搜档网
当前位置:搜档网 › 土壤 有机碳的测定 重铬酸钾氧化-分光光度法 HJ 615-2011 方法验证报告

土壤 有机碳的测定 重铬酸钾氧化-分光光度法 HJ 615-2011 方法验证报告

土壤 有机碳的测定 重铬酸钾氧化-分光光度法 HJ 615-2011 方法验证报告
土壤 有机碳的测定 重铬酸钾氧化-分光光度法 HJ 615-2011 方法验证报告

***检测有限公司

方法验证报告

方法名称:《土壤有机碳的测定重铬酸钾氧化-分光光度法》HJ 615-2011

编写:年月日

审核:年月日

批准:年月日

一、目的

对实验室选用的《土壤有机碳的测定重铬酸钾氧化-分光光度法》HJ 615-2011方法进行验证,以证实实验室能够正确运用这些方法,并能证实该方法适用于预期的用途,在误差的允许范围之内,可在本实验室内运行。

二、适用范围和原理

本标准适用于风干土壤中有机碳的测定。本标准不适用于氯离子含量大于2.0×104mg/kg 的盐渍化土壤或盐碱化土壤的测定。

在加热条件下,土壤样品中的有机碳被过量重铬酸钾-硫酸溶液氧化,重铬酸钾中的六价铬被还原为三价铬,其含量与样品中有机碳的含量成正比,于585nm 波长处测定吸光度,根据三价铬的含量计算有机碳含量。

三、检测设施与环境条件

实验室环境条件要求:

表1

经验证,实验室环境条件,满足要求。

四、仪器及化学试剂

表1

五、人员能力

5.1该项目人员配备情况

该项目目前配备2名专业技术人员,并通过考核:

表 3 参加验证人员情况登记表

5.2 人员培训及考核情况

人员已经通过培训并考核合格,详见人员档案。

六、实验步骤

6.1准确称取0.50g试样,小心加入到100ml具塞消解玻璃管中,避免沾壁。加入0.1g硫酸汞和5.00ml重铬酸钾溶液,摇匀。再缓慢加入

7.5ml硫酸,轻轻摇匀。开启恒温加热器,设置温度为135℃。当温度升至接近100℃时,将上述具塞消解玻璃管开塞放入恒温加热器的加热孔中,以仪器温度显示135℃时开始计时,加热30min。然后关掉恒温加热器开关,取出具塞消解玻璃管水浴冷却至室温。向每个具塞消解玻璃管中缓慢加入50ml水,继续冷却至室温。再用水定容至100ml刻线,加塞摇匀。

将定容后试液静置1h,取80ml上清液至离心管中以2000r/min离心分离10min,再静置至澄清,最后取上清液于波长585nm处,用10mm比色皿,以水为参比,测其吸光度。上清液至离心管中以2000 r/min离心分离10 min,再静置至澄清;或在具塞消解玻璃管内直接静置至澄清。

6.2空白试验

在具塞消解玻璃管中不加入试样,按照以上步骤进行测定。

6.3结果计算与表示

土壤中的有机碳含量(以干重计,质量分数,%),按照公式(1)、(2)进行计算:

(1) 100

W dm 1?

=m m

(2) 1001000

m V

)A 10????--=

b a A o

c (ω 式中:

m 1——试样中干物质的质量,g ; m ——试样取样量,g ;

w dm ——土壤的干物质含量(质量分数),%;

oc ω——土壤样品中有机碳的含量(以干重计,质量分数),%; A ——试样消解液的吸光度; A 0——空白试验的吸光度; a ——校准曲线的截距; b ——校准曲线的斜率。

七、项目验证

1、标准曲线

分别量取0.00、0.50、1.00、2.00、4.00和6.00 ml 葡萄糖标准使用液于100 ml 具塞消解玻璃管中,其对应有机碳质量分别为0.00、2.00、4.00、8.00、16.0和24.0mg 。在585nm 波长下,用1cm 比色皿进行比色,以扣除试剂空白的吸光度为纵坐标,以其对应的有机碳含量(m g )为横坐标,绘制标准曲线。具体数据见表4。

表4

由上表可知,测得有机碳的线性方程式为:y=0.0275x-0.009,相关系数r=0.9997,线性良好,符合方法要求。

2、方法检出限

按照样品的的测定步骤,对空白样品加入少量的标准溶液,分别进行7次平行测定,计算7次平行测定的标准偏差,结果如表5。

表5

由上表可知,本方法验证计算所得检出限为0.037%,符合方法要求。

3、精密度

用实际样品进行6次重复性测试,计算相对标准偏差,如表6所示:

表6

由上表可知,实验室使用本方法测定样品中有机碳的相对标准偏差为0.8%,精密度良好,符合要求。

4、准确度

以实际样品进行加标测试,计算加标回收率,测试结果如表7所示:

表7

由上表可知,本实验室使用该标准方法测定有机碳的回收率为95.6%~102.9%,准确度良好。

八、方法验证结论

经验证,本实验室已具备开展该方法测试所需的仪器设备、试剂材料和实验室环境条件,相关的仪器设备、试剂材料和实验室环境条件皆达到标准的要求,样品测定的允许差该方法的要求,表明本实验室已具备《土壤有机碳的测定重铬酸钾氧化-分光光度法》HJ 615-2011的测定能力。

土壤有机碳分类及其研究进展1

土壤有机碳( SOC)是土壤学和环境科学研究的热点问题之一,土壤有机碳库的动态平衡直接影响着土壤肥力的保持与提高,进而影响土壤质量的优劣和作物产量的高低,因而土壤有机碳的变化最终会影响土壤乃至整个陆地生态系统的可持续性。土壤有机碳包括活性有机碳和非活性有机碳。土壤活性有机碳是指在一定的时空条件下,受环境条件影响强烈的、易氧化分解的、对植物和微生物活性影响比较高的那一部分土壤碳素。根据测定方法和有机碳组分不同,土壤活性有机碳又表述为溶解性有机碳(DOC:dissolved organic carbon)、水溶性有机碳(water-soluble organic carbon)、微生物生物量碳(MBC:Microbial biomass carbon)、轻组有机碳和易氧化有机碳,可在不同程度上反映土壤有机碳的有效性和土壤质量。 国外研究进展 国外对土壤有机碳的研究开始较早, 在20世纪60年代, 就有学者开始进行全球土壤有机碳总库存量研究。但早期对土壤有机碳库存量的估算大都是根据少数土壤剖面资料进行的。如1951年Rubey根据不同研究者发表的关于美国9个土壤剖面的有机碳含量, 推算出全球土壤有机碳库存量为710 Pg。1976年Bohn利用土壤分布图及相关土组( soil association)的有机碳含量, 估计出全球土壤有机碳库存量为2946Pg。这两个估计值成为当前对全球土壤有机碳库存量的上下限值。20世纪80年代,由于研究全球碳循环与气候、植被及人类活动等因素之间相互关系的需要,统计方法开始被应用于土壤有机碳库存量

的估算。如Post等在Holdridge生命带模型基础上,估算了全球土壤碳密度的地理分布与植被及气候因子之间的相互关系,提出全球1m 厚度土壤有机碳库存量为1 395 Pg。 20世纪90年代以来, 随着遥感(RS)、地理信息系统(GIS) 和全球定位系统(GPS) 技术的发展, 为土壤有机碳研究提供了新的方法和手段。3S技术被应用于区域或全球土壤有机碳库存量大小、有机碳密度的空间分布差异等方面的研究。发达国家已在区域尺度上开展了相关研究工作。如俄罗斯在1B250万土壤分布图上建立了土壤碳空间数据库,计算出俄罗斯0~ 20 cm、0~ 50 cm和0~100 cm等不同土层有机碳库存量,估计出俄罗斯土壤有机碳库存总量为34211 Pg,无机碳库存总量为11113 Pg,土壤总碳库存量为45314 Pg,并绘制了俄罗斯0~ 100 cm土层无机碳库存量分布图。加拿大建立了1B100万的数字化土壤分布图及土壤碳数据库,并计算出加拿大0 ~ 30 cm 土层和0 ~100 cm土层土壤有机碳库存量分别为7011 Pg和249 Pg。 世界各国不同研究者对全球土壤有机碳库存量的估算方法并无本质区别,但由于所用资料来源与土壤分类方式不同,土壤有机碳库存量的估计值有较大差异。全球土壤1 m内土壤有机碳库大约是植被碳库的115~ 3倍,如此巨大的土壤有机碳库,即使其发生很轻微变动,都会引起大气中CO2浓度变化,进而影响全球气候变化。因此,土壤有机碳库存量研究成为全球变化的研究热点之一。 国内研究进展 我国学者非常关注土壤碳循环研究,并在土壤有机碳库存量研究

土壤有机质的测定(重铬酸钾容量法)(1)

实验八土壤有机质的测定(重铬酸钾容量法) 一、目的意义 土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源,且含有刺激植物生长的胡敏酸类等物质,又是土壤中异养型微生物的必不可少的碳源和能源物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性,它还能使土壤疏松和形成团粒结构,从而改善土壤的物理性。一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标,所以测定有机质含量对于了解土壤肥力状况有着重要的意义。 二、方法原理 本法是在外加热源的条件下,用一定量的标准重铬酸钾-硫酸溶液来氧化土壤有机质(碳),剩余的重铬酸钾用标准硫酸亚铁来滴定。由消耗的重铬酸钾量计算有机碳的含量,再间接计算有机质的含量。一般来说,土壤有机质平均含碳量为58%,要换算成有机质则应乘100/58=1.742。另外,由于该方法对土壤有机质的氧化约为90%。故测定结果还应乘以较正系数100/90=1.1。 氧化和滴定时的化学反应式如下: 2K2Cr2O7+8H2SO4+3C—2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4+7H2SO4—K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7 H2O 三、测定方法 用分析天平准确称取过孔筛的土样0.1~0.5g(含有机质>7%的称0.1g,4~7%称0.2g,2~4%称0.3g,<2%称0.5g),放入干燥的硬质试管中。(应直接倒入试管底部,避免沾在管壁上)。用滴定管准确加入0.8N K2Cr2O75ml,轻

轻摇动试管,使管内土样分散。(勿使土壤粘在试管上部)。再沿管壁缓慢加入浓H2SO45ml,在试管口加一小漏斗,以冷凝蒸出之水汽。 把试管插入铁丝笼中并放入预先加热至180~190℃的油浴锅中,此时油温下降至170~180℃,保持此温度。当试管内容物开始沸腾时,计时煮沸5分钟(温度和时间对测定结果影响较大,应准确计时)。取出试管,稍冷后擦净管外油液。 将试管内容物用蒸馏水洗入三角瓶中,瓶内总体积不要超过60~70ml,加入2~3滴邻菲罗啉指示剂,用0.2N FeSO4滴定,溶液颜色由橙黄变绿再突变到棕红色即为终点。 若以二苯胺做指示剂,应于溶液中先加入NaF粉末1小勺或50% H3PO43ml (使溶液中Fe3+与其络合成无色络离子,以消除滴定时产生的红褐色Fe2(SO4)3的干扰,然后加入二苯胺1ml,此时溶液呈暗紫色,用0.2N FeSO4滴定至暗绿色即为终点。 同时做空白试验(以消除药品不纯等的影响),加石英砂、防止暴沸。 四、结果计算 有机质 式中:V0—滴定空白时消耗的FeSO4毫升数; V—滴定样品时消耗的FeSO4毫升数; N— FeSO4的当量浓度; 0.003—1毫克当量碳的克数。 五、试剂配制及仪器设备

COD快速消解分光光度法

COD快速消解分光光度法标准曲线的绘制 组别:第一组 组员:学号 王悦:2012200855 宋丹:2012200850 杨荣:2012200841 杨安琪:2012200851 姜梦楠:2012200845 闫心瞳:2012200847

实验报告 一、实验目的 1.根据COD快速消解分光光度法,利用COD标准浓度溶液,绘制出吸光度与COD值之间的标准曲线。 2.学习COD快速消解分光光度法的原理,掌握其测定方法。 二、实验原理 在已知浓度的COD标准溶液试样中,加入已知量的重铬酸钾溶液,在强硫酸介质中,以硫酸银作为催化剂,经过高温消解后,用分光光度法可以测定COD值。 1.1mol邻苯二甲酸氢钾可以被30mol重铬酸钾完全氧化,其化学需氧量相当于30mol 的氧(1/2O)。因此,可以利用邻苯二甲酸氢钾配置已知浓度的COD标准溶液。 2.重铬酸钾能够氧化邻苯二甲酸氢钾,当试样中COD值为100~1000mg/L时,其被还原产生的三价铬(Cr3+)可以在600nm±20nm波长处测定吸光度,则试样中的COD值与三价铬(Cr3+)的吸光度的增加值成正比例关系。 3.当试样中COD值为15~250mg/L时,重铬酸钾未被还原的六价铬(Cr6+)和被还原的三价铬(Cr3+)可以在440nm±20nm波长处测定总吸光度,则试样中COD值与总吸光度的减少值成正比例关系。 三、实验药品与仪器 (一)实验药品 1.蒸馏水、去离子水等,浓硫酸,硫酸(1+9)溶液,10g/L硫酸银-硫酸溶液,0.24g/L 硫酸汞溶液 2.重铬酸钾标准溶液、邻苯二甲酸氢钾 (二)实验仪器 1.烧杯、移液管、容量瓶、玻璃棒、滴管等 2.消解管、消解仪、分光光度计 四、实验条件 1.本实验选取高量程(测定上限1000mg/L)COD标准系列溶液: COD值分别为100mg/L、200mg/L、400mg/L、600mg/L、800mg/L和1000mg/L。 2.根据高量程COD标准系列溶液,确定重铬酸钾标准溶液的浓度为c(1/6K2Cr2O7)=0.500mol/L。

磷酸铁锂化学分析方法第1部分总铁的测定三氯化钛还原重铬酸钾

磷酸铁锂化学分析方法 第1部分总铁的测定 重铬酸钾滴定法 讨论稿编制说明 一、工作简况(包括任务来源、协作单位、主要工作过程) 1.1 任务来源 根据工业和信息化部《关于印发2012年第二批行业标准制修订计划的通知》(工信厅科【2012】119号)文件及全国有色金属标准化技术委员会“关于转发2012年有色金属国家、行业标准制(修)订项目计划的通知”,“磷酸铁锂化学分析方法(5部分)”行业标准制订项目(项目号:2012-0637T-YS、2012-0638T-YS、2012-0639T-YS、2012-0640T-YS、2012-0641T-YS)由佛山市邦普循环科技有限公司(现更名为广东邦普循环科技股份有限公司)牵头起草,计划完成年限2013年。 1.2 起草单位情况 邦普,创立于2005年。企业总部(广东邦普循环科技股份有限公司)位于广东南海新材料产业基地核心区,总注册资本7645万元人民币;循环基地(湖南邦普循环科技有限公司)位于湖南长沙国家节能环保新材料产业基地,总注册资本6000万元人民币。邦普,是全球专业的废旧电池及报废汽车资源化回收处理和高端电池材料生产的国家级高新技术企业。 通过几年的快速发展,邦普已形成“电池循环、载体循环和循环服务”三大产业板块,专业从事数码电池(手机和笔记本电脑等数码电子产品用充电电池)和动力电池(电动汽车用动力电池)回收处理、梯度储能利用;传统报废汽车回收拆解、关键零部件再制造;以及高端电池材料和汽车功能瓶颈材料的工业生产、商业化循环服务解决方案的提供。 其中,邦普年处理废旧电池总量超过6000吨、年生产镍钴锰氢氧化物4500吨,总收率超过98.58%,回收处理规模和资源循环产能已跃居亚洲首位。邦普通过独创的“逆向产品定位设计”技术,在全球废旧电池回收领域率先破解“废料还原”的行业性难题,并成功开发和掌握了废料与原料对接的“定向循环”核心技术,一举成为回收行业为数不多的新材料企业。 邦普是国内同时拥有电池回收和汽车回收双料资质的资源综合利用企业。邦普围绕电池和汽车回收产业,邦普作为广东省创新型试点企业和战略性新兴产业骨干培育企业,已全面投入电动汽车全产业链循环服务解决方案的研究,以“静脉回收”推动“动脉制造”产业升级,为国家“循环经济”和“低碳经济”多做贡献。 1.3 主要工作过程和内容 根据任务落实会议精神,我公司组建《磷酸铁锂化学分析方法》行业标准起草小组,主要由研发检测中心、技术部人员组成。 1.3.1 制定编审原则 1)以满足国内磷酸铁锂的实际生产和使用的需要为原则。提高标准的适用性。2)以与实际相结合为原则,提高标准的可操作性。 3)完全按照GB/T1.1-2009的要求编写。 1.3.2 编制过程 1)申报计划。

土壤有机质测定——重铬酸钾容量法——稀释热法

土壤有机质测定——重铬酸钾容量法——稀释热法 一、原理 稀释热法(水合热法)是利用浓硫酸和重铬酸钾迅速混合时产生的热来氧化有机质,以代替外加热法中的油浴加热,操作更加方便。由于产生的热,温度较低,对有机质氧化程度较低,只有77%。因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7 + 8H2SO4+ 3C → 2K2SO4 + 2Cr2 (SO4) 3 + 3CO2+ 8H2O K2Cr2O7 + 6FeSO4 + 7H2SO4 → K2SO4 + Cr2(SO4)3 + 3Fe2(SO4)3 + 7H2O 二、试剂 ⑴1.0mol/L(1/6 K2Cr2O7)溶液。准确称取K2Cr2O7(分析纯,105℃烘干)49.04g,溶于水中,稀释至1L。 ⑵0.4mol/L(1/6 K2Cr2O7)的基准溶液。准确称取K2Cr2O7(分析纯,130℃烘干3h) 19.6132g于250烧杯中,用少量水溶解,将全部洗入1000ml容量瓶中,加入浓H2SO4约70ml,冷却后用水定容至刻度,充分摇匀备用(其中含浓硫酸约为2.5 mol/L1/2 H2SO4)。 ⑶0.5mol/LFeSO4溶液。称取FeSO4·7H2O140g溶于水中,加入浓硫酸15mL,冷却稀释至1L或称取Fe(NH4)2(SO4) 2·6H2O196.4g溶解于含有200ml浓H2SO4的800ml 水中,稀释至1L。此溶液的准确浓度以0.4mol/L(1/6 K2Cr2O7)的基准溶液标定之。即准确分别吸取3份0.4mol/L(1/6 K2Cr2O7)的基准溶液各25ml于150ml 三角瓶中,加入邻菲啰啉指示剂2~3滴,然后用0.5mol/LFeSO4溶液滴定至终点,并计算出基准FeSO4的浓度。FeSO4溶液在空气易被氧化,需新鲜配制或以标准K2Cr2O7溶液每天标定之。 ⑷邻菲啰啉指示剂:称取1.485g邻菲啰啉与FeSO4·7H2O0.695g溶于100mL水中。 ⑸SiO2。二氧化硅粉末状。 三、操作步骤 准确称取0. 5000g土样于500ml三角瓶中,然后准确加入10mL1.0mol/L(1/6 K2Cr2O7)溶液于土壤样品中,转动瓶子使之混合均匀,然后加入浓H2SO4 20ml,将三角瓶缓慢转动1min,促使混合以保证试剂与土壤充分作用,并在石棉板上放置约30min,加水稀释至250ml,加3~4滴邻菲啰啉指示剂,用0.5 mol/LFeSO4标准溶液滴定至近终点时溶液颜色由绿色变为暗绿色,逐渐加入FeSO4直至生成砖红色沉淀。 用同样的方法做2~3个空白测定(即不加土样)。即称取0.5000g粉末二氧化硅代替土样,其他手续与试样测定相同。记取FeSO4滴定毫升数(VO),取其平均值。 四、结果计算 土壤有机碳(g/kg)=[c (VO -V)X0.001X3.0 X 1.33/m]X1000 土壤有机质(g/kg)=土壤有机碳(g/kg)X1.724 式中: 1.33——为氧化校正系数; C——为0.5mol/LFeSO4标准溶液的浓度; V0——空白滴定用去FeSO4体积(ml); V——样品滴定用去FeSO4体积(ml); m----风干试样的质量; 3.0——1/4碳原子的摩尔质量(g/mol) 0.001——将ml换算成L; 1000----换算成每千克含量。

分光光度法

第二节分光光度法 (一)基础知识 分类号:P2-O 一、填空题 1.分光光度法测定样品的基本原理是利用朗伯—比尔定律,根据不同浓度样品溶液对光信号具有不同的,对待测组分进行定量测定。 答案:吸光度(或吸光性,或吸收) 2.应用分光光度法测定样品时,校正波长是为了检验波长刻度与实际波长的,并通过适当方法进行修正,以消除因波长刻度的误差引起的光度测定误差。 答案:符合程度 3.分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用涮洗,或用浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO3 二、判断题 1.分光光度计可根据使用的波长范围、光路的构造、单色器的结构、扫描的机构分为不同类型的光度计。( ) 答案:正确 2.应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 3.分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误 正确答案为:分光光度法主要应用于测定样品中的微量组分。 4.应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误 正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。 5.应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误 正确答案为:摩尔吸光系数与比色皿厚度无关。 三、选择题 1.利用分光光度法测定样品时,下列因素中不是产生偏离朗伯—比

重铬酸钾法

1原理 在强酸性溶液中,一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂、用硫酸亚铁铵溶液回滴。根据用量算出水样中还原性物质消耗的氧。 2干扰及其消除 酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于2000mg/L的样品应先作定量稀释、使含量降低至2000mg/L,再行测定。 3访法的适用范围 用0.25mol/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值。用0.025mol/L浓度的重铬酸钾溶液可测定5—50mg/L的COD值,但准确度较差。 4测定过程 取水样20mL(原样或经稀释)于锥形瓶中 加入HgSO4 0.4g(消除CL离子干扰)混匀 加入0.25mol/L 重铬酸钾10mL 和沸石若干混匀接上回流装置 从冷凝管上口加入AgSO4-H2SO4 溶液30mL (催化剂)混匀 回流加热2小时 冷却30分钟 从冷凝管上口加入80mL水于反应液中 取下锥形瓶 加入铁灵试剂3滴 此时溶液应呈黄色(既过量重铬酸钾中六价铬颜色) 用0.1mol/L 硫酸亚铁铵标准溶液滴定此时溶液颜色逐渐变成蓝绿色(既六价铬被亚铁试剂还原成三价铬的颜色)

继续滴定至溶液呈现红棕色停止(此时水样中重铬酸钾全部被还原亚铁离子和亚铁试剂产生红棕色)记录硫酸亚铁铵溶液的用量V1mL。 以蒸馏水为空白水样,同上法测定硫酸亚铁铵溶液的用量V0mL。 按下面公式计算CODcr值: CODcr(O2,mL/L)=(V0-V1)*c*8*1000/V V表示水样体积mL,c表示硫酸亚铁铵溶液浓度mol/L,8表示氧的摩尔质量g/mol,*号表示乘以 仪器 (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml 锥形瓶的全玻璃回流装置)。 (2)加热装置:电热板或变组电炉。 (3)50ml酸式滴定剂。 试剂 (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前用重铬酸钾标准溶液标定。 (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。 (5)硫酸汞:结晶或粉末。 注意事项 (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。

三氯化铁浸出_重铬酸钾滴定法测定钛精粉还原产物中的金属铁

冶金分析,2011,31(1):40-44Metallurg ical Analysis,2011,31(1):40-44文章编号:1000-7571(2011)01-0040-05 三氯化铁浸出-重铬酸钾滴定法测定钛精粉 还原产物中的金属铁 李传维1,司新国1,2,鲁雄刚*1,郭曙强1,丁伟中1 (1.上海大学,上海市现代冶金与材料制备重点实验室,上海 200072; 2.河北钢铁集团唐山钢铁股份有限公司,河北唐山 063000 )摘 要:试样用三氯化铁溶液溶解,金属铁被氧化为二氯化铁,过滤分离,滤液酸化后以二苯铵磺酸钠为指示剂,用重铬酸钾标准溶液滴定,实现了钛精粉还原产物中金属铁含量的测定。结果表明,试样粒度在0.125mm以下时,FeCl3溶液浓度和用量分别为1 0g/L和100mL,采用电磁搅拌60min为最佳的实验条件。分别用HgCl2分析法、矿相法对方法正确度进行检测,其中F检验和t检验判定此法与HgCl2法无显著性差异,同时,浸出前后试样的X射线衍射图谱对照和金相照片对比进一步证明滤渣中没有金属铁相,铁浸出完全。方法用于测定钛精粉还原产物样品, 结果的相对标准偏差小于2%。关键词:金属铁;三氯化铁;重铬酸钾滴定法;钛精粉还原产物 中图分类号:O655.23 文献标识码:A 收稿日期:2010-06-28 基金项目:国家自然科学基金项目(51074105),973项目(2007CB613606),上海大学第三届研究生创新基金(A.16- 0110-09-704)作者简介:李传维(1983-),男,硕士生,研究方向:冶金新工艺开发;E-mail:li-chuanwei@1 63.com 我国钛资源(以TiO2计) 约占全球的38.85%,但其中90%以钒钛磁铁矿的形式存 在[1] ,经过选矿制得的钛精粉由于品位低、成分复 杂等原因,一直没有得到很好的应用。解决这一问题的关键是钛铁分离, 常用方法有酸浸和还原。钛精粉还原是利用钛和铁的不同还原特性,达到分离铁、 提高钛品位的目的。钛精粉还原产物中金属铁含量是表征其还原 程度的主要标志,由于还原产物成分复杂[2-4 ],所 以金属铁的准确测定较为困难。传统测定金属铁的方法主要有汞盐浸溶-重铬酸钾滴定法、碘-乙醇浸出-EDTA滴定法及三氯化铁溶解-重铬酸 钾滴定法等。其中, 汞盐法[5] 数据稳定,抗干扰性强,但HgCl2有剧毒, 已基本停止使用。针对碘-乙醇法[6-8] 的大量研究表明, 该方法环保无害,但试样中金属铁必须小于20mg ,否则Fe3+ 与EDTA发生络合反应而形成棕色沉淀,故不适用于金属铁含量较高的情况。传统三氯化铁 法[ 9-11 ]具有测量范围广,所用试剂基本无害,FeCl3溶液不会诱导富氏体的溶解, 测得的误差只有前两者的1/3等优点;但由于钛精粉中杂质元素的影响,采用传统的三氯化铁方法测定金属铁含量也有一定的局限性。本文从影响测定的主要因素入手,通过空白实验对比、滤液中加入硫磷混酸等手段对三氯化铁法进行优化,获得了测定钛精粉还原产物中金属铁含量的最佳参数。实验结果表明测量误差在化学分析国家标准允许范围内。 1 实验部分 1.1 仪器及试剂 HJ- 4恒温多头磁力搅拌器(上海梅香仪器有限公司);高精度电子天平(梅特勒-托利多仪器(上海)有限责任公司);STF54453C型管式高温炉(美国LINDBERG公司);D\max-2550型X射线衍射仪(日本);DM6000M型金相分析显微镜 — 04—

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

三氯化钛-重铬酸钾容量法测定全铁量知识点解说.

三氯化钛-重铬酸钾容量法测定全铁知识点 一、样品分解 1. 分解铁矿石样品必须使用盐酸,不能用硝酸,否则在测定过程中会产生误差。 2. 试样分解完全时,剩余残渣应为白色或接近白色的SiO2,如仍有黑色残渣,则说明试样分解不够完全。 3. 含铁的硅酸盐难溶于盐酸,可加入少许NaF、NH4F使试样分解完全。磁铁矿溶解的速度缓慢,可加几滴SnCl2助溶。 4. 对于含硫化物或有机物的铁矿石,应将试样预先在550~600℃灼烧以除去硫和有机物,再以HCl分解。对于酸不能分解的试样,可以采用碱熔融法。 二、三价铁还原 1. 用SnCl2还原Fe3+时,溶液体积不能过大,HCl浓度不能太小,温度不能低于60℃,否则还原速度很慢。容易使滴加的SnCl2过量太多,故冲洗表面皿及烧杯内壁时,用水不能太多。 2. SnCl2不能过量,否则在滴定的时候会消耗重铬酸钾标准溶液而使测定结果偏高。还原时滴定到溶液呈现浅黄色时即可,没有被还原的Fe3+再用三氯化钛还原。 三、样品滴定 1. 正式滴定前应用重铬酸钾溶液把钨蓝消褪,这部份体积不能计入滴定体积之中,否则会使测定结果偏高。

2. 滴定前要加入一定量的硫-磷混酸。这是由于一方面滴定反应需在一定 酸度下进行(1~3mol/L),另一方面磷酸与三价铁形成无色配合离子,利于终点判别。在硫-磷混酸溶液中,Fe2+极易氧化,故还原后应马上滴定。二苯胺磺酸钠指示剂加入后,溶液呈无色。随着K2Cr2O7的滴入,Cr3+生成,溶液由无色逐渐变为绿色。终点时,由绿色变为紫色。 3. 指示剂要用新配制的,时间过长则反应不灵敏。 四、测定结果误差 产生误差的原因有下面这些: 1. 溶解样品时如果使用了硝酸,则必须用硫酸冒烟使硝酸挥发,防止在滴定到终点时指示剂颜色消褪,造成终点不稳定的现象。 2. 正式滴定前没有用重铬酸钾溶液把钨蓝消褪,直接滴定到终点;或者没有把使钨蓝消褪这部份体积扣除,这两种操作都会使使测定结果偏高。

分光光度法(附答案)

分光光度法(附答案) 一、填空题1. 分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的_____,对待测组分进行定量测定。答案:吸光度(或吸光性,或吸收) 2. 分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用_____涮洗,或用_____浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO 3 3. 分光光度法测定土壤中总砷时,制备土壤样品过程中,需取过2mm筛的土样,用玛瑙研钵将其研细至全部通过_____mm筛后,备用。答案:0.149 4. 光度法测定森林土壤全磷的样品,在碱熔完成后,应加入_____℃的水溶解熔块,并用硫酸和热水多次洗涤坩埚。答案:80 二、判断题 1. 应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 2. 分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误正确答案为:分光光度法主要应用于测定样品中的微量组分。 3. 应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。4. 应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误正确答案为:摩尔吸光系数与比色皿厚度无关。 5. 分光光度法测定土壤中总砷时,在样品中加入酸,并在电热板上加热,目的是分解有机物和氧化样品中各种形态存在的砷,使之成为可溶态的砷。()答案:正确 6. 分光光度法测定土壤中总砷时,应直接称取新鲜的土样进行测定。()答案:错误正确答案为:应称取风干或冷冻干燥的样品测定。 7. 分光光度法测定土壤样品中总砷时,有机物会干扰测定,应加酸并加热分解,以消除其于扰。() 答案:正确 8. 硼氢化钾-硝酸银分光光度法测定土壤中总砷时,样品消解过程中所加的酸分别是盐酸、硝酸和磷酸。()答案:错误正确答案为:样品消解所加的酸分别是盐酸、硝酸和高氯酸。 9. 分光光度法测定生活垃圾或土壤中砷时,若所用试剂中含有少量氰化物,可用乙酸铅脱脂棉吸收去除。()答案:错误正确答案为:乙酸铅脱脂棉吸收去除的是试剂中的硫化物。 10. 光度法测定土壤中全氮时,如需提供烘干基含量,则应测定土壤水分,并进行折算。(答案:正确 11. 光度法测定土壤中包括硝态和亚硝态氮的全氮时,若铁粉中含有大量的碳会干扰测定,所以在选择时应注意。()答案:错误正确答案为:若铁粉含有大量的氮会干扰测定,所以在选择时应注意。

实验一、水中化学需氧量的测定(重铬酸钾法)

实验一、水中化学需氧量的测定(重铬酸钾法) 一、概述 化学需氧量(COD),是指在一定条件下,用强氧化剂处理水样时所消耗氧化剂的量,以氧的毫克/升来表示。化学需氧量反映了水中受还原性物质污染的程度。水中还原性物质包括有机物、亚硝酸盐、亚铁盐、硫化物等。水被有机物污染是很普遍的,因此化学需氧量也作为有机物相对含量的指标之一。 水样的化学需氧量,可受加入氧化剂的种类及浓度,反应溶液的酸度、反应温度和时间,以及催化剂的有无而获得不同的结果。化学需氧量亦是一个条件性指标,必须严格按操作步骤进行。对于工业废水,我国规定用重铬酸钾法,其测得的值为COD Cr。 1.方法原理 在强酸性溶液中,一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂、用硫酸亚铁铵溶液回滴。根据消耗的重铬酸钾量算出水样中还原性物质消耗氧的量。 2.干扰及其消除 酸性重铬酸钾氧化性很强,可氧化大部分有机物,加入硫酸银作催化剂时,直链脂肪族化合物可完全被氧化,而芳香族有机物却不易被氧化,吡啶不被氧化,挥发性直链脂肪族化合物、苯等有机物存在于蒸气相,不能与氧化剂液体接触,氧化不明显。氯离子能被重铬酸盐氧化,并且能与硫酸银作用产生沉淀,影响测定结果,故在回流前向水样中加入硫酸汞,使成为络合物以消除干扰。氯离子含量高于2000mg/L 的样品应先作定量稀释、使含量降低至2000mg/L以下,再行测定。 3.方法的适用范围 用L浓度的重铬酸钾溶液可测定大于50mg/L的COD值。用L浓度的重铬酸钾溶液可测定5—50mg/L 的COD值,但准确度较差。 二、仪器及试剂 1.仪器 (1)回流装置:带250ml锥形瓶的全玻璃回流装置见图3-2-1(如取样量在30ml以上,采用 500ml锥形瓶的全玻璃回流装置)。 (2)加热装置:电热板或变阻电炉。 (3)50ml酸式滴定管。 2.试剂

土壤活性有机碳的测定及其影响因素概述

Hans Journal of Soil Science 土壤科学, 2018, 6(4), 125-132 Published Online October 2018 in Hans. https://www.sodocs.net/doc/ac1557499.html,/journal/hjss https://https://www.sodocs.net/doc/ac1557499.html,/10.12677/hjss.2018.64016 Determination of Soil Active Organic Carbon Content and Its Influence Factors Xingkai Wang1, Xiaoli Wang1*, Jianjun Duan2, Shihua An1 1Agricultural College, Guizhou University, Guiyang Guizhou 2College of Tobacco, Guizhou University, Guiyang Guizhou Received: Sep. 29th, 2018; accepted: Oct. 16th, 2018; published: Oct. 23rd, 2018 Abstract Soil active organic carbon is an important component of terrestrial ecosystems and an active chemical component in soil. It is of great significance in the study of terrestrial carbon cycle. Many studies have shown that soil active organic carbon can reflect the existence of soil organic carbon and soil quality change sensitively, accurately and realistically. In recent years, soil ac-tive organic carbon has become the focus and hot spot of research on soil, environment and ecological science. Soil active organic carbon can be characterized by dissolved organic carbon (DOC), microbial biomass carbon (SMBC), mineralizable carbon (PMC), light organic carbon (LFC) and easily oxidized organic carbon (LOC). This paper reviews the determination methods and influencing factors of these five active organic carbons, and looks forward to the future research focus, laying the foundation for the scientific management of land and the effective use of soil nutrients. Keywords Soil Organic Carbon, Determination Methods, Influencing Factors 土壤活性有机碳的测定及其影响因素概述 王兴凯1,王小利1*,段建军2,安世花1 1贵州大学农学院,贵州贵阳 2贵州大学烟草学院,贵州贵阳 收稿日期:2018年9月29日;录用日期:2018年10月16日;发布日期:2018年10月23日 *通讯作者。

土壤有机质论文:土壤有机质的测定(油浴加热重铬酸钾容量法)

土壤有机质论文:土壤有机质的测定(油浴加热重铬酸钾容 量法) 土壤有机质是土壤的重要组成部分,土壤的许多属性都直接或间接地与有机质的存在相关。在现代农业生产中,增施有机肥料仍是作物高产高效必不可少的重要措施。土壤有机质主要来源于各种植物茎、秆、根茬和落叶,土壤中的动物和微生物以及施入的各种有机肥料。土壤有机质的组成是很复杂的,包括以下三类物质:第一,分解很少,仍保持原来形态的动植物残体。第二,动植物残体的半分解产物及微生物的代谢产物。第三,有机质的分解和合成而形成的特殊有机物质—腐殖质。有机质中含有n、p、c、h、o、s等植物所必需的营养元素,所以是土壤养分的重要来源。另外还含有少量的灰分元素如mg、k、fe、si及b、mn、cn等一些微量元素,因此,一般来说土壤有机质含量的多少,是土壤肥力高低的一个重要组成指标。 1方法原理 在加热的条件下,用过量的重铬酸钾—硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁溶液滴定,由消耗的重铬酸钾量按氧化校正系数计算出有机碳的量,再乘以 1.724,即为土壤有机质的含量。化学反应如下: 2k2cr2o7+8h2so4+3c→2k2so4+2cr y2(so4)

3+3co2↑+8h2o,多余的k2cr2o7的还原: k2cr2o7+6feso4+7h2so4→k2so4+cr2(so4)3+3fe2(so4)3 +7h2o 2主要仪器设备 电炉:1000w;硬质试管:25mm×200mm;油浴锅:用紫铜皮做成或用高度约为15~20cm的铝锅代替,内装甘油(工业用)或固体石腊(工业用);铁丝笼:大小、形状与油浴锅相配套,内装有若干个小格,每格内可插入1支小试管;自动调零滴定管;温度计:300℃;三角瓶:250ml三角瓶;小玻璃漏斗。 3试剂 3.10.40mol/l重铬酸钾-硫酸溶液称取40g(化学纯)重铬酸钾,溶于600~800ml蒸溜水使其溶解,加水至1 000ml,将此溶液转移到3 000ml大烧杯中;另取浓硫酸(密度为1.84,化学纯) 1 000ml慢慢倒入重铬酸钾水熔液中不断搅动,为避免溶液急剧升温,每加100ml浓硫酸后可稍停片刻,并把大烧杯放在盛有冷水的大塑料盆内冷却,当溶液的温度下降到不烫手时再加浓硫酸,直到全部加完为止。此溶液极为稳定,可长期保存。 3.20.20mol/l硫酸亚铁标准溶液称取56g硫酸亚铁(化学纯)或80g硫酸亚铁铵(化学纯)溶解于约800ml蒸溜水中,

分光光度法(附答案)

分光光度法(附答案) 一、填空题 1. 分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的_____,对待测组分进行定量测定。答案:吸光度(或吸光性,或吸收) 2. 分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用_____涮洗,或用_____浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO3 3. 分光光度法测定土壤中总砷时,制备土壤样品过程中,需取过2mm筛的土样,用玛瑙研钵将其研细至全部通过_____mm筛后,备用。答案: 4. 光度法测定森林土壤全磷的样品,在碱熔完成后,应加入_____℃的水溶解熔块,并用硫酸和热水多次洗涤坩埚。答案:80 二、判断题 1. 应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20% 65%或吸光值在之间时,测定误差相对较小。( ) 答案:正确 2. 分光光度法主要应用于测定样品中的常量组分含量。( ) # 答案:错误正确答案为:分光光度法主要应用于测定样品中的微量组分。 3. 应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于,否则需进行校正。 4. 应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误正确答案为:摩尔吸光系数与比色皿厚度无关。 5. 分光光度法测定土壤中总砷时,在样品中加入酸,并在电热板上加热,目的是分解有机物和氧化样品中各种形态存在的砷,使之成为可溶态的砷。()答案:正确 6. 分光光度法测定土壤中总砷时,应直接称取新鲜的土样进行测定。()答案:错误正确答案为:应称取风干或冷冻干燥的样品测定。 7. 分光光度法测定土壤样品中总砷时,有机物会干扰测定,应加酸并加热分解,以消除其于扰。() 答案:正确 8. 硼氢化钾-硝酸银分光光度法测定土壤中总砷时,样品消解过程中所加的酸分别是盐酸、硝酸和磷酸。() > 答案:错误正确答案为:样品消解所加的酸分别是盐酸、硝酸和高氯酸。 9. 分光光度法测定生活垃圾或土壤中砷时,若所用试剂中含有少量氰化物,可用乙酸铅脱脂棉吸收去除。()答案:错误正确答案为:乙酸铅脱脂棉吸收去除的是试剂中的硫化物。

重铬酸钾法测铁矿中铁的含量

重铬酸钾法测定铁矿石中铁的含量 一、实验原理 将粉碎到一定粒度的铁矿石用热的浓盐酸溶解其中大部分的金属氧化物。待金属氧化物分解完全后,趁热加入SnCl2将大部分Fe3+还原为Fe2+,溶液由红棕色变为浅黄色,然后再以Na2WO4为指示剂,用TiCl3将剩余的Fe3+全部还原为Fe2+,当Fe3+完全还原为Fe2+之后,过量1-2滴TiCl3将溶液中的Na2WO4还原为蓝色的五价钨化物,俗称“钨蓝”,故指示溶液呈蓝色。采用SnCl2—TiCl3联合还原的反应方程式为: 2Fe3++Sn2+→Sn4++2Fe2+ 3Fe3++Ti3++H2O→3Fe2++TiO2++2H+ 加入硫磷混酸后蓝色会褪去(不褪色的可以振荡,使其被空气中的O2氧化褪色),然后加入二苯胺磺酸钠指示剂,用标准重铬酸钾溶液滴定至溶液呈稳定的紫色即为终点,在酸性溶液中,Cr2O72-滴定Fe2+的反应式如下: Cr2O72-+6Fe2++14H+→6Fe3++2Cr3++7H2O 在滴定过程中,产生的Fe3+(黄色)对终点的观察有干扰,所以通常加入磷酸,使Fe3+与磷酸形成无色的Fe(HPO4)2-配合物,消除Fe3+的颜色干扰,以便以观察终点,同时由于生成了Fe(HPO4)2-,使Fe3+的浓度大量下降,避免了二苯胺磺酸钠指示剂被Fe3+氧化而过早改变颜色,使滴定终点提前到达的现象,从而降低了滴定分析的误差。 二、仪器与药品 仪器:分析天平;酸式滴定管;聚四氟乙烯坩埚;锥形瓶;电热板;表面皿;量筒;滴管。 药品:1:1硫酸;氢氟酸;HCl溶液1+1;10% SnCl2溶液;100g/L Na2WO4溶液;1:9 TiCl3溶液;二苯胺磺酸钠溶液(2g/L);硫磷混酸;K2Cr2O7标准溶液。 三、实验步骤 称取约0.20g的样品置于聚四氟乙烯坩埚中,加水润湿后,加3mL入1+1硫酸、5ml氢氟酸,盖上盖,在电热板上加热分解,经常摇动坩埚,待试样分解完全后继续加热至冒三氧化硫白烟,取下,冷却,加少量水,温热可使可溶盐类溶解。将溶液转移至250mL锥形瓶中,用蒸馏水将盖上的酸冲入锥形瓶中。 加10mL1:1盐酸,加热至近沸,趁热滴加10%的SnCl2溶液至溶液呈浅黄色,若SnCl2过量,浅黄色完全消失呈无色,则用少量重铬酸钾滴定至溶液呈浅黄色。用水冲洗杯壁,在水槽中冷却。加入6滴Na2WO4,然后加入50mL蒸馏水,边滴加TiCl3边摇动,直到溶液刚出现蓝色。加入50mL蒸馏水,再加入硫—磷混酸20mL至蓝色褪去。再加入6滴二苯胺磺酸钠指示剂,用重铬酸钾滴定至溶液呈稳定的紫色,即为终点。

相关主题