搜档网
当前位置:搜档网 › (完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料

(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料

(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料
(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料

指数函数、对数函数、幂函数测试题

一、选择题(本大题共10小题,每小题4分,共40

分,在每小题给出的四个选项中,只有一项是符合要求的)

l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()

A.0

2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()

A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)

3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()

A.8 B.4 C.

8

1

D.

4

1

4.若指数函数y=a x经过点(-1,3),则a等于()

A.3 B.

3

1

C.2 D.

2

1

5.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()

A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x

6.对于?x1,x2∈R(注:?表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()

A.22B.4 C.2D.8

7.若函数f(x)=log a x(0

A.

4

1

B.

2

1

C.

2

2

D.

4

2

8.在同一坐标系中,函数y=2-x与y=log2x的图象是()

9.设函数

??

?

?

?

>

-

=

-

).

(

),

(1

2

)

(

2

1

x

x

x

x

f

x

若f(x0)>1,则x0的取值范围是()

A.(-1,1) B.(-∞,-2)∪(0,+∞)

C.(-1,+∞) D.(-∞,-1)∪(1,+∞)

10.已知0

A.a>b B.a=bf C.a

11.设函数F(x)=f(x)-

)

(1

x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数

12.已知函数f(x)=x 2

-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x

在区间(1,+∞)上

A .有两个零点

B .有一个零点

C .无零点

D .无法确定

二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)

13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.

14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 100

1

+ln e +3log 122+= . (2).0.027

3

1--(-7

1

)-2+25643

-3-1+(2-1)0=________.

16.已知f (e x )=x ,则f (5)等于_________________

3

log 9

log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)

17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;

(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ??

∈????

,试求()g x 的值域.

18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.

(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?

(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?

19.已知函数f (x )=log a

1

1--x mx

(a >0,a ≠1)是奇函数. (1)求m 的值;

(2)判断f (x )在区间(1,+∞)上的单调性.

21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;

(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.

(3)解关于x 的不等式)()(2

1

)()(2122b f x b f x f bx f ->-(0≤b ).

21.设函数2

()21

x

f x a =-

+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。

22.已知函数1()8421x x f x a -=?--

(1)当1a =时,求函数()f x 在[]3,0x ∈-的最值及取最值时对应的x 取值; (2)当1a =时,解不等式()0f x ≥;

(3)若关于x 的方程()0f x =有解,求a 的取值范围。

23.已知函数n mx x f +=)(的图像经过点A (1,2),),(01-B ,且函数x p x h 2)(=(p>0)与函数n mx x f +=)(的图像只有一个交点. (1)求函数)(x f 与)(x h 的解析式;

(2)设函数)x (h )x (f )x (F -=,求)x (F 的最小值与单调区间;

(3)设R a ∈,解关于x 的方程)x 4(h log )x a (h log ]1)1x (f [log 224---=--.

答案:

1.A 2.D 3.A 4.B 5.A 6.D 7.D 8.A 9.D 10.A 11.A 12.C

13.a >b >1 14.{x |4

3

三、解答题

17.解:(1)设2()1f x ax bx =++

(1)()22f x f x ax a b x ∴+-=+++

221,10

a a

b a b =?∴∴==-?+=? 2()1f x x x ∴=-+ (2)2()1f x x x =-+Q

2()(log )(log )log 1,a a a g x f x x x ∴==-+1,x a a ??

∈????

令log a t x =,原函数化为21y t t =-+,

101a x a a a

≤≤

>≠Q 又且1

01a a a ∴<<<即,

∴log a t x =在1,a a ????

??

上单减,11t ∴-≤≤, 又对称轴1

2

t = min 1324t y ∴==时,,max 13t y ∴=-=时,,()g x ∴的值域为3,34??????

。 18.(1)当t =0时,y =5;当t =20时,y =5e -4≈0.091 6 (2)y 15e -0.2t ,y 2=5e -0.5t ,∴

13.02

1

>=t e y y ∴y 1>y 2,则药品B 在人体内衰减得快 19.(1)∵f (x )为奇函数, ∴log a

11--+x mx =-log a 1

1--x mx

(对?x ∈R 恒成立)?m =-1 (2)∵f (x )=log a 11-+x x (x <-1或x >1),∴f (x )=log a (1+1

2

-x ),∴(i )当0

(x )在(1,+∞)上是增函数;(ii )当a >1时,f (x )在(1,+∞)上是减函数

20.(1)?????

????<<-+=<<+-=01,1

42,0,0,10,412)(x x x x f x x x

x

(2)设-1

14)(14()22)(12(2

11221++--+x x x x x x ,∵ x 1

1<-+x x ,

02212>-x x ,∴f (x 1)-f (x 2)<0,即f (x 1)

2

12

1x x x x f ++都成立, ∴令x 1=x 2=0,得f (0)

=0,∴对于?x ∈(-1,1),f (x )+f (-x )=)1(2

x

x

x f --=0,所以对于?x ∈(-1,1),有f (-x )=-f (x ),所以f (x )在(-1,1)上是奇函数

(2)设0

2121x x x x f --,因00,∴-1<2

12

11x x x x --

<0,则f (x 1)>f (x 2),∴f (x )在(0,1)上是减函数

21.解:(1)证明:令x =y =0,则)0()0()0(f f f +=,从而0)0(=f

令x y -=,则0)()()0(=-+=x f x f f ,

从而)()(x f x f -=-,即)(x f 是奇函数. …… 4分

(2)设R x x ∈21,,且21x x <,则021<-x x ,从而0)(21<-x x f , 又)()()()()]([)(21212121x f x f x f x f x x f x x f -=-+=-+=-.

∴0)()(21<-x f x f ,即)()(21x f x f <. ∴函数)(x f 为R 上的增函数, ∴当]4,4[-∈x 时,)(x f 必为增函数. 又由2)1(-=-f ,得2)1(-=-f ,∴2)1(=f ∴当4-=x 时,8)1(4)4()4()(min -=-=-=-=f f f x f ; 当4=x 时,8)1(4)4()(max ===f f x f . …… 9分

(3)由已知得)()()]()([2

122b f x f x b f bx f -<-.

)()(2

1

22b x f x b bx f ->-. ∴)(2)(22b x f x b bx f ->-,即)22()(22b x f x b bx f ->-. ∵)(x f 为R 上增函数,∴b x x b bx 2222->-. ∴02)2(22>++-b x b bx ∴0))(2(>--b x bx .

当b =0时,02>-x ,∴不等式的解集为{x x <}0. 当b <0时,0))(2(<-+-b x bx . ① 当02<<-b 时,不等式的解集为{}b x b

x <<2

. ②当2-=b 时,不等式的解集为φ.

③当2-

{}b

x b x

2

<

<. 22.(1)当1a =时2()24212(2)21x x x x f x =?--=?--………………1分

令2,[3,0],x t x =∈-则1

[,1]8

t ∈

故22191

212(),[,1]488

y t t t t =--=--∈…………………………………..3分

∴当14t =

时,即2x =-时 min 9

8

y =-………………………………4分 当1t =时,即0x =时 m n 0a y =………………………………5分

(2)22(2)210x x ?--≥ 解得21x ≥或1

22

x ≤-(舍)…………………..7分

∴{|0}x x ≥………………………………………………………………8分 (3)关于x 的方程22(2)210x x a --=有解,等价于方程2210at t =-=在

(0,)t ∈+∞上有解。 记2()21,g t at t =--……………………………..9分

当a =0时,解为10t =-<不成立;…………………………………10分 当a <0时,开口向下,对称轴1

04x a

=<,过点(0,1)-不成立;…..12分 当a >0时,开口向上,对称轴1

04x a

=

<,过点(0,1)-必有一根为正,符合要求。 故a 的取值范围为(0,)+∞……………………………………………….14分 23.解:(1)由函数n mx x f +=)(的图像经过点A (1,2),B (-1,0), 得2=+n m ,0-=+n m ,解得1==n m ,从而1)(+=x x f . ……2分 由函数x p x h 2)(=(p>0)与函数1)(+=x x f 的图像只有一个交点, 得 012-=+x p x ,0442=-=?p ,又0>p ,从而1=p ,

x x h =

∴)((x ≥0). ……4分

(2)4

3

)21x (1x x )x (F 2+-=+-= (x ≥0).

当21x =

,即41x =时,43

)x (F min =. ……6分 )x (F 在]41,0[为减函数,在],4

1

[∞+为增函数. ……8分

(3)原方程可化为x 4log x a log )1x (log 224---=-, 即(

)

x 41x log x 4log )1x (log 2

1

x a log 2222-?-=-+-=

-.

??

?

??+--=<<

??????

?--=->->->-?

5)3x (a a

x 4

x 1)

x 4)(1x (x a 0x a 0x 401x 2 . ……10分 令5)3x (y 2+--=,y=a.

如图所示,

①当4a 1≤<时,原方程有一解a 53x --=;

②当5a 4<<时,原方程有两解a 53x 1--=,a 53x 2-+=; ③当a=5时,原方程有一解x=3;

④当1a ≤或5a >时,原方程无解. ……14分

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

(完整版)高考指数函数和对数函数专题复习

指数函数与对数函数专项练习 例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x ) 的反函数f -1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0)0(f >=?=-?=, (2) =-?∈++=--)x (f )R x (2 4x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax )x (u 2-=, 对称轴a 21 x =. (1) 当1a >时, 1a 0)2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >, 2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一 直角坐标系中的图像可能是【答案】D

指数函数与对数函数测试题

东山中学指数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下列所给出的函数中,是幂函数的是 ( B ) A .3 x y -= B .3-=x y C .3 2x y = D .13 -=x y 2、下列命题中正确的是 ( D ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 3、已知32a =,那么33log 82log 6-用a 表示是 ( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 4、2log (2)log log a a a M N M N -=+,则 N M 的值为 ( ) A 、 4 1 B 、4 C 、1 D 、4或1 5、下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 6、化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 7、已知732log [log (log )]0x =,那么12 x -等于 ( ) A 、 1 3 B C D 8、函数2lg 11y x ?? =- ?+?? 的图像关于 ( )

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

高一指数函数对数函数测试题及答案精编版

高一指数函数对数函数 测试题及答案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

指数函数和对数函数测试题 一、选择题。 1、已知集合A={y|x y 2log =,x >1},B={y|y=( 21)x ,x >1},则A ∩B=() A.{y|0<y <21}B.{y|0<y <1}C.{y|2 1<y <1}D.φ 2、已知集合M={x|x <3}N={x|1log 2>x }则M ∩N 为() φ.{x|0<x <3}C.{x|1<x <3}D.{x|2<x <3} 3、若函数f(x)=a (x-2)+3(a >0且a ≠1),则f(x)一定过点() A.无法确定 B.(0,3) C.(1,3) D.(2,4) 4、若a=π2log ,b=67log ,c=8.02log ,则() >b >>a >>a >>c >a 5、若函数)(log b x a y +=(a >0且a ≠1)的图象过(-1,0)和(0,1)两点,则a ,b 分别为() =2,b==2,b==2,b==2,b=2 6、函数y=f(x)的图象是函数f(x)=e x +2的图象关于原点对称,则f(x)的表达式为() (x)=(x)=-e x +(x)=(x)=-e -x +2 7、设函数f(x)=x a log (a >0且a ≠1)且f(9)=2,则f -1(2 9log )等于() 2422229log 、若函数f(x)=a 2log log 32++x x b (a ,b ∈R ),f(2009 1)=4,则f(2009)=() 、下列函数中,在其定义域内既是奇函数,又是增函数的是() =-x 2log (x >0)=x 2+x(x ∈R)=3x (x ∈R)=x 3(x ∈R) 10、若f(x)=(2a-1)x 是增函数,则a 的取值范围为() <21B.2 1<a <>≥1 11、若f(x)=|x|(x ∈R),则下列函数说法正确的是() (x)为奇函数(x)奇偶性无法确定 (x)为非奇非偶(x)是偶函数 12、f(x)定义域D={x ∈z|0≤x ≤3},且f(x)=-2x 2+6x 的值域为()A.[0,29]B.[29,+∞]C.[-∞,+2 9]D.[0,4]

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

中职数学第册指数函数对数函数测试题

2015级建筑部3月份月考数学测试题 第Ⅰ卷(选择题,共60分) 一、选择题(本大题共20小题,每小题3分,共60分。在每小题所给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分) 1、下列函数是幂函数的是( ) A 3+=x y ; B 3 x y =; C x y 3=; D x y 2log = 2、数列-3,3,-3,3,…的一个通项公式是( ) A. n a =3(-1) n+1 B. n a =3(-1)n C. n a =3-(-1)n D. n a =3+(-1)n 3、对数1log 3的值正确的是( ). A. 0 B.1 C. 2 D. 以上都不对 4、将对数式24 1 log 2 -=化成指数式可表示为( ) A.224 1-= B.412 2 =- C.2412 =?? ? ??- D.2412 -=?? ? ?? 5、若指数函数的图像经过点?? ? ??21,1,则其解析式为( ) A.x y 2= B.x y ??? ??=21 C. x y 4= D. x y ??? ??=41 6、下列运算中,正确的是( ) A.5553443=? B.435÷5534= C.55 3 44 3=??? ? ? ? D.0554343=?- 7、已知3log 2log a a >,则a 的取值范围是( ) A 1>a ; B 1a a 或 8、将对数式ln 2x =化为指数式为 ( ) A. 210x = B. x = 2 C. x = e D. x = e 2 9、4 32813?-的计算结果为( )。 A .3 B.9 C.3 1 D.1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

(完整版)指数函数和对数函数单元测试题及答案

指数函数和对数函数单元测试题 一选择题 1 如果,那么a、b间的关系是【】 A B C D 2 已知,则函数的图象必定不经过【】 A第一象限 B第二象限 C第三象限D第四象限 3 与函数y=x有相同图象的一个函数是【】 A B,且 C D,且 4 已知函数的反函数为,则的解集是【】 A B C D 5已知函数在上是x的减函数,则a的取值范围是【】 A B C D 6 已知函数的值域是,则它的定义域是【】 A B C D 7已知函数在区间是减函数,则实数a的取值范围是【】 A B C D 8 已知,则方程的实数根的个数是【】 A1 B 2 C 3D 4 9 函数的定义域为E,函数的定义域为F,则【】 A B C D 10有下列命题:(1)若,则函数的图象关于y轴对称;(2)若,则函数的图象关于原点对称;(3)函数与的图 象关于x轴对称;(4)函数与函数的图象关于直线对称。其中真命题是【】 A(1)(2) B(1)(2)(3)C(1)(3)(4) D (1)(2)(3)(4)

二填空题 11函数的反函数是______ 。12 的定义域是______ 。 13 函数的单调减区间是________。 14 函数的值域为R,则实数a的取值范围是__________. 三解答题 1 求下列函数的定义域和值域 (1)(2) 2 求下列函数的单调区间 (1)(2) 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。 4 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

参考答案 一选择题BADBC BCBDD 二填空题11121314或 三解答题 1 求下列函数的定义域和值域 (1)(2) 定义域定义域 值域值域且 2 求下列函数的单调区间 (1)(2) 减区间,增区间减区间, 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。解(1),又,所以,所以定义域。 (2)在上单调增。 (3),,即 ,所以,所以解集 2 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

《指数函数与对数函数》测试题

《指数函数与对数函数》测试题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若2 2 log log a a M N =则M N =; ④若M N =则2 2 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()2 2 lg 2lg 52lg 2lg 5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、2 3(1)a a -+ D 、2 31a a -- 9、若210 25x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

指数函数及对数函数测试题及答案

指数函数与对数函数检测题 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =;②若log log a a M N =则M N =; ③若22log log a a M N =则M N =;④若M N =则22 log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、?B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.5 0.90.4812314,8,2y y y -?? === ???,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值X 围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a -- 9、若21025x =,则10x -等于( )

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

中职数学指数函数与对数函数

指数函数与对数函数 一、实数指数幂 1、实数指数幂:如果x n =a (n ∈N +且n >1),则称x 为a 的n 次方根。当n 为奇数时,正数a 的n 次方根是一个正数,负数的n 次方根是一个负数。这时,a 的n 次方根只有一个,记作n a 。当n 为偶数时,正数a 的n 次方根有两个,它们互为相反数,分别记作n a ,- n a 。它们可以写成±n a 的形式。负数没有 (填“奇”或“偶”)次方根。 例:填空: (1)、(38)3= ;(38-)3 = 。 (2)33 8= ;33)8(-= 。 (3)、44 5= ;44)5(-= 。 巩固练习: 1、将下列各分数指数幂写成根式的形式: (1)3 2a (2)5 3-b (b ≠0) 2、将下列各根式写成分数指数幂的形式: (1)52 a (2)3 5 1 a (a ≠0) 3、求下列幂的值: (1)、(-5)0; (2)、(a-b )0; (3)、2-1; (4)、(47)4 。 2、实数指数幂的运算法则 ①、β α a a ?=β α+a ②、βαa a =β α-a ③、β α)(a =αβ a ④、α )(ab =α α b a ? ⑤、α)(b a =αα b a 例1:求下列各式的值: ⑴、2 1100 ⑵、3 2 8- ⑶3 23 188? 例2:化简下列各式: ⑴、3a a ⑵、633333??

巩固练习:1、求下列各式的值: ⑴、4 33 162 ?- ⑵、4482? ⑶553 25.042 ??- 2、化简下列各式: ⑴2 )3(-x ⑵232)(-y x ⑶203 53 2a a a a ???-(a ≠0) 二、幂函数 1、幂函数:形如α x y =(α∈R,α≠0)的函数叫做幂函数,其中x 为自变量,α为常数。 例1、判断下列函数是否是幂函数: ⑴、y =4x ⑵、y =3 -x ⑶、y =2 1 x ⑷、y =x 2 ⑸、s =4t ⑹、y =x x ++2) 1( ⑺、y =2 x +2x+1 巩固练习:观察下列幂函数在同一坐标系中的图象,指出它们的定义域: ⑴、y =x ;⑵、y =2 1x ;⑶y =1 -x ; ⑷y =2 x ;⑸y =41 -x 。 o x 1 1 y y =x y=x -1 y=x 2