搜档网
当前位置:搜档网 › 油墨乳化原因

油墨乳化原因

油墨乳化原因
油墨乳化原因

油墨乳化原因.

1 胶印油墨产生乳化的原因

油墨主要由树脂、矿油及颜料组成。其中的树脂主要是松香和植物油改性的酚醛树脂,另外也使用石油树脂、醇酸树脂、聚

氨酯树脂。常用的颜料包括偶氮色淀型的红色颜料、双偶氮型的黄色颜料、酞菁蓝及炭黑。胶印油墨还含有填料和助剂。

油墨在印刷时有一个与印刷药水(润版液)直接接触的过程,此时油墨中的极性物质由于亲水会导致油墨产生乳化。这些极性物质来自油墨各组分中的极性基团,即树脂、颜料、填料及助剂中的酯键、醚键、酰胺键,各种氨基、酸根及其盐等。胶印油墨的水墨平衡性(俗称抗乳化性、抗水性)在很大程度上会影响印刷质量。胶印油墨的过

度乳化会给印刷带来实地密度降低、网点扩大、油墨流动性变差、转移性变差、堆版、浮赃等毛病。如何控制油墨乳化率,一直是胶版印刷行业普遍关心的问题。

2 胶印油墨各组分乳化作用分析

胶印油墨所使用的矿油是非极性物质,不易导致油墨乳化;胶印油墨所使用的树脂不可避免的含有酯键和醚键,具有一定的亲水作用,会导致油墨一定程度的乳化;胶印油墨所使用的填料,例如碳酸钙,是强极性物质,极易导致油墨乳化,但填料在制备过程中已经过亲油处理,亲水性有所降低:胶印油墨中所使用的助剂,例如催干剂、抗结皮剂等等,都是极性物质,也极易导致油墨乳化,但它有在胶印油墨的各组分中,相对而言,们在油墨中的用量毕竟有限。.

机颜料导致油墨乳化的可能性较大,这不仅是因为有机颜料分子中还有极性基团,而且颜料在水相中制备,制备过程还添加各种表面活性剂,这些极性物质的存在都能导致胶印油墨的乳化。

胶印油墨所使用的红色颜料一般为偶氮色淀颜料,例如PR57、PR53、PR49等。这些颜料实际上都是有机酸的金属盐(钙盐、钡盐等),具有很强的极性,另外,在颜料的合成过程中还会大量的使用松香皂,然后通过添加金属盐溶液(例如氯化钙、氯化钡)的形式使松香沉淀。大量松香酸盐的存在会使颜料极性明显增加,这种极性是导致油墨乳化的重要因素。

胶印油墨经常使用的黄色颜料一般为双偶氮颜料,如PY12,其分子结构是对称的,理论上对外不显示极性;胶印油墨所使用的蓝色颜料,一般为酞菁蓝PB15:3,其分子结构也是对称的,理论上对外也不显示极性。在PY12和PB15:3的合成过程中,表面活性剂以及酸、碱、盐的使用不可避免,而这些物质无法通过水洗完全去除。另外,由于水中含有钙、镁等金属离子(水的硬度越高,钙、镁离子的含量就越高),这些物质在颜料的干燥过程中都会残留下来,最终成为导致油墨乳化的因素之一。由于PYI2和PB15:3本身为非极性物质,所以相对而言,黄颜料和蓝颜料引起的乳化比红颜料轻微得多。胶印油墨使用的黑色颜料是炭黑,炭黑是无机颜料,本身是非极性的,但炭黑表面含有少量的羧基、醌基和酚羟基等极性基团,也能导致一定程度的乳化。由此可以看出,在四色版胶印油墨中红色油首先要解决红色油墨的乳化问要降低油墨的乳化值,墨最容易乳化。.

题。

3 目前降低油墨乳化植的常用方法

目前降低油墨乳化值的常用方法是在油墨中添加抗乳化

剂(又称抗水剂、水墨平衡剂)。这样添加的抗乳化剂只有少部分吸附于颜料表面,大部分助剂在油墨中处于游离状态,不仅造成抗乳化剂用量的增加,而且游离的抗乳化剂还会产生副作用(例如影响油墨的表面张力和印刷适性)。另外,这一方法通常情况下只能将油墨的乳化值降到60%左右,但对于高速印刷而言,油墨的乳化值往往需要控制在40%以下甚至更低。

4 降低油墨乳化植的新方法

上海三正高分子材料有限公司发明了一种新的胶版印刷水墨平衡剂及其使用方法。该油水平衡剂的分子结构为:

上述油水平衡剂在颜料制备过程中使用,在颜料过滤前

~50.直接加入或以溶液或乳液的形式加入。添加量为颜料干重的和松香一起最好的使用方法是将油水平衡剂溶于松香皂中,%。3.0 对颜料进行表面处理。与现有技术相比,该发明在助剂结构及使用方法上明显

不同。该发明是在颜料制备过程中添加一种能紧密吸附于颜料表面的油水平衡剂对颜料进行表面处理,通过提高颜料的抗乳化性能来提高胶印油墨的抗水性。该油水平衡剂能将油墨的乳化值降到40以下,

分析空压机润滑油乳化形成的原因

https://www.sodocs.net/doc/ae3584672.html, 浅析空压机滑油乳化形成的原因 根据空压机的结构,滑油中的水可能有两个来源,一是缸套冷却水泄漏,一是曲拐箱内空气凝水。 滑油与水本来不会乳化;但若有某些具有两亲性质的物质吸附并富集在油水界面上,就可能改变界面状态(降低界面张力),增加其表面活性,一种液体离散为许多微粒分散于另一种液体中,从而导致乳化。这些能增加两种液体表面活性并使它们乳化的物质称为乳化剂。乳化,指两种液体充分混和成为乳状液。能导致滑油与水乳化的乳化剂种类很多,而且导致滑油与水乳化所需乳化剂的量很少,很难确定该乳化剂的成分,只能从导致滑油乳化的水分来源分析。 经打开油底壳反复检查,未发现缸套密封圈破损和缸套裂纹漏水,可排除缸套冷却水漏泄。空压机机壳内的空气冷凝水――设:夏季海面空气压力0MPa(同标准大气压力,以下压力均为表压力),夏季海面相对湿度p=60%(般高于60%),夏季机舱平均空气温度f =30(夏季机舱平均气温一般都高于30)。 由标准大气压下湿空气焓熵可知,从空气相对湿度60%和夏季机舱平均空气温度30丈,冷却到开始凝水的相对湿度100%,是一条空气含湿量不变的垂线,B点对应的大气露点温度td是22;再根据压力露点和大气露点换算,大气露含湿最d某轮主空压机滑油乳化故障分析标准大气压下空气焓熵图斜线对应的压力分别是0、0.1、0.3、0.5、0.7。 如所周知,离心分离的原理是待净化燃油,经过高速旋转的诸多分离片夹层被分离:水和杂质沿上分离片的下平面被甩出最后积聚到泥渣空间;分离水沿顶盘与分离筒盖间经水叶轮泵出;净化后的燃油,经顶盘内部的液位环(LEVELRING)达到出油腔,形成一条随分离筒高速旋转的液体环带,其外边缘的燃油在离心动能作用下进入出油叶轮孔道增容(减速)扩压,从净油出口管排出。 作为分水机,使用与燃油密度适应的比重环作为分杂机,使用最小直径比重环(分杂环theclarifierdisc,口径66mm)和口径116mm的液位环。No.2重油分油机作为分水机运行时,较长时间持续下述异常:从出水口玻璃观察镜看到分离水变黑和乳化,表明有油排出;常有分油机出口排油低压报警;统计分析燃油出渣率高达2%,超过供油商提供的常规出渣率(约1%)。 显然,N.2重油分油机的该故障,不是排渣口跑油,而是排水口跑油且不稳定。鉴于该故障持续较长时间,先后多次检查和调整未能消除。这次接手处理此故障的思路是,列出导致排压力表实测,最高达到0.2MPa)。 根据前面利用和的分析,若曲拐箱内相对湿度60%空气压力达到0.2MPa,大气露点温度td=22丈,按对应曲拐箱压力0.2MPa的斜线,可查得压力露点温度Td是38丈,高出缸套冷却水温度(30丈)更多,曲拐箱凝水会更多。设备投入使用的前几年,缸套/活塞环磨损少,窜气少,能及时排出,曲拐箱压力不高,所以凝水少。随着缸套/活塞环磨损增加,窜气多了,又不能及时排出,导致曲拐箱压力增高,具备了生成凝水的条件。取下原透气口单向阀的球,油底壳滑油换新,使用500小时滑油无乳化。由此证实以上分析正确。 可手动调节减少冷却海水流量;或者就近从其他设备冷却海水出水引一路作为空压机冷却水。纠正措施改进透气口装置。封堵曲拐箱原透气口,新装透气弯管,开口处加装一个铁丝网罩(据个人经验建议近孔1mmx 1mm)以防杂物被吸入,增强透气效果,防止曲拐箱压力过高。

从萃取实验中产生乳化现象引发的思考

从萃取实验中产生乳化现象引发的思考 【摘要】近年来随着精细化工、生命科学和材料科学等新兴科学的发展,现代分离手段得到广泛应用,促使分离科学的理论日臻完善,技术水平不断提高,逐步发展成为一门相对独立的学科。萃取作为一种经典的分离方法,无可厚非的在分离科学领域占有一席之地。然而在萃取实验中常常会出现乳化现象,本文简单介绍乳化现象,并分析乳化现象产生的原因及其消除方法,希望文中的观点能够引起读者的共鸣。 【关键词】萃取实验乳化现象萃取剂 萃取是对于液态混合物,我们可以利用混合物中一种溶质在互不相溶的溶剂里溶解度不同,用一种溶剂把溶质从它另一溶剂的所组成的溶液里提取出来的方法;它的本质是利用萃取剂将物质由亲水性转化成疏水性,最终达到分离的目的。 在演示人教版必修Ⅰ课本中的CCl4萃取水中I2的实验时,有时候我们会发现在两相交界面出现一层乳浊液,可能大家对这一现象也比较困惑,我查阅了大量的中学化学教参后均对这一现象未作涉及。很明显,我们仅仅从萃取的定义无法得出在萃取实验中是否会在两相交界处出现一层乳浊液,但是乳浊液的出现必然会影响实验的萃取效率。那么是什么原因造成这种现象?有没有办法能够消除或者尽量减少乳浊液的出现?本文首先介绍什么是乳化现象,然后重点介绍乳化现象产生的原因及其消除方法,希望对大家关于这点的理解有些许帮助。 一、什么是乳化现象 液-液萃取的过程实际上是一个液相中的溶质经过物理或者化学作用转移到另一相或者两相中重新分配的过程,也就是说制备不稳定乳浊液的过程。 正常的液-液萃取过程形成的乳浊液是不稳定的,当外力消失后,混合液依靠物质自身的界面张力和比重差进行凝固和分散,如果两相混合后形成稳定的乳浊液,在澄清室里长时间不能澄清,分散带逐渐加厚,甚至充满整个澄清室,则萃取槽的正常操作被破坏,萃取无法进行,出现这种现象就称为萃取过程中产生了乳化现象。 二、乳化现象产生的原因及其消除 萃取过程中有能成为乳化剂的表面物质的存在是乳化形成的主要原因。换句话说,表面活性物质的存在,是乳化的必要条件,界面膜的强度和紧密程度是乳化的充分条件。因此,寻找萃取体系中各个组分谁是乳化剂就成为问题的关键所在。虽然产生第三相的原因很复杂,但是可能的原因主要有:(1)萃取剂在有机相的溶解度太小;(2)萃取物在有机相中的溶解度太小;(3)另外一种萃取物的形成;(4)界面有污物等。针对CCl4萃取水中I2,我又进行了一系列的萃取实验,结果也不同程度的发现在两相交界处出现一层乳浊液或者有第三相(两层有机

破乳化原因分析

汽轮机油破乳化度超标的原因分析及处理|| 全科论文中心-职称论文| 毕业论文|免费论文|各学科专业论文 PH计(酸度计)2008-07-04 08:55:41 阅读19 评论0 字号:大中小 (拉克玛依电厂新疆拉克玛依834008) 摘要:着重分析汽轮机油破乳化性能劣化的原因,并针对劣化的汽轮机油进行试验添加破乳化剂等处理,最终使劣化的汽轮机油乳化性能合格,不仅收到较好的经济效益,而且为劣化油处理积累了宝贵的经验 关键词:汽轮机油破乳化性能油品乳化破乳化剂 火力发电厂的汽轮机润滑油作为汽轮发电机组润滑与调速系统的工作介质,在生产检修使用的各个环节都存在着外界表面活性物质的侵入的可能,长期在高温剧烈搅拌下的情况下运行,以及油品的老化磨损水汽的泄漏等原因,产生劣化产物,从而引起油品的乳化汽轮机油一旦乳化,不但失去润滑和冷却散热等作用,而且给设备带来极大的危害我厂作为火力发电厂,在2005-2006年中发现汽轮机油破乳性能劣化的现象 1 汽轮机油破乳化性能劣化的原因 由于油品乳化对机组影响较大其乳化的机理如下油品发生乳化必须具备三个条件:油中含有与油不互溶的物质(如水);含有能降低油水界面张力的表面活性物质;高速循环流动或搅拌这三个条件很容易被运行汽轮机油满足 一般认为油中存在超标的水分是破乳化性能劣化的主要原因,对汽轮机油水分正常但破乳化性能超标,感到不可理解实际上,水分的存在主要是给破乳化性能劣化提供了条件,并不是破乳化性能劣化的根本原因,表面活性物质的存在才是引起汽轮机油破乳化度不合格的关键因素表面活性物质是一种两亲分子,具有亲油和亲水的性质,在汽轮机油中混入了水份和表面活性物质后,表面活性物质会显蓍降低油水界面的张力,并富集在油的界面层,在有水分存在,且受到循环流动高速搅拌的情况下,便发生乳化此时,表面活性物质吸附在油水两相界面上,以亲油亲水基团使油和水连接,使水滴可以稳定地分散于油中,使油水不易分离 当然,过量水分的存在会加速油品抗氧剂的损失,增加金属的腐蚀,加速油品的劣化,从而使得油品破乳化性能下降例如我厂#12机,当测油品中水分为5444ppm时,其破乳化度为24min;但在后期,通过过滤除去大部分水分,油中水分含量为46ppm时,其破乳化度却上升为130min 2 我厂油品乳化情况介绍 2.1 2005年9月5日,检查发现#12机油品乳化不透明,油中含有大量乳状水,但此时油的破乳化度仍合格,并接近新油标准一个月后分析发现:破乳化时间超标准虽经昼夜滤油处理,油中的乳状水分基本被滤除,油品也基本呈透明状态,但由于油质劣化,油品的破乳化时间超标准2006年元月24日,进行了破乳化剂的添加,效果良好;但当#3燃机故障时长达三个月的静置后,油品的破乳化时间再次超标,于5月18日再次添加破乳化剂 2.2 在2006年2月,进行正常的油质全分析时发现:#7#10机汽轮机油破乳化时间超标,分别是:105min89min,其它指标均在合格范围内,且油品外状透明,无乳状水,进行水分含量测定,发现油品的水分含量也不大同年5月的油质全分析时,发现#9机汽轮机油也发生了同样的问题3 油品乳化原因分析 3.1 #12机油品乳化的主要原因 油系统中由于泄漏进入了大量的水分;油箱设计容积过小,油的循环倍速过高,使得油品没有足够的时间沉降;同时前期加入的新油破乳化时间本身就不合格,为20min这三种因素同时存在,

油墨乳化原因

1 胶印油墨产生乳化的原因 油墨主要由树脂、矿油及颜料组成。其中的树脂主要是松香和植物油改性的酚醛树脂,另外也使用石油树脂、醇酸树脂、聚氨酯树脂。常用的颜料包括偶氮色淀型的红色颜料、双偶氮型的黄色颜料、酞菁蓝及炭黑。胶印油墨还含有填料和助剂。 油墨在印刷时有一个与印刷药水(润版液)直接接触的过程,此时油墨中的极性物质由于亲水会导致油墨产生乳化。这些极性物质来自油墨各组分中的极性基团,即树脂、颜料、填料及助剂中的酯键、醚键、酰胺键,各种氨基、酸根及其盐等。胶印油墨的水墨平衡性(俗称抗乳化性、抗水性)在很大程度上会影响印刷质量。胶印油墨的过度乳化会给印刷带来实地密度降低、网点扩大、油墨流动性变差、转移性变差、堆版、浮赃等毛病。如何控制油墨乳化率,一直是胶版印刷行业普遍关心的问题。 2 胶印油墨各组分乳化作用分析 胶印油墨所使用的矿油是非极性物质,不易导致油墨乳化;胶印油墨所使用的树脂不可避免的含有酯键和醚键,具有一定的亲水作用,会导致油墨一定程度的乳化;胶印油墨所使用的填料,例如碳酸钙,是强极性物质,极易导致油墨乳化,但填料在制备过程中已经过亲油处理,亲水性有所降低:胶印油墨中所使用的助剂,例如催干剂、抗结皮剂等等,都是极性物质,也极易导致油墨乳化,但它们在油墨中的用量毕竟有限。相对而言,在胶印油墨的各组分中,有机颜料导致油墨乳化的可能性较大,这不仅是因为有机颜料分子中还有极性

基团,而且颜料在水相中制备,制备过程还添加各种表面活性剂,这些极性物质的存在都能导致胶印油墨的乳化。 胶印油墨所使用的红色颜料一般为偶氮色淀颜料,例如PR57、PR53、PR49等。这些颜料实际上都是有机酸的金属盐(钙盐、钡盐等),具有很强的极性,另外,在颜料的合成过程中还会大量的使用松香皂,然后通过添加金属盐溶液(例如氯化钙、氯化钡)的形式使松香沉淀。大量松香酸盐的存在会使颜料极性明显增加,这种极性是导致油墨乳化的重要因素。 胶印油墨经常使用的黄色颜料一般为双偶氮颜料,如PY12,其分子结构是对称的,理论上对外不显示极性;胶印油墨所使用的蓝色颜料,一般为酞菁蓝PB15:3,其分子结构也是对称的,理论上对外也不显示极性。在PY12和PB15:3的合成过程中,表面活性剂以及酸、碱、盐的使用不可避免,而这些物质无法通过水洗完全去除。另外,由于水中含有钙、镁等金属离子(水的硬度越高,钙、镁离子的含量就越高),这些物质在颜料的干燥过程中都会残留下来,最终成为导致油墨乳化的因素之一。由于PYI2和PB15:3本身为非极性物质,所以相对而言,黄颜料和蓝颜料引起的乳化比红颜料轻微得多。胶印油墨使用的黑色颜料是炭黑,炭黑是无机颜料,本身是非极性的,但炭黑表面含有少量的羧基、醌基和酚羟基等极性基团,也能导致一定程度的乳化。由此可以看出,在四色版胶印油墨中红色油墨最容易乳化。要降低油墨的乳化值,首先要解决红色油墨的乳化问题。 3 目前降低油墨乳化植的常用方法

润滑油乳化原因分析精选文档

润滑油乳化原因分析精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

润滑油乳化原因分析 机油形成乳状液必须具有三个必要条件:一是必须有互不相溶(或不完全相溶)的两种液体;二是两种混合液中应有乳化剂(能降低界面张力的表面活性剂)存在;三是要有形成乳化液的能量,如强烈的搅拌、循环、流动等。 水分、激烈搅拌、乳化剂,均能引起机油乳化。其中,水分的存在和激烈搅拌是产生乳化的主要原因。 1. 机油中水分的存在,会加速油质的老化及产生乳化;同时会与油中添加剂作用,促使其分解,导致设备锈蚀。因此找到机油中进水的主要原因也就是找到了油质乳化的主要原因,下面分析造成油中进水的主要原因,在工作实践中发现造成油中进水的主要原因有一下几个方面: a. 轴封径向间隙调整过大,轴封漏汽沿轴窜入轴承室,造成油中带水。机组检修时,为了避免在启动过程中高速转动的轴系因过临界转速振动或转子热膨胀而碰磨轴封尖齿。一般在调整轴封时增大了轴封间隙。在机组正常运行中影响了轴封的严密性,造成了轴封漏汽沿轴窜入轴承室,这是油中进水的根本原因。 b. 轴封齿倒伏,密封作用降低造成油中进水。在轴封径向间隙调整过程中,考虑转子膨胀及轴系振动不全面,使轴封径向间隙过小,令机组在启动过程中因转子膨胀与轴系振动造成轴封尖齿与转子碰磨,尖齿倒伏,密封作用降低,造成轴封漏汽,使水沿轴窜入轴承室。 c.轴封进汽联箱供汽压力过大,使轴封室成为正压,造成轴封漏气。 d.轴封抽汽器抽气压力不足,抽气管堵塞,造成负压不足,使水汽沿轴窜出,造成轴封漏汽。 e. 盘车齿轮或靠背轮转动鼓风的抽吸作用,造成轴承箱内局部负压,吸入蒸汽。另外主油箱排烟风机出力太大,使轴承室负压增大,使轴封漏汽,更易进入润滑油系统。 f. 汽缸结合面变形、密封不严密,造成水汽泄漏,进入轴承室,使油中带水。 g.运行参数异常导致冷油器冷却水侧压力高压油侧压力,并且冷油器泄漏。 2. 油中溶有空气,特别是在高温下,会加速油的氧化变质。空压机机运行中,因其油品气化变质而产生的环烷酸皂、胶体等物质都是乳化剂,使油更容易乳化。 3. 机油的乳化,与油品中的添加剂性能亦有关系。机油添加剂(如抗氧化剂和防锈剂),大都是具有一定表面活性的化合物或混合物。这些物质的分子结构中,一端是具有亲油性的非极性基团,另一端是具有一定表面活性的亲水性极性基团。虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水就具有一定的亲合能力,增强了油水分离的难度,促进油质乳化。

乳化沥青的现状及发展

乳化沥青的现状及发展 乳化沥青的基本知识 乳化沥青,顾名思义就是乳化了的沥青,专业点讲就是将粘稠的沥青加热至流动态,再经机械力的作用形成微滴分散在有乳化剂-稳定剂的水中而形成的均匀、稳定的乳状液。 沥青是乳化沥青组成的主要材料。在选择用于制备乳化沥青的沥青时,首先要考虑它的易乳化性。沥青的易乳化性与它的化学结构有密切关系。一般认为易乳化性与沥青中的沥青酸含量有关,通常认为沥青酸总量大于1%的沥青,采用通用的乳化剂和一般工艺即易于形成乳化沥青。 乳化沥青中乳化剂的含量虽低,但它是乳化沥青形成的关键材料。早在二十世纪初人们就已经在研究沥青乳化剂,开始是使用牛血和粘土作沥青乳化剂,1925年在欧洲开始用肥皂做乳化剂生产乳化沥青,这一技术在1928年传到日本,1930年传到美国,1935年在世界范围得到广泛的普及和推广。 沥青乳化剂是表面活性剂的一种,根据电性不同分为阴离子型、阳离子型和非离子型。从化学结构上看,它是一种两亲分子,分子的一部分具有亲油性,另一部分具有亲水性。亲油部分一般由碳氢原子团特别是长链烷基构成,结构差别很小。而亲水部分原子团则种类繁多,结构差异较大,使得乳化剂有很多不同类型。 乳化沥青是怎么形成的 沥青-水体系是一个热力学不稳定体系,为了保持热力学平衡,沥青液滴自然趋向聚集以降低表面自由能。乳化剂的加入使得我们可以保持沥青液滴的高度分散性,即能保持沥青-水体系的稳定,又能得到粒径小的沥青液滴。在该系中乳化剂分子移动于沥青与水界面间,其分子的憎水基团吸附于沥青的表面,并使

其带有电荷,而亲水基团则进入水相,从而将沥青颗粒与水连接起来。 同时,由于沥青粒子带有同样电荷而相互排斥,妨碍它们之间互相凝聚,因而使沥青乳液能保持一定时期的均匀和稳定。为了实现这一目的,乳化剂需要达到一定的浓度,当乳化剂浓度达到某一值后,乳化剂开始自行形成亲油基向里、亲水基向外的液滴或者胶团,通常我们把这个浓度称为临界胶束浓度(CMC)。之后继续增大乳化剂的浓度,将会使乳液中的液滴数目不断增加,达到如图所示的状态。 乳化沥青的生产流程 乳化沥青生产流程大致分为沥青配置、乳化剂水溶液配制、沥青乳化和乳液储存四个主要程序。 ①沥青配置:在沥青乳化设备中保证沥青的温度稳定,能够连续不断地供给乳化机使用; ②乳化剂水溶液配制:分为分批作业和连续作业两种流程型,工业化生产一般采用连续作业,将乳化剂水溶液连续不断地用泵输入乳化机中; ③沥青乳化:根据沥青和乳化剂水溶液进入乳化机时的状态,可连接成开式和闭式,闭式生产流程是用泵直接把沥青和乳化剂水溶液经管路泵如乳化机内,靠流量计指示流量,便于自动化控制,产量稳定,适宜连续大量生产;

萃取乳化原因分析

萃取乳化原因分析 1、萃取原液: A:萃取原液过滤不干净,当料液过滤不完全(500目过滤还有渣)时,一旦与有机相接触时,就会形成吸附微粒,有的固体颗粒本身还带有电荷,从而使形成的微粒加大或者相互凝聚,那么在料液混合时会形成油包水或者水包油,在澄清又因为密度介于油水之间而得不到快速的分离,从而形成严重的夹带影响萃取质量与萃取系统的正常运行。 B:萃取原液含有胶体物质,当料液中含有硅、铝、絮凝剂等胶体物质时,也会形成相互包裹乳化不分相,既增加了体系的粘度,又使有机相混合不充分、澄清分离发生困难,严重者还会导致有机相有效负载降低。 C:萃取原液中含有氧化剂,当料液中还含有高锰酸根、氯酸根等强氧化剂时,一旦与有机相接触就会使萃取剂发生分解变质,形成聚合、离解、断键等,产生相间污物,打破有机相的组成平衡,从而导致乳化不分相。 乳化特点:由以上原因造成的乳化大都发生在萃原液与有机相开始接触的萃取槽。 处理方法:A、B原因造成的乳化,将原液进行吸附过滤即可;C原因造成的乳化,将原液进行亚硫酸钠还原处理,然后在过滤干净即可 2、相平衡失调: 在萃取操作过程中,我们常常会根据生产需要对系统进行调整,在调整时有时会因为操之过急或者缺乏经验而将原液或者有机相在短时间内作出较大调整,从而打破萃取系统原有的平衡,使部分或者全部的混合室出现断相或者相逆转(油连续与水连续的颠倒),从而形成油水不分(乳化),使料液或者有机相局部打循环,如果处理不及时还会有漫槽的危险。。 乳化特点:混合室断相或者相逆转。 处理方法:停机静置一段时间,然后从新开机(建议)。 3、皂化过度: 一般的萃取剂(有机相)在进行萃取之前都要进行皂化,以提高金属交换值。

乳化沥青破乳地原因

乳化沥青破乳的原因 乳化沥青是将沥青热融,经过机械作用,以细小的微粒状态分散于含有乳化剂的水溶液之中,形成水包油状的沥青乳液。在筑养路工程中,乳化沥青可用于路面的维修、路面层间的粘结、桥面铺装、水泥稳定碎石基础上的透层油、稀浆封层防水层等。它具有冷施工、安全、环保、节约资源、节省能源、延长施工季节,改善施工条件等优点。它在市政等道路建设和养护中起到了非常重要的作用,尤其是近些年来,乳化沥青生产水平的提高,积极推动了乳化沥青的技术进步和推广应用。然而,在乳化沥青生产和使用过程中往往会出现结皮、絮凝、油水分层、凝聚成团等不良现象,给施工带来不必要的麻烦。下文从沥青乳化设备、乳化剂、基质沥青、PH值、温度、储存温度、机械作用、冻结及熔化、长期放置等九个方面,总结出影响乳化沥青稳定性的因素,现分析如下: 一、的影响 衡量乳化沥青质量的一项重要指标是沥青微粒的均细化程度。均细化程度越高,乳化沥青的使用性能及贮存稳定性越好。均细化程度的高低与生产乳化沥青所用的核心设备一乳化机有直接关系,它是乳化设备的心脏。用乳化机破碎、分散沥青液相的过程是一个很复杂的力学作用过程,一般都是利用剪切、挤压、摩擦、冲击和膨胀扩散等作用完成沥青液相的粉碎分散,其性能的优劣对乳液的质量和稳定性有重要影响。目前,应用于沥青乳化的设备主要有三类。按照生产乳化沥青均细化程度由高到低的顺序依次为:胶体磨类乳化机、均化器类乳化机、搅拌式乳化机。因而,在购置乳化设备时应选择均细化程度高的乳化机,保证乳化沥青的生产质量和稳定性。随着稀浆封层和微表处的施工工艺普遍应用,稀浆封层和微表处用的乳化沥青要求浓度及稳定性。此两项性能影响到了施工质量,所以建议在选用乳化沥青生产设备的时候,应尽量选用质量好持久耐用的才好。 聊城市汇通公路设备有限公司研发的是我公司经过对各种国产、进口的沥青乳化设备综合性能分析对比,集众家所长,结合我公司三十年来在沥青加热、储存及深加工设备研发制造领域积累的丰富经验,经不断改进和完善后推出的一款高品质、高性能全自动沥青乳化设备。 主要配置系统如下: 1、胶体磨(乳化机)是设备的最关键部位,主要是通过定子、转子之间由于高速运转所产生的剪切力而对物料起到研磨、分散作用。 2、沥青配置系统:应具备升温、控温、保温的功能,并具备一定的容量(能满足生产1-3小时)。沥青配置系统一般由罐体、加热器、温控器、搅拌器、液位控制器等组成。

润滑油乳化原因分析

润滑油乳化原因分析 机油形成乳状液必须具有三个必要条件: 一是必须有互不相溶(或不完全相溶)的两种液体;二是两种混合液中应有乳化剂(能降低界面张力的表面活性剂)存在;三是要有形成乳化液的能量,如强烈的搅拌、循环、流动等。 水分、激烈搅拌、乳化剂,均能引起机油乳化。其中,水分的存在和激烈搅拌是产生乳化的主要原因。 1.机油中水分的存在,会加速油质的老化及产生乳化;同时会与油中添加剂作用,促使其分解,导致设备锈蚀。因此找到机油中进水的主要原因也就是找到了油质乳化的主要原因,下面分析造成油中进水的主要原因,在工作实践中发现造成油中进水的主要原因有一下几个方面: a.轴封径向间隙调整过大,轴封漏汽沿轴窜入轴承室,造成油中带水。机组检修时,为了避免在启动过程中高速转动的轴系因过临界转速振动或转子热膨胀而碰磨轴封尖齿。一般在调整轴封时增大了轴封间隙。 在机组正常运行中影响了轴封的严密性,造成了轴封漏汽沿轴窜入轴承室,这是油中进水的根本原因。 b.轴封齿倒伏,密封作用降低造成油中进水。在轴封径向间隙调整过程中,考虑转子膨胀及轴系振动不全面,使轴封径向间隙过小,令机组在启动过程中因转子膨胀与轴系振动造成轴封尖齿与转子碰磨,尖齿倒伏,密封作用降低,造成轴封漏汽,使水沿轴窜入轴承室。 c.轴封进汽联箱供汽压力过大,使轴封室成为正压,造成轴封漏气。 d.轴封抽汽器抽气压力不足,抽气管堵塞,造成负压不足,使水汽沿轴窜出,造成轴封漏汽。 e.盘车齿轮或靠背轮转动鼓风的抽吸作用,造成轴承箱内局部负压,吸入蒸汽。另外主油箱排烟风机出力太大,使轴承室负压增大,使轴封漏汽,更易进入润滑油系统。

f.汽缸结合面变形、密封不严密,造成水汽泄漏,进入轴承室,使油中带水。 g.运行参数异常导致冷油器冷却水侧压力高压油侧压力,并且冷油器泄漏。 2.油中溶有空气,特别是在高温下,会加速油的氧化变质。空压机机运行中,因其油品气化变质而产生的环烷酸皂、胶体等物质都是乳化剂,使油更容易乳化。 3.机油的乳化,与油品中的添加剂性能亦有关系。机油添加剂(如抗氧化剂和防锈剂),大都是具有一定表面活性的化合物或混合物。这些物质的分子结构中,一端是具有亲油性的非极性基团,另一端是具有一定表面活性的亲水性极性基团。虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水就具有一定的亲合能力,增强了油水分离的难度,促进油质乳化。 4.激烈搅拌。在空压机高速旋转时,油和水被激烈而充分的搅拌,呈乳浊液态。此时,上述亲水的极性基团有了与水充分亲合的机会,当亲合力很大时,就会与水牢固的结合在一起。又由于亲油性的非极性基团能溶于油中,从而通过这种物质的作用使水和油结合在一起。因此,这时水就不能与油分离,即产生乳化现象。 三、防止机油乳化的措施: 润滑高工黄工前面,对于机油乳化给机组运行带来严重后果以及产生乳化的原因都进行了充分地论述。因此,防止机油乳化应从压缩机机组设备的设计、制造、安装、运行维护、检修、以及油品和添加剂质量等方面着手,层层把关。防止轮机油乳化的措施总结归纳为一下几点: 1.防止油系统进水 预防和消除机油系统进水,是防止机油乳化的重要措施。为此,首先要确保产品设计和制造质量,一是汽封装置结构设计合理、零部件加工符合工艺标准 2.排除油中水分

乳化沥青破乳时间控制

2003年11月石油沥青PETR01.EUMASPIIALT第17卷增刊影响阳离子乳化沥青破孚LI,-t间因素的探讨施隶顺1王强2赵亚峰2郭之宁21山东大学南校区化学与化工学院(济南250061)2新乡市公路科技研究所摘要分析了,日离子型乳化沥青徽枉的灶电层结构殪其E电位.并对破乳的机理进行了探讨。总姑了影响阳离子乳化{5i青破轧的因素,如乳化卉4的用量,助荆的使用.pH值等,并进行7理论的分析。关键词阳离子表面活性剂破乳化沥青拌和料乳化沥青是将沥青、乳化剂和水混合,在外铵、壬基酚聚氧乙烯醚、氯化钙等均为工业品。力作用下形成的均一、稳定、常温可流动的液体。1.2乳化沥青的制备乳化沥青分为阴离子、阳离子、两性和非离子乳称取一定量的乳化剂,加入200mL水,加热化沥青。1906年乳化沥青在筑路工程中初露头到60~70”C,溶解成溶液。再称取300g沥青,加角,1925年开始在欧洲(尤其是在德国)广泛应热至120C。启动胶体磨,将乳化剂热水溶液注入用,1930年传到美国并于1935年起得到普遍应胶体磨中.再缓慢将热沥青倒入进行乳化,乳化用。我国在上世纪50年代开始引入,以阴离子型后将乳液用矿泉水瓶装入,关闭胶体磨。为主,主要用于修筑贯入式路面和表面处理、新1.3助剂制备建、维修和养护等。但是阴离子乳化沥青对沥青硫酸铝溶液的制备:称取42g硫酸铝溶于的延度影响较大.铺路时开放交通的时间过长。上500mL水中。氯化钙溶液的制备:称取42g氯化世纪六十年代,阳离子乳化沥青迅猛发展,并逐钙溶于500mL水中。氯化铵溶液的制备:称取42渐取代了阴离子乳化沥青。与阴离子乳化沥青相g氯化铵溶于500mL水中。比,阳离子乳化沥青有许多优越性,如保存时间I.4拌和试验长、破乳时间与凝结时间适中、能适用于各种天称取300g石料,取一定量的水和助剂,加入气、对沥青的性质影响小等。目前普遍应用于道到铁碗中,混合均匀,再称取40g乳化沥青,倒路铺设和路面维护的是阳离子型乳化沥青。它解入铁碗中,迅速充分搅拌,并开始计时,记录开决了常温施工和大规模道路养护的难题.效果比始破乳的时间。较理想。乳化沥青用于道路铺设时,主要指标之2结果与讨论一是乳化沥青与石料(骨料)接触后要慢裂,即2.1乳化沥青微粒表面的双电层结构破乳时间要控制在60s左右,不能过快和过慢。阳离子乳化剂由亲水基和亲油基两种基团组本试验分析了阳离子乳化沥青的双电层结构及其成,亲油基大多数是由直链烷基、环烷基或烷基}电位.并总结了影响阳离子型乳化沥青破乳速苯基组成,亲水基多数由胺基构成。乳化时在剪度的因素,并对其作用机理进行了初步的探讨。切力的作用下,沥青被粉碎成极其微小的颗粒I试验部分收稿日期:z003—09一01.I.I试验药品作者简介,施来顺,男.博士、教授、硕士生导师,主要从本试验中的SH型阳离子乳化剂为作者合成事沥青乳化剂的合成、乳化沥青及稀浆封层技术的研究,已发表论文70余篇.的新型烷基多胺类阳离子乳化剂。硫酸铝、氯化石油沥青2003年第17卷(1~5um),乳化剂分子能在水溶液表面形成表位的大小与扩散层厚度有关,从图1中可以看出,面膜,在沥青微珠表面形成界面膜、界面电荷层随着扩散层厚度逐渐变薄,f电位减小;当扩散层和界面水分层,从而降低水的表面张力和沥青微与吸附层重合时,f电位降为零。珠与水之问的界面张力,使沥青乳化并保持乳液BD的相对稳定性,从而形成均一、稳定的阳离子沥+青乳化液。一;i。u沥青与水界面上的电荷层结构一般呈扩散双掣电层分布,双电层由吸附层和扩散层两部分组成,删奇L阳离子在水中溶解时,电离为带正电荷的亲油基Rj-蒜!R+和带负电荷的离子x一:R+X—R++X一加入沥青后,带正电荷的亲油基R+在沥青:!E\\。C电动电位(‘)微粒表面定向排列,使沥青微粒带正电荷,并把图1乳化沥青颗粒的双电层结构一部分带负电荷的离子x紧紧拉在周围,形成2.2影响乳化沥青破乳的因素了吸附层,另一部分X一离子由于热运动扩散到当乳化沥青与石料拌和时,在外力搅拌的作水中构成了扩散层。吸附层和扩散层构成了乳化用下,乳化沥青包裹石料表面,

乳化沥青破乳时间控制复习课程

乳化沥青破乳时间控 制

精品资料 2003年11月石油沥青PETR01.EUMASPIIALT第17卷增刊影响阳离子乳化沥青破孚LI,-t间因素的探讨施隶顺1王强2赵亚峰2郭之宁21山东大学南校区化学与化工学院(济南250061)2新乡市公路科技研究所摘要分析了,日离子型乳化沥青徽枉的灶电层结构殪其E电位.并对破乳的机理进行了探讨。总姑了影响阳离子乳化{5i青破轧的因素,如乳化卉4的用量,助荆的使用.pH值等,并进行7理论的分析。关键词阳离子表面活性剂破乳化沥青拌和料乳化沥青是将沥青、乳化剂和水混合,在外铵、壬基酚聚氧乙烯醚、氯化钙等均为工业品。力作用下形成的均一、稳定、常温可流动的液体。1.2乳化沥青的制备乳化沥青分为阴离子、阳离子、两性和非离子乳称取一定量的乳化剂,加入200mL水,加热化沥青。1906年乳化沥青在筑路工程中初露头到60~70”C,溶解成溶液。再称取300g沥青,加角,1925年开始在欧洲(尤其是在德国)广泛应热至120C。启动胶体磨,将乳化剂热水溶液注入用,1930年传到美国并于1935年起得到普遍应胶体磨中.再缓慢将热沥青倒入进行乳化,乳化用。我国在上世纪50年代开始引入,以阴离子型后将乳液用矿泉水瓶装入,关闭胶体磨。为主,主要用于修筑贯入式路面和表面处理、新1.3助剂制备建、维修和养护等。但是阴离子乳化沥青对沥青硫酸铝溶液的制备:称取42g硫酸铝溶于的延度影响较大.铺路时开放交通的时间过长。上500mL水中。氯化钙溶液的制备:称取42g氯化世纪六十年代,阳离子乳化沥青迅猛发展,并逐钙溶于500mL水中。氯化铵溶液的制备:称取42渐取代了阴离子乳化沥青。与阴离子乳化沥青相g氯化铵溶于500mL水中。比,阳离子乳化沥青有许多优越性,如保存时间I.4拌和试验长、破乳时间与凝结时间适中、能适用于各种天称取300g石料,取一定量的水和助剂,加入气、对沥青的性质影响小等。目前普遍应用于道到铁碗中,混合均匀,再称取40g乳化沥青,倒路铺设和路面维护的是阳离子型乳化沥青。它解入铁碗中,迅速充分搅拌,并开始计时,记录开决了常温施工和大规模道路养护的难题.效果比始破乳的时间。较理想。乳化沥青用于道路铺设时,主要指标之2结果与讨论一是乳化沥青与石料(骨料)接触后要慢裂,即2.1乳化沥青微粒表面的双电层结构破乳时间要在60s左右,不能过快和过慢。阳离子乳化剂由亲水基和亲油基两种基团组本试验分析了阳离子乳化沥青的双电层结构及其成,亲油基大多数是由直链烷基、环烷基或烷基}电位.并总结了影响阳离子型乳化沥青破乳速苯基组成,亲水基多数由胺基构成。乳化时在剪度的因素,并对其作用机理进行了初步的探讨。切力的作用下,沥青被粉碎成极其微小的颗粒I试验部分收稿日期:z003—09一01.I.I试验药品作者简介,施来顺,男.博士、教授、硕士生导师,主要从本试验中的SH型阳离子乳化剂为作者合成事沥青乳化剂的合成、乳化沥青及稀浆封层技术的研究,已发表论文70余篇.的新型烷基多胺类阳离子乳化剂。硫酸铝、氯化石油沥青2003年第17卷(1~5um),乳化剂分子能在水溶液表面形成表位的大小与扩散层厚度有关,从图1中可以看出,面膜,在沥青微珠表面形成界面膜、界面电荷层随着扩散层厚度逐渐变薄,f电位减小;当扩散层和界面水分层,从而降低水的表面张力和沥青微与吸附层重合时,f电位降为零。珠与水之问的界面张力,使沥青乳化并保持乳液BD的相对稳定性,从而形成均一、稳定的阳离子沥+青乳化液。一;i。u沥青与水界面上的电荷层结构一般呈扩散双掣电层分布,双电层由吸附层和扩散层两部分组成,删奇L阳离子在水中溶解时,电离为带正电荷的亲油基Rj-蒜!R+和带负电荷的离子x一:R+X—R++X一加入沥青后,带正电荷的亲油基R+在沥青:!E\\。C电动电位(‘)微粒表面定向排列,使沥青微粒带正电荷,并把图1乳化沥青颗粒的双电层结构一部分带负电荷的离子x紧紧拉在周围,形成2.2影响乳化沥青破乳的因素了吸附层,另一部分X一离子由于热运动扩散到当乳化沥青与石料拌和时,在外力搅拌的作水中构成了扩散层。吸附层和扩散层构成了乳化用下,乳化沥青包裹 仅供学习与交流,如有侵权请联系网站删除谢谢2

影响乳化沥青混合料破乳因素的分析

影响乳化沥青混合料破乳因素的分析 周海生1,2 许雷3 (1.同济大学 交通运输工程学院,200092;2.浙江艾尔迈斯公路技术有限公司;3.德州 市公路管理局,253000) 摘要:乳化沥青混合料过早破乳造成混合料离析,对其成型以及路面结构强度造成不利影响。本文通过温度、拌和水、水泥、搅拌强度四个方面讨论了乳化沥青混合料过早破乳的现象。认为温度、拌和水、水泥是影响破乳的最主要的因素。 关键词:乳化沥青混合料;过早破乳 The Research on the Factors of Emulsion Demulsifying Zhou Hai-sheng 1,2, Xu Lei 3 (1.School of traffic and transport engineering, Tong Ji University. 200092; 2. Zhe Jiang Elsamex road technology CO., ltd. 321021; 3. Highway Authority of Dezhou, 253000) Abstract: The premature demulsifying phenomenon of emulsion asphalt mix will lead to mix segregation. This will adversely influence the modeling of mixture and the integrate strength of pavement structure. This article discussed the factors on premature demulsifying phenomenon in 4 main aspects, temperature, mixing water, cement, stirring property, and concluded that temperature, mixing water, and cements are the main factors. Keywords: emulsion asphalt mix; premature demulsifying phenomenon 在实际工程中常发现,乳化沥青混合料在拌和过程中就已经破乳了。破乳后的乳化沥青在混合料中将选择性粘附集料中的细料,形成玛蹄脂胶团,随着拌和进程的延续胶团越积越大,而粗料表面却很少裹附沥青,并且经水的冲刷表面非常洁净,拌和后的混合料成为胶团、松散的粗集料和大量自由水组成的混合物,即混合料产生了离析。从而影响混合料的成型以及成型后的力学强度。 离析不仅对施工带来不便,还将对路面结构的使用性能产生不良影响,使得摊铺的路面结构不均匀、强度不足,易引起路面局部早期破坏。因此在施工中必须引起注意。那么是什么原因造成乳化沥青过早破乳,对此,本文针对乳化沥青混合料过早破乳的现象进行分析,并对施工中应注意的问题提出相应建议。 1.乳化沥青破乳的机理分析 乳化沥青是热力学不稳定体系,沉降破乳是必然的结果。但是可以从乳化沥青溶液中液珠凝聚沉降速度的角度分析破乳快慢的影响因素。 ()η 92212d d gr v -= (1) 式中,ν:微粒沉降的速率;g : 重力加速度;r :微粒半径;d 1:沥青的比重;d 2:水相的比重(d 1>d 2:);η:水相的粘度。 从式(1)液珠沉降速度公式可以看出,对于给定的乳化沥青, η相对恒定,沥青与水

油墨乳化原因

油墨乳化原因. 1 胶印油墨产生乳化的原因 油墨主要由树脂、矿油及颜料组成。其中的树脂主要是松香和植物油改性的酚醛树脂,另外也使用石油树脂、醇酸树脂、聚

氨酯树脂。常用的颜料包括偶氮色淀型的红色颜料、双偶氮型的黄色颜料、酞菁蓝及炭黑。胶印油墨还含有填料和助剂。 油墨在印刷时有一个与印刷药水(润版液)直接接触的过程,此时油墨中的极性物质由于亲水会导致油墨产生乳化。这些极性物质来自油墨各组分中的极性基团,即树脂、颜料、填料及助剂中的酯键、醚键、酰胺键,各种氨基、酸根及其盐等。胶印油墨的水墨平衡性(俗称抗乳化性、抗水性)在很大程度上会影响印刷质量。胶印油墨的过

度乳化会给印刷带来实地密度降低、网点扩大、油墨流动性变差、转移性变差、堆版、浮赃等毛病。如何控制油墨乳化率,一直是胶版印刷行业普遍关心的问题。 2 胶印油墨各组分乳化作用分析 胶印油墨所使用的矿油是非极性物质,不易导致油墨乳化;胶印油墨所使用的树脂不可避免的含有酯键和醚键,具有一定的亲水作用,会导致油墨一定程度的乳化;胶印油墨所使用的填料,例如碳酸钙,是强极性物质,极易导致油墨乳化,但填料在制备过程中已经过亲油处理,亲水性有所降低:胶印油墨中所使用的助剂,例如催干剂、抗结皮剂等等,都是极性物质,也极易导致油墨乳化,但它有在胶印油墨的各组分中,相对而言,们在油墨中的用量毕竟有限。. 机颜料导致油墨乳化的可能性较大,这不仅是因为有机颜料分子中还有极性基团,而且颜料在水相中制备,制备过程还添加各种表面活性剂,这些极性物质的存在都能导致胶印油墨的乳化。

胶印油墨所使用的红色颜料一般为偶氮色淀颜料,例如PR57、PR53、PR49等。这些颜料实际上都是有机酸的金属盐(钙盐、钡盐等),具有很强的极性,另外,在颜料的合成过程中还会大量的使用松香皂,然后通过添加金属盐溶液(例如氯化钙、氯化钡)的形式使松香沉淀。大量松香酸盐的存在会使颜料极性明显增加,这种极性是导致油墨乳化的重要因素。

乳化沥青在公路工程中的应用

乳化沥青在公路工程中的应用 论述了乳化沥青的概念及其优点和经济性,详细叙述了乳化沥青在公路工程应用中的技术标准,在道路透层、黏层、路面防水层、稀浆封层和桥面防水层等部位中的应用情况。 所谓乳化沥青就是将沥青热融后,经高速机械剪切后,以细小的微粒状态分散于含有乳化剂的水溶液中,形成的水包油型的沥青乳液。这种分散体系的沥青为分散相,水为连续相,常温下具有良好的流动性。其主要特性表现为它的储存稳定性、在混合过程中设稳定性、表面处治和黏度特性及养护速度。 1 乳化沥青的优点和经济性 乳化沥青可冷态施工,具有节约能源、便利施工、节约沥青、保护环境等许多优越性。 1.1节能能源稀释沥青中的煤油或汽油含量可以达到50%,而乳化沥青中则只含0~2%。所以,这是一项在白色燃料生产利用方面具有重要价值的节约行为,仅仅依靠增加轻制油溶剂来减少沥青的黏度标准,沥青就能够被浇灌和撒布,并希望使用后的轻制油能够挥发,不能够挥发,沥青就太软,在交通荷载作用下,道路表面就可能泛油或变形。 1.2使用方便乳液撒布,需要专业化的设备,如撒布机。然而,小面积的乳液应用可直接采用手工浇灌和手工撒布,如小面积设坑槽补工作、裂缝填缝料等,小数量设冷拌混合料只需要基本设备就行。例如,一只带挡板的洒水壶和一个铁锹就能够进行小面积的封层和裂缝修补,采用灌入式坑槽修补方法填充路面坑洞等应用简单。 1.3利于环保从乳化沥青中游离出来的碳氢化合物的数量几乎为零,在实际应用中可直接用于喷洒或拌和,无需加热融化,释放大量有害气体,很大程度地减少了对环境的污染。 2 乳化沥青在工程中的应用 乳化沥青用于修筑路面,不论是阳离子型乳化沥青或阴离子型乳化沥青均有

透平油乳化原因及处理措施(一)

透平油乳化原因及处理措施(一) 【摘要】本文分析了透平油的乳化原因、危害,并在此基础上提出了简要的处理措施。【关键词】透平油乳化危害处理措施 一、前言 透平油系统是用来向透平机组各轴承提供足够的、高质量的润滑油和向调解系统提供压力油的,在机组盘车时向盘车装置和顶轴装置供油。因此,透平油质是影响透平机组安全运行的一个重要指标。油质乳化会造成油系统腐蚀,机组部件发生锈蚀。同时,透平油也将失去润滑、散热和调速的作用,严重影响机组安全运行。 透平油质要求使用的透平油必须是高质量、均质的精炼矿物油,并且必须涂加防腐蚀和防氧化成分。此外,油中不得含有任何影响性能的有害杂质。 我厂使用的透平机为广州斯科达——劲马汽轮机有限公司生产的B13-4.9/0.88型背压式透平机。该透平油系统采用的是由深度精制基础油并加抗氧化剂和防锈剂等调制成的L-TSA46透平油。按照国家标准GB11120-89,该油应符合下列要求: 运动粘度(40℃):28.8—35.2mm2/S; 闪点(开口):不低于180℃; 机械杂质:无; 水分:无; 破乳化值(40-37-3)ml:不大于15min(54℃时); 起泡性试验24℃:不大于450ml/0ml; 93℃:不大于100ml/0ml; 后24℃:不大于450ml/0ml; 氧化后酸值达20.mgKOH/g时:不大于300h; 液相锈蚀试验(合成海水):无锈; 铜片试验(100℃、3h):不大于1级。 二、透平油乳化原因 透平油乳化一般三个原因:水分、乳化剂和高速搅拌。其中水分是引起油品乳化的重要原因。透平机组在运行中,由于机组的轴封不严、汽封漏气、润滑油质量差、轴承箱及油箱真空度达不到等诸多因素,是导致透平油系统中进水的主要原因。同时,机组的安装、运行等环节没有达到设备清洁度要求,存在污物、杂质等也将影响透平油的质量。 透平油和水的乳化与油品中添加剂性能也有关。透平油中添加的抗氧化剂和防锈剂大都具有一定表面活性得化合物或混合物,这些物质的分子结构中,一般具有亲油性的非极性基团,虽然它们都溶解于油而不溶解于水,但在一定转速下极性基团对水具有一定的亲合能力。当汽轮机组高速旋转时,油和水充分搅拌呈乳浊液时,这些亲水的极性基团有了与水充分亲合的机会。当亲合力很大时,就会与水牢牢地结合在一起。同时,由于亲油性的非极性基团能溶于油中,从而通过这种物质的作用使水和油结合起来,此时水就不能与油分离,即产生乳化现象。如果亲合力很弱,水与油就能分离。因而要求透平油所加入的添加剂要保证并提高其质量,提高其抗乳化性能,降低或除去添加剂中亲水性能较强的成分,达到或高于透平油标准规定的抗乳化性能指标。

相关主题