,同态及同构(2课时) (Bijection Homomorphism and Osomorphism ) 本讲教学目的和要求:通过了解双射,同态及同构的理论,为后继课程中学习群同态,群同构(群第一、二同构定理)环同态,环同构理论做准备。具体要求: 1、在第一讲的基础上,对各类映射再做深入的研究。 2、充分了解双射(一一映射)的特性以及由此引导出的逆映射。 3、两个代数系统的同态的概念,尤其是同态的满射所具有的性质。 4、掌握同构映射的实质,为以后教学内容奠定基础, 本讲的重点和难点:本讲的重点在于对同态映射定义的了解;由同态满射引导的一系列性质及同构映射本质的掌握。而对双射及自身的逆映射之间的关系学生不易把握,需要认真对待。 本讲的教法和教具:在多媒体教室使用投影仪。在教学活动中安排时间让学生展开讨论。 本讲思考题及作业:本讲思考题将随教学内容而适当地展开。作业布置在本讲结束之后。 一、一一映射 在第1讲中,已对各类映射作了系列性的介绍,这里只对重要的

一一映射作重点的讨论。 定义1、设?是集合A 到A 的映射,且?既是单的又是满的,则称?是一个一一映射(双射)。 例1:},4,2,0,2,4,{2},2,1,0,1,2,{: --=→--=Z Z ?, 其中Z n n n ∈?=,2)(?,可知?显然是一个双射。 注意:Z 与偶数集Z 2之间存在双射,这表明:Z 与它的一个真子集Z 2一样“大”。 思考题:从例1中得知:一个无限集与其的某个真子集一样“大”。这是否可作为无限集都有的特性?即我们是否有如下的结论:A 为无限集的充要条件是A 与其某个真子集之间存在双射。 定理1:设?是A 到A 的一个双射,那么由?可诱导出(可确定出)A 到A 的一个双射1-?(通常称1-?是?的逆映射) 证明:由于?是A 到A 的双射,那么就A 中任一个元素a ,它在A 中都有逆象a ,并且这个逆象a 是唯一的。利用?的这一特点,则可确定由A 到A 的映射1-?: a a A a A A =∈?→--)(,,:11??,如果a a =)(?,由上述说明,易知1-?是映射。 1-?是满射:A a ∈?,因?是映射a a A a =∈??)(,?使,再由1-?的定义知a a =-)(1?,这恰说明,a 是a 在1-?下的逆象。由a 的任意性,知1-?是满射。 1-?是单射:2121,,a a A a a ≠∈?若由?是满射21a a 及?的逆象分别是 22111121)(,)(,a a a a a a ==--??即及,又?是单射21a a ≠?,

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数 读书报告

题目1:设群G 中每个非幺元的阶都是2,证明G 为Abel 群. 题目1出处:南开大学资源共享课《抽象代数》 题目1的解答:?a≠e 且a∈G,a 2=e,所以1a -=a,b=1b -,a 2b 2=e 4=b 2a 2=e,另一方面,由于ab 1b -1a -=ba 1a -1b -,,所以abba=baab=e,即ab=(ab)1-=ba=b 1-a 1-,所以ba=ab,由a、b 的任意性,群G 满足交换律,为Abel 群. 选题目1的理由:老师上课提到此题,是群论部分Abel 群的经典例题. 题目2:(1)(群的单边定义)设G 为一个半群,如果: (a)G 中含左(右)幺元e,即?a∈G,ea=a; (b)G 中每个元有左(右)逆元1a -,使1a -a(a 1a -)=e. (2)(群的除法定义)设G 为半群,若?a、b∈G,方程xa=b 及ay=b 在G 内有解,则G 为群. (3)(有限群的另一定义)设G 为有限半群,如果在G 内左、右消去律均成立,则G 为群.题目2出处:冯克勤章璞《近世代数三百题》 题目2的解答:(1)?a∈G,设(a 1-)1-为a 1-的左逆元,则aa 1-=e (aa 1-)=(a 1-)1-a 1-aa 1-=(a 1-)1-ea 1-=(a 1-)1-a 1-=e,说明a 的左逆元也满足aa 1-=e,故a 1-为a 的逆元.而ae=a (a 1-a)=ea=a,故左幺元e 也是G 的右幺元,即为G 的单位元,所以G 为群. (2)由于G 非空,所以a∈G,则xa=a 有解e,?b∈G,存在y∈G 使得ay=b.于是eb=eay=ay=b,所以e 为G 左单位元,而xb=e 有解则意味着b 有左逆元,所以由b 的任意性及(1)可知G 为群. (3)设G={1a ,…n a },由消去律可知,{1a i a ,…,n a i a }={i a 1a ,…,i a n a },?i a ∈G,故存在e∈G 使得i a =e i a .于是?j a ∈G,存在k a ∈G 使得j a =i a k a .从而e j a =e i a k a =i a k a =j a .这说明e 为左单位元,又因为e ∈G=G j a ,以j a 有左逆元,因此由j a 的任意性知,G 为群. 选题目2的理由:此处将群的几种定义方式进行总结,在不同条件下可以利用群的不同定义.题目3:令b a ,?:x ax+b(a、b ∈R 且a ≠0)为实直线上的一个仿射变换,将它们的集合记为1A (R ),在1A (R )中定义乘法b a ,?d c ,?=b ad ac +,?,证明1A (R )为一个群.又设1H (R )={b 1,?:x x+b,b ∈R },证明它是1A (R )的一个子群,并证明1A (R )/1H (R )~{*R ;·}.题目3出处:柯斯特利金《代数学引论(第1卷)》第4章习题 题目3的解答:显然,任一伸缩和平移仿射变换都在1A (R )中,即对于上面定义的乘法,1A (R )是封闭的,可以验证01,?为1A (R )的幺元.?b a ,?∈1A (R ),当a≠0时,其上述定义下的逆元为a b a 1 -,?,综上所述,1A (R )为群. 显然01,?∈1H (R ),故1H (R )中有幺元,?b 1,?∈1H (R ),其上述定义下的逆元为b 1-,?,所以1H (R )<1A (R ). 1A (R )/1H (R )={0a ,?:x ax,a ∈R 且a ≠0},设双射f:1A (R )/1H (R )→*R , 由于a ∈*R 且遍历*R 内所有元素,所以1A (R )/1H (R )与* R 之间的f 可定义为1A (R )/1H

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数第9讲

置换群(pormutation group) 本讲的教学目的和要求:置换群是一种特殊的变换群。换句话说,置换群就是有限集上的变换群。由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。这一讲主要要求: 1、弄清置换与双射的等同关系。 2、掌握置换—轮换—对换之间的联系和置换的奇偶性。 3、置换的分解以及将轮换表成对换之积的基本方法要把握。 4、对称群与交错群的结构以及有限群的cayley定理需要理解。 本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。 注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。所以,一般研究抽象群用的还是直接的方法。并且也不能一下子把所有群都不得找出来。因为问题太复杂了。人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。对每个群类进行研究以设法回答上述三个问题。可惜,人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解

决。 变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。 一. 置换群的基本概念 定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。 有限集合A 的若干个置换若作成群,就叫做置换群。 含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。通常记为n S . 明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。 现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。 即π: 1a α2a ,2a α3a , 3a α1a ,利用本教材中特定的表示方法有:21a a =π ,32a a =π,13a a =π . 由于映射中只关心元素之间的对称关系.而不在乎元素 的具体内容.故可证{}3 , 2 , 1  =A .故此. π:1α2,2α3,3α1.稍做修改: π:2 1↓ 32↓ 1 3 ↓ ? π=??? ? ??132321 .用π=??? ? ??132321 来描述A

相关主题