搜档网
当前位置:搜档网 › 滤波器概述

滤波器概述

滤波器概述
滤波器概述

微波滤波器的设计与应用概述

南京赛格微电子科技有限公司刘云

摘要:本文对当前微波滤波器的主要技术与应用作了描述。从集总参数滤波器开始,描述了微波滤波器的基本理论,然后描述了各种各样的滤波器的应用与设计。

关键词:带通滤波器,腔体,介质,同轴,梳状线,双工器,凋落模式滤波器,发夹线滤波器,高通滤波器,交指滤波器,低通,集总参数,微带线,多工器,平行耦合线滤波器,带状线滤波器,超导滤波器,波导滤波器

一,集总参数滤波器的微波实现与设计

微波滤波器的一个重要分支是集总参数滤波器,在1970年代之后,集总参数滤波器开始发挥作用,最高使用频率到达18GHz,成为了滤波器工业的重要组成部分。它的无载Q 值主要依赖于频率,平均可以达到200。在低频情况下,比如170MHz左右,可以达到800。这种滤波器跟微带滤波器在性能上可以比拟,而且制造成本特别低,而且尺寸相对于分布式的滤波器显得特别小,这是主要优点。但是当损耗和功率容量成为最主要的指标时,还是不可避免的要使用大的分布式的滤波器。

集总参数滤波器的一个重要的学术意义在于它是理解分布式滤波器的基础。一般的分布式滤波器都是实现形式上对集总参数滤波器理论的一个扩展。因此,几乎所有的滤波器的设计都是从集总低通原型滤波器,电抗斜率,耦合系数的概念开始。

滤波器可以作几种分类,一种是根据不同类型的响应曲线,这是由不同的带外传输零点和带内传输极点的位置所决定的。与之对应的是不同的滤波器传输函数。滤波器的传输极点往往在通带内分布,形成等波纹,或者说切比雪夫响应。切比雪夫函数的响应要比最大平坦函数或者巴特沃斯函数要好。后者往往很少使用。对于大部分普通滤波器来讲,带外传输零点往往分布在DC以及无穷大频率处。这种情况常常称作切比雪夫滤波器。当在带外有限远处引入一个或多个传输零点,则滤波器就是广义切比雪夫滤波器或者是准椭圆函数滤波器。对于N阶滤波器,当有N个零点分布在带外有限远处,从而在阻带产生等波纹的带外抑制,那么就是著名的椭圆函数滤波器。椭圆函数滤波器往往在物理实现上有困难。通常为了特定的指标要求,人们往往需要将何适数量的零点放在合适的频率点上,以此来实现满足指标的最佳响应,这样也能将滤波器的阶数降到最低,从而降低体积和损耗。

二,滤波器的综合

早期的微波滤波器的综合都是从集总参数的低通原型推导而来的。而低通原型的数据,则是从表示切比雪夫或者准椭圆函数的多项式之商出发,通过辗转乘除法来获得。通过低通到带通,低通到高通,低通到带阻的频率转换,来获得各种形式滤波器的电路。

一个非常有益的对切比雪夫低通原型滤波器的变换是将低通滤波器变换成只有电容/电感元件,并通过阻抗变换器/导纳变换器来连接实现的形式。而阻抗变换器和导纳变换器是无色散的。以此种结构通过频率变换得到的带通滤波器可以看成是多个并联/串联谐振器通过阻抗变换器/导纳变换器耦合节联起来的电路。对于窄带的带通滤波器,阻抗变换器/导纳变换器可以在较窄带的范围内等效成Pi型的电容或者电感组合。将并联接地的电容/电感元件吸收到谐振器电路里面去,就形成了多个谐振器通过串联电容/电感耦合节联起来的电路。这是早期切比雪夫带通滤波器的网络综合方法。

随后Levy等人从椭圆函数的低通原形导出了带通形式。

这种推导的结果表明,拥有传输零点的准椭圆函数带通滤波器往往拥有交叉耦合(即不相联谐振器之间产生耦合,包括正负耦合或说电场/磁场耦合两种形式),或者说有拥有

三谐振器组(Cascaded Triplet,缩写为CT)和四谐振器组(Cascaded Quardruplet,缩写为CQ)。

土耳其的一位学者在这方面作了大量的工作,并且形成了滤波器的综合的商用软件

A.E.Atia在70年代初建立了多交叉耦合滤波器模型,并提出了耦合矩阵的概念,从理论上作了基础性的研究。他的方法的基本概念是求取传输函数的多项式相除的形式。

基于以上,利用矩阵相似变换的方法可以给出了折叠结构的的滤波器拓扑结构和若干其他的拓扑结构形式。此方法可以实现最多N-2个任意指定的零点。

但是Cameron实现的形式往往是折叠式的,并且调试困难。而常用的包含CT和CQ 的所谓Inline型式的滤波器具备调试方便并且结构安排容易的特点。所以,如何从Cameron方法出发,获得需要拓扑结构的滤波器是一段时期以来(2000年之后)的研究

热点。现有两种方法:

一种仍然是矩阵变化的方法。先将初始矩阵转换为所谓车轮Wheel结构的矩阵,然后再用推零点的方法,将每个零点安排到需要的位置,在该位置形成交叉耦合。该方法相对速度较快。不足在于不能够实现任意的拓扑结构。

另一种方法就是给定拓扑结构,优化耦合矩阵的元素。这里面方式多样。其一是优化矩阵元,使得相应曲线具有要求的传输零点和传输极点,并且有同样的波纹。

其二是优化矩阵相似变换的角度,使得结果矩阵获得所期望的矩阵拓扑结构。

其三是优化矩阵元的数值,使得矩阵跟原矩阵具有相同的特征根。

三,无载Q值

一个等效的串联LC谐振器有助于对无载Q值的理解。谐振器的损耗来自于电阻R,如果在频率ω,谐振器的电流为I, 那么Q值定义为电抗斜率和串联电阻的比。

对并联谐振器会有类似的结果。无论是串联还是并联,在谐振时,电路中存储的电场和磁场是相等的。公式一精确的定义了任何形式的谐振器的Q值,无论是集总的还是分布式的。在分布式腔体中,往往Q值跟腔体体积与腔体表面积的比相关。对于任意的金属腔体,可以给出一个Q值的表达式如下:

Q=K*b*sqrt(f)

这里b是腔体的线性尺寸,f是谐振频率,K对于某种特定谐振器是一个常数。特别要提出的是对于多个类别的TEM形式的腔体,比如同轴,微带,带线形式,K值在1500-3600之间变化。B对于同轴腔表示腔体的直径,对于微带线谐振器表示介质厚度,对于带状线谐振器表示上下面间的距离。对于波导形式的谐振器,Q值跟尺寸之间的关系比较复杂,不再能用简单公式来说明。Q值跟尺寸之间的关系近似正比,但是K值要比TEM 情况大很多。对于梳状线滤波器而言,K值随着腔体的高度到了合适的电长度,能够传输波导模式时,会增大。

四,微波滤波器的类型和设计

这部分描述分布式滤波器的主要形式。这些类型包括梳状滤波器,交指滤波器,平行耦合线滤波器,带阻滤波器,圆形和贴片状滤波器,高低阻抗滤波器。而实现的传输线形式包括波导,介质谐振器,同轴线,截至模式滤波器,和各种平面形式的微带,带线,悬置带线滤波器。超导滤波器由于其电阻损耗低,Q值高,也有重要的使用。

设计的理论分窄带和宽带两种情况。很重要的概念是谐振器间以及谐振器与源和负载间的耦合系数。这是滤波器设计的重要内容,其与滤波器带宽有关。

A,梳状滤波器

同轴滤波器是最广泛使用的滤波器形式,特别在10GHz以下,因为电容加载,使得谐振器的尺寸可以有效降低,相对于其他形式的1/4波长谐振器。同轴滤波器中往往包

含一列同轴谐振器。每个谐振器的一段短路,另外一端电容加载。所有谐振器在一个面上短路,在另一个面上有电容加载。看起来像梳状。同轴腔之间的耦合,可以从通过式的S21的极点频率给出。K=2*(f2-f1)/(f2+f1).现代电磁仿真软件如HFSS,CST均可求解。

源和负载跟谐振器的耦合系数为外界耦合系数。耦合的方式包括电容盘耦合,磁场环耦合,以及直接Tapped耦合。另一种耦合形式叫做“同面阻抗变换器”,利用冗余的谐振器作耦合,其作用相当于一个阻抗变换器。当然,这样会增加滤波器体积。

梳妆滤波器的一个缺点是其损耗的不对称性。在频率低端,损耗往往会大,特别是宽带滤波器情况。有时为了平衡全通带的损耗,会在频率低端安排一个传输零点。但是对于宽带的情况,安排传输零点比较困难,因为这时候交叉耦合的耦合系数具有色散性(随频率变化)。

当同轴腔的高度跟波长成一定比例时,波导模式成为耦合的主要形式,滤波器不再是一个纯粹的TEM结构,而成为一个截至波导滤波器。这种滤波器有非常高的无载Q 值,广泛的用于基站,并且常常是准椭圆函数形式,给出最优的响应曲线。简单切比雪夫函数截止波导模式滤波器比一般的梳状滤波器有更对称的相应曲线,因为波导滤波器本身在低端的抑制就比高端的要强。截止波导滤波器是介乎波导滤波器和梳状滤波器之间的一种滤波器。

B,交指滤波器

交指滤波器中包含多个四分之一波长的平行耦合线,短路和开路端交替变化。线长通常比梳状滤波器的长,往往是90度。实际的滤波器中,往往线长电长度不足90度,因为开路端有边缘电容效应。在有的情况下,缩短电长度更有优势,往往缩短到60度左右,这样不仅可以获得较小的体积,而且还将2次谐波在频率上推远。

交指滤波器往往应用在微波频率高于8GHz,特别是宽带滤波器的情况。理想的交指滤波器往往有完美的对称性,这是相对于梳状滤波器的优势。这种对称性使得其相位与时延特性较好。在交指滤波器中加入交叉耦合可以很容易得到线性相位滤波器。

交指滤波器的腔间距离可以变大,并保持同样的耦合系数。因此易于设计频率较高,带

宽较宽的滤波器。交指形式已经被用于设计8-18,20-28,28-40GHz的滤波器。必须说明的是,当要设计较宽的带宽时,实践上很难获得比15dB更好的回波损耗。

由于波导模式的影响,完全1/4波长的交织滤波器的高端抑制达不到三阶谐波频率。第一波导模式TE10的截止波长是交指滤波器腔体高度的两倍,对应于完全1/4波长交指滤波器的通带频率的两倍。只有在开路段有足够的电容加载,使得谐振杆电长度到达60度左右时,波导模式频率才会在通带频率的三倍处,比TEM谐振杆模式的谐波模式低。

C,平行耦合,发夹滤波器,片状滤波器,环形谐振器滤波器

平行耦合线滤波器往往是微带形式。由于空气带状线形式下,谐振器的长度较长,所以带状线形式的不多。对于微带形式的设计,有必要考虑耦合线区域中奇,偶模相速的差别。折叠式的平行耦合线滤波器,也叫发夹式滤波器。跟环形滤波器有些相像。带阻滤波器也可以利用平行耦合线的强耦合来实现较宽的阻带。

1984年以来,平面滤波器方面引入了双模滤波器的研究,包括双模矩形贴片滤波器和环形滤波器。这有助于滤波器的小型化。

后来的研究者引入了具有电容缝隙的环形滤波器,其在设计更加多样。因为电容缝隙之间主要是电场,所以这样的谐振器之间的耦合为电容性的耦合。远离电容缝隙的环带处的场为磁场。以环带部分作为耦合位置,即为电感耦合。以电容和电感耦合作为正负耦合,相对于其他滤波器而言,不需要专门的容性探针来实现电场耦合。另外,双层结构也可以实线电场和磁场耦合。

D,介质块和陶瓷谐振器

1984年以来,滤波器方面的一个特别重要的发展是陶瓷介质滤波器的研究。主要有两种类型:

1,陶瓷滤波器,或者说是“Puck”滤波器

2,TEM模式同轴腔介质谐振器滤波器。

对第一种形式,理论早已经成熟,但是实践因为没有稳定性能好的材料而被推迟。

材料研究在1980年代得到突破并不断成熟。陶瓷谐振器滤波器往往有非常低的损耗,并且非常显著的降低了传统波导滤波器的尺寸。可以有单模滤波器以及双膜滤波器的设计。单模往往使用TE01d模式,而双模滤波器往往采用HEM11的两个正交简并模式。

单模滤波器往往有较好的温度性能。

对于TEM模式的介质滤波器,已经有很多的研究和参考文献。Nishikawa,Wakino 的文章论述较多。这种滤波器的两个主要优势是尺寸小,生产成本低。可以用于移动电话之中。滤波器中往往有多个同轴介质腔通过串联电容耦合或者磁场耦合,节联起来。

其理论类似于空腔梳状滤波器。

F,波导滤波器

波导滤波器最初是Cohn1957年提出,当时的理论只适用于窄带矩形波导滤波器。对于更宽的带宽,需要更加精确的方法来进行设计。通常波导高通滤波器设计成为一个宽带滤波器,其上边缘几乎非常高。这种方法相对于利用波导的截至频率,可以设计更短,并且损耗更低的滤波器。

波导双模滤波器广泛的应用于卫星和军事系统中。也有相关文献提到三模滤波器,但是往往非常复杂,很难应用在指定的情况下。主要问题是调试难度太大,而且其调节因素的调节范围往往比较窄。

波导滤波器的精确分析方法为模式匹配法MMT(Arndt)和耦合积分方程法CIET(Amiar et.) 这些方法采用广义散射矩阵的概念,将高次模式的场全都考虑在内,具有速度快,精度高的特点。

G,同轴线低通滤波器。

高低阻抗同轴低通滤波器用于抑制谐波和杂散。往往使用了集总和分布的混合理论,保证了在整个工作通带有较好的响应。同样的理论可以用不同的形式实现,比如带状线,微带,SSS,共面波导。

H,截至波导模式滤波器

通常在设计梳状或者交指滤波器的时候,不会考虑非相邻的谐振器之间的耦合。当接地面之间的距离超过30度电长度,并且当任意两个谐振杆之间距离小于1.5倍谐振杆直径时,微波的传输不再理解为TEM.谐振杆之间的耦合要加上截至波导场的耦合。而设计带宽超过40%或者小于2%时,必须要考虑这个因素。只有考虑截至波导模式所增强的耦合,才能够准确的计算设计。这种技术叫做“截止模式设计技术“。它利用等效电路法。在其中加入代

表截止模式波导影响的电路单元,假设有一个截至波导段置于谐振杆之间。一个波束被耦合入截至波导段,并开始凋落,并在另一个谐振杆上散射,产生很多其他模式。通常,截至波导段可以用一组电杆来表示(PI型或者T型)。这跟试验观察很吻合:对于给定长度的截至波导段,工作频率越是低于截至频率,测量的截至波导段的输入阻抗越大。截至波导模式的带通结构可以实现较宽的带宽。当带宽加宽,谐振杆之间的距离变小,就要考虑更多的高阶截至波导模式,以准确的设计。截至波导模式滤波器可以使用同轴或波导作为输入输出端,实用上可以实现最小1%,最大不低于70%的带宽。这种滤波器可以做成折叠式的,从而加入交叉耦合,实现准椭圆函数的响应。

I,超导滤波器

早期的超导器件工作在液氦温度(4.2). 工作温度过低导致超导器件的实用性受到限制。1986年的所谓“高温超导“发现后,工作温度达到了60-80K. 液氮和快速制冷机可以用来实现低温工作。这使得超导电性的应用研究广泛展开。其中包括尺寸和损耗的都非常小的HTS滤波器。今天所有的超导滤波器几乎都是微带形式,利用超导作为薄膜的接地面,利用光刻的超导电路作为滤波器器电路。而整个介质薄膜安装在普通金属上。超导滤波器不仅局限于薄膜技术,至少有一家公司已经开发了利用厚膜技术实现的超导滤波器。

超导微带滤波器可以很容易的在1-2GHz实现30000-50000的Q值,比同频率的庞大的波导谐振器的Q值大得多。个别形式的超导谐振器可以实现100000的Q值。但是由于需要制冷机,超导滤波器的体积还是非常大的。但是在有的情况下,多个超导滤波器可以使用一个制冷机,比如很多用于移动通信的超导滤波器系统中使用一个制冷机,但是却有12个滤波器。HTS电路往往需要非常好的晶体晶格的衬底材料来和超导材料匹配。常用的HTS材料包括YBCO和TBCCO。常用的衬底材料包括LaAlO3,MgO,蓝宝石等等。这些衬底往往都只有2到3英寸的直径,这也限制了超导电路的尺寸。超导滤波器的一个重要特点是,当Q 值变低,电流密度变大,非线性效应也将产生。这导致了交调信号的产生。

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

数字梳状滤波器讲解

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

无源滤波器设计概述

关于无源滤波器设计 随着电网中非线性负载(如电力电子装置、可调速电机)应用的增多,供电质量日趋下降,电网中的谐波含量严重超过国家标准,对电力用户的安全用电构成威胁。并且,国家对电力市场管制的开放,无疑加剧电力市场的竞争,一方面电力用户对供电电源的谐波含量的要求越来越高,另一方面电力公司对电力用户注入电网的谐波水平也提出了限制。因此,对电网的经济安全运行起到十分重要的作用的电力滤波器有大量的市场需求和市场潜力。 概述 电力系统是由电感、电阻、电容组成的网络,在一定的参数配合下可能会对某些频率产生谐振,诱发出过量的电压和电流。因此,应当尽量避免谐振。对于正常设计的电网来说,发生工频谐振的可能性很小。但是,却有可能在某些高次谐波下谐振,使谐波电流和电压剧增,危害设备的运行和安全。 当谐波源产生的谐波大于规定限值时,应装设滤波装置。在谐波源处装设滤波器,就地吸收谐波电流,可以使注入系统的谐波减少到很低的程度,这是当前最主要的抑制谐波的手段。 目前大量应用于在电力系统中的是无源交流滤波装置,由电力电容器、电抗器和电阻组成,可以抑制谐波并兼有一定的无功补偿作用。无源滤波器结构简单、运行可靠、维护方便,成本低、技术成熟。 最理想的滤波器设计是能够将注入的全部谐波都进行衰减的单个宽频带结构,但需要的电容量非常大,比较经济的做法是使用单调谐滤波器将较低次的谐波衰减掉,由高通滤波器衰减较高次数的谐波。 无源谐波滤波器包括一组对应于某几次低次谐波的单调谐滤波器组和一个用于滤除高次谐波的高通滤波器。 运行特点 使用无源滤波器的特点主要有: ①滤波效果受电网阻抗影响大,会因制造误差、设备老化、电网频率变化造成滤波效果下降; 对谐波频率经常变化的负载滤波效果差。 ②容易与电网产生谐振,产生并联或串联谐振,造成谐波放大; ③对谐波进行抑制的同时引入一定量的无功,兼有谐波补偿和无功补偿功能; ④可利用现有无功补偿设备容量; ⑤不具有处理复杂频谱谐波的能力。 ⑥容易过载而产生危险

梳状滤波器工作原理

梳状滤波器工作原理 梳状滤波器对于画面质量是非常重要的一个技术。一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite VideoSignal,即混合视频信号(也称复合信号)。因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器。 图2-6-1 梳状滤波器框图 梳状滤波器主要由延迟线和相加电路、相减电路构成的,用以分离FU 和±FV。一个实际的梳状滤波器电路如图2-6-1所示。其中V1为延时激励放大器,DL为延迟线,T1为裂相变压器、L1为调谐电感,C2为耦合电容。 色度信号F经电容C1耦合加于V1基极,经放大后由集极输出,再经延迟线由A点加至裂相变压器T1上端,取自Rw的直通信号经C2耦合加至T1中点,这样可在输出端分别得到相加和相减输出。将直通信号和延迟信号分别以un和un-1表示,其输出电压的合成原理图如图4-32等效电路所示。调节Rw可保证两信号幅度严格相等,输出分离更彻底。 延迟线DL多为超声延迟线,它由输入、输出压电换能器和延迟介质组成。压电换能器由多晶压电陶瓷薄片制成,当信号加到输入压电换能器两端面的电极上时,输入信号在延迟介质中激起机械振动,形成超声波。延

迟介质多为熔融石英或玻璃,超声波在玻璃中传播速度较低,再将其制作 成如图4-33形式,经多次反射超声波方到达输出换能器还原为电信号,这 样使可大大地缩小延迟线体积。为使超声波按规定的路径传播,减少不规 则反射引起的干扰杂波,在延迟线表面涂有若干吸声点,吸声点所涂吸声 材料为橡胶、环氧树脂和钨粉配制而成。最后用塑料外壳封装,以减小外 界的影响。 2.6.2 PAL 解码器的梳状滤波器 PAL 的特殊电路是梳状滤波器.为使它 能够有效的分离两个色度分量,延时线的 延时时间要有准确的数值. 延时线延迟时 间τd 应选择得既非常接近行周期(64μ s),以便相加、减时是相邻行相应像素间 的加或减;而又必须为副载波半周期的整 数倍,以保证延时前、后色度信号副载波相位相同(0°)或相反(180°)。由 fSC=283.75fH+25Hz 的关系,则行周期TH 与副载波TSC 之间的关系为: τd 可选为副载波半周期TSC/2的567倍或568倍。通常为567, τd 略小于行周期,若为568则略大于行周期 梳状滤波器:作用是将色度信号分离出两个色差分量FU 、FV ,组成包 括一行延时线、加法器和减法器。 传统的色度延时电路采用64μs 超声波玻璃延时线,其原理是利用输 入、输出换能器实现电—超声波—电信号间的转换。 在梳状滤波器中,延时线的精确延时时间为63.943μs ,延时后的信号 与直通信号在加法器和减法器中运算,完成色度分量的分离任务。 设输入到梳状滤波器的第n 行色度信号为 F(n)=Usin ωSCt+Vcos ωSCt=FU+FV (2―35) 则第n+1行色度信号必然为

梳状滤波器的设计

NANHUA University 课程设计(论文) 题目梳状滤波器 学院名称电气工程学院 指导教师陈忠泽 班级电子091班 学号 20094470128 学生姓名周后景 2013年 1 月

摘要 现如今随着电子设备工作频率范围的不断扩大,电磁干扰也越来也严重,接收机接收到的信号也越来越复杂。为了得到所需要频率的信号,就需要对接收到的信号进行过滤,从而得到所需频率段的信号,这就是滤波器的工作原理。对于传统的滤波器而言,如果滤波器的输入,输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这样的滤波器定义为数字滤波器。它通过对采样数据信号进行数学运算来达到频域滤波的目的。滤波器在功能上可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每种又有模拟滤波器(AF)和数字滤波器(DF)两种形式。对数字滤波器,从实现方法上,由有限长冲激响应所表示的数字滤波器被称为FIR滤波器,具有无限冲激响应的数字滤波器增称为IIR滤波器。在MATLAB工具箱中提供了几种模拟滤波器的原型产生函数,即Bessel低通模拟滤波器原型,Butterworth滤波器原型,Chebyshev(I型、II型)滤波器原型,椭圆滤波器原型等不同的滤波器原型。本实验需要产生滤除特定频率的梳状滤波器 关键字: MATLAB,,梳状滤波器

引言 随着社会的发展,各种频率的波都在被不断的开发以及利用,这 就导致了不同频率的波相互之间的干扰越来越严重,因此滤波器的市 场是庞大的。所以各种不同功能滤波器的设计就越来越重要,在此要 求上实现了用各种不同方式来实现滤波器的设计。本设计通过MATLAB 软件对IIR 型滤波器进行理论上的实现。 设计要求 设计一个梳状滤波器,其性能指标如下,要求阻带最小衰减为 dB As 40=,N=8..0=ω?8rad π 手工计算 因为梳状滤波器的转移函数公式为H(Z)=b N N eZ Z ----11 ,现已知N=8,As=40dB, 2498.0=ω?rad π, H(jw e )=b jwN jwN e e ---- 11,b=21 +因为As=60Db,故)(jw e H =0.01 H(jw e )=b jwN e e --- 11 = 21 +)sin (cos 1)sin (cos 1wN j wN wN j wN ---- =

低通无源滤波器设计-详细(精品范文).doc

【最新整理,下载后即可编辑】 低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为模拟滤波器和数字滤波器两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的元器件分为无源和有源滤波器两种。 无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

有源滤波器:由无源元件(一般用R 和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为)(t x ,输出为)(t y ,滤波器的脉冲响应函数为)(t h 。转换到频域,激励信号为)(ωj X ,经过一个线性网络得到的响应信号为)(ωj Y 。 则传递函数)(1)()()(jw F j X j Y j H =≡ωωω 其中,传递函数的极点是网络的固有频率。而一个传递函数所有极点的实部均为负的网络是稳定的。 一个网络的传递函数蕴含了网络的全部属性。 幅频特性和相频特性 幅度增益 与ω 构成幅频特性曲线。 相位变化 与ω 构成相频特性曲线。 四、低通滤波器的一些概念 1、单位 分贝:是用对数的方式描述相对值,无量纲。 B 贝尔 (A/B )(贝尔)=lg (A/B )=lg(A)-lg(B) dB 分贝 (A/B )(分贝)=10 1g (A/B ) 对于幅频响应, )(|)(|)()()(ωφφφωωωωj j x j y e j H j H e A e A j X j Y x y ===|)(|ωj H A A x y =)(ωφφφ=-x y |)(|ωj H A y =

高通滤波器原理及分类

高通滤波器:英文名称为high-pass filter,又称低截止滤波器、低阻滤波器,允许高于某一截频的频率通过,而大大衰减较低频率的一种滤波器。它去掉了信号中不必要的低频成分或者说去掉了低频干扰。其特性在时域及频域中可分别用冲激响应及频率响应描述。 高通滤波器是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。其特性在时域及频域中可分别用冲激响应及频率响应描述。后者是用以频率为自变量的函数表示,一般情况下它是一个以复变量jω为自变量的的复变函数,以H(jω)表示。它的模H(ω)和幅角φ(ω)为角频率ω的函数,分别称为系统的“幅频响应”和“相频响应”,它分别代表激励源中不同频率的信号成分通过该系统时所遇到的幅度变化和相位变化。可以证明,系统的“频率响应”就是该系统“冲激响应”的傅里叶变换。当线性无源系统可以用一个N阶线性微分方程表示时,频率响应H(jω)为一个有理分式,它的分子和分母分别与微分方程的右边和左边相对应。 高通滤波器原理及分类 高通滤波器按照所采用的器件不同进行分类的话,会有源高通滤波器、无源高通滤波器两类。 无源高通滤波器:无源高通滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 实际滤波器的基本参数:理想滤波器是不存在的,其特性只需截止频率描述,而实际滤波器的特性曲线无明显的转折点,故需用更多参数来描述。 高通滤波器技术指标有:

ch7数字滤波器的结构习题解答

7.6 习题 7-1. 已知某数字系统的系统函数为 ) 25.06.0)(4.0()(2 3 +--=z z z z z H 试分别画出直接型、级联型、并联型结构框图。 解: 将H (z )表示为 3 21 1.049.011 )(----+-= z z z z H 由此可画出系统的直接型结构框图,如下图(a)所示。由于系统有一单实数极点和一对共轭复数极点,故将H (z )表示实系数一阶、二阶子系统的乘积,即 2 1125.06.011 4.011)(---+--= z z z z H 由此可画出系统的级联型结构框图,如下图(b)所示。故将H (z )表示实系数一阶、二阶子系统之和 2 11 125.06.015882.00588.04.019412.0)(----+-++-=z z z z z H 由此可画出系统的并联型结构框图,如下图(c)所示。 x [k ] y [k ] x [k ] y [k ] (a) 直接型结构 (b) 级联型结构

x [k ] y [k ] (c) 并联型结构 7-2. 一线性时不变系统用题7-2图的流图实现。 (1) 写出该系统的差分方程和系统函数; (2) 计算每个输出样本需要多少次实数乘法和实数加法? 题7-2图 解: (1) 2121211311 )(--------= z z z z z H 43127411 ---++-=z z z ][]4[2]3[7]1[4][k f k y k y k y k y =-+-+-- (2) 每个输出样本需要4次实数乘法和4次实数加法 7-3. 已知FIR DF 的系统函数为 )221)(1()(211---+-+=z z z z H 试分别画出直接型、级联型结构框图。 解: 由H (z )可以画出FIR DF 的级联型结构框图,如下图(b)所示。将H (z )表示为 3121)(--+-=z z z H ,可以画出FIR DF 的直接型结构框图,如下图(a)所示。

低通无源滤波器设计详细

低通无源滤波器仿真与分析 、滤波器定义 所谓滤波器( filter ),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1) 按所处理的信号: 按所处理的信号分为和两种。 2) 按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3) 按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L 较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器) 组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件) ;缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4) 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为 x(t) ,输出为 y(t ) ,滤波器的脉冲响应函数为 h(t ) 。转换到频域,激励信号为 X(j ) ,经过一个线性网络得到的响应信号为 Y( j )

梳状滤波器的设计与应用

梳状滤波器的设计与应用 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF 射频接口和AV接口),它所能接收的信号叫CompositeVideoSignal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite (混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(CombFiltering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因

有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史:梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTS C制副载波为3.58MHz),用选频电路将Y/C信号分开。内部由LC 带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4. 43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

低通无源滤波器设计详细

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为和两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的分为无源和两种。 :仅由(R、L 和C)组成的滤波器,它是利用电容和电感元件的随频率的变化而变化的构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在、高频、大功率的场合不适用。 4)按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 三、网络的频率响应 在时域中,设输入为)(t y,滤波器的脉冲响应函数为)(t h。转换到 x,输出为)(t 频域,激励信号为) Y。 (ωj (ωj X,经过一个线性网络得到的响应信号为)

数字梳状滤波器

视听研究所 主页:https://www.sodocs.net/doc/b05543063.html, 论坛:https://www.sodocs.net/doc/b05543063.html,/forum 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.sodocs.net/doc/b05543063.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1

视听研究所 主页:https://www.sodocs.net/doc/b05543063.html, 论坛:https://www.sodocs.net/doc/b05543063.html,/forum 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.sodocs.net/doc/b05543063.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

LC滤波电路原理与设计详解

LC滤波电路 LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。\ LC滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理, 滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路 电容滤波电路电感滤波电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

低通无源滤波器设计-详细说课讲解

低通无源滤波器设计- 详细

低通无源滤波器仿真与分析 一、滤波器定义 所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。一般可实为一个可实现的线性时不变系统。 二、滤波器的分类 常用的滤波器按以下类型进行分类。 1)按所处理的信号: 按所处理的信号分为模拟滤波器和数字滤波器两种。 2)按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 3)按所采用的元器件 按所采用的元器件分为无源和有源滤波器两种。 无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。 4)按照阶数来分

无源滤波器设计

AD9912输出端低通滤波器设计 庞观林 2014年4月12日 1设计背景 如图:AD9912是一款DDS芯片,系统最高时钟频率为1GHz,转换效率最大为0.4,其输出端是一个DAC模块,试在输出端设计一个模拟低通滤波器,以滤除宽带噪声.先由网上查得:DAC输出电阻为50欧,FDBK输入测试电阻应在50欧左右。故滤波器输入输出电阻都选50欧讨论。 1

2设计理论基础2 2设计理论基础 巴特沃斯低通滤波器 最平坦:也称二项式或Butterworth响应,提供最平坦通带响应P l p=1+k2?(w/w c)(2?N)(其中N为滤波器阶数) 通常选择w=wc时为3dB带宽点,此时可令k=1. 通用Π型和T型LC滤波器的电路形式:

2设计理论基础3 最平坦低通原型归一化元件参数 最平坦低通滤波器

2设计理论基础4 等纹低通滤波器原型 等波纹:也称Chebyshev响应,以通带波纹换取陡峭的截止响应: 同样,如果选择w=wc时为3dB带宽点,此时可令k=1。 3dB波纹时等波纹低通原型归一化参数值

3设计过程5 3设计过程 巴特沃斯低通滤波器设计 (1)选截止频率为400MHZ,由上图阶数与归一化关系可知:要实现主带衰减40db,至少要选用3阶滤波器以上,阶数越高,其衰减斜率越大,但考虑其同时越难设计,综合考虑采用4阶滤波器。 (2)由上述设计背景可知,该滤波器输入输出电阻为50欧,R s =1,故可 R L 采用4阶II型:

3设计过程6 (3)由上表获取归一化参数值: R s=R l=1.0000,C1=0.7654?L1=1.8478C2=1.8478,L2=0.7654 (4)归一化:R s=50om,F SF=2?pi?400?106 C1′=C1=6.09pf C2′=14.7pf =0.03676uh L1′=Z?L1 F SF L2=0.01523uh (5)运用matisim仿真实现: 在通带内,其稳定为-6.021db: 当下降3db时,其为400.132MHZ,与期望值相符

匹配滤波器原理

数字通信课程设计 匹配滤波器

摘要 在通信系统中,滤波器是重要的部件之一,滤波器特征的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线性滤波器的设计有一种准则是使滤波器输出信噪比在特定时刻到达最大,由此导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特征取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。本文设计并仿真了一种数字基带通信系统接收端的匹配滤波器。 一、课程设计的目的 通过本次对匹配滤波器的设计,让我们对匹配滤波器的原理有更深一步的理 解,掌握具体的匹配滤波器的设计方法与算法。 二、课程设计的原理 设接收滤波器的传输函数为)(f H ,冲击响应为)(t h ,滤波器输入码元)(t s 的持续时间为s T ,信号和噪声之和)(t r 为 )()()(t n t s t r += s T t ≤≤0 式中,)(t s 为信元,)(t n 为白噪声。 并设信元)(t s 的频谱密度函数为)(f S ,噪声)(t n 的双边功率谱密度为 2/0n P n =,0n 为噪声单边功率谱密度。 假定滤波器是线性的,根据叠加定理,当滤波器输入信号和噪声两部分时,滤波器的输出也包含相应的输出信号和输出噪声两部分,即 )()()(00t n t s t y += 由于:)()()()()()(2 * f P f H f P f H f H f P R R Y == )(f P R 为输出功率谱密度,)(f P R 为输入功率谱密度,2/)(0n f P R = 这时的输出噪声功率0N 等于 ? ?∞ ∞ -∞ ∞ -=?=df f H n df n f H N 2 02 0)(22)( 在抽样时刻0t 上,输出信号瞬时功率与噪声平均功率之比为

累积梳状(CIC)滤波器分析与设计

累积梳状(CIC )滤波器分析与设计 1、累积梳状(CIC )滤波器的分析 所谓累积梳状滤波器,是指该滤波器的冲激响应具有如下形式: ?? ?-≤≤=其它 ,01 0,1)(N n n h (1) 式中N 为梳状滤波器的系数长度(后面将会看到这里的N 也就是抽取因子)。根据Z 变换的定义,滤波器的Z 变换为: ∑-=-?=1 )()(N n n z n h z H 1 11----=z z N ) 1(111 N z z ---?-= )()(21z H z H ?= (2) 式中, 1 111)(--= z z H (3) N z z H --=1)(2 (4) 其实现框图如图1所示: 可见,CIC 滤波器是由两部分组成:累积器)(1z H 和梳状滤波器)(2z H 的级联,这就是为什么称之为累积梳状滤波器的原因。下面分析一下梳状滤波器的幅频特性。 把ωj e z =代入可得)(2z H 的频率响应为: N j j e e H ωω--=1)(2 ]2 [ 22 /2 /2 /N j N j N j e e e ωωω-??--?= )2/s i n (22/N e N j ωω?=?- (5) )(2z H )(1z H 图1、累积梳状滤波器的实现框图

其幅频特性为: )2/s i n (2)(2N e H j ωω?= (6) 若设N =7,就可以得到如图2所示的相应的频谱特性曲线: 由图2可以清楚地看到: ) (2ω j e H 的形状犹如一把梳子,故把其形象地称之为梳 状滤波器。同样可以求得累积器) (1 z H 的频率响应为: ω j e z H --= 11)(1 1 2 /2 /2 /]2 [ 2---=ωωωj j j e e e 1 2 /) 2 (s i n 2 -?= ω ωj e (7) 故CIC 滤波器的总频率响应为: )()()(21ωωωj j j e H e H e H ?= )2/s i n (/)2/s i n (ωω N = ) 2 ( )2 ( 1 ω ω-??=Sa N Sa N (8) 式中,x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值为N ,即: N e H j =)(0 (9) CIC 滤波器的幅频特性如图3所示: 图2、N=7的梳状滤波器幅频特性曲线 图3、CIC 滤波器的幅频特性曲线

滤波器的基本原理

滤波器的基本原理 1.滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰 都具有衰减作用。其基本原理有三种: A)利用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模); B)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源; C)利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,针对某干扰信号的频段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可 2电源滤波器高频插入损耗的重要性 尽管各种电磁兼容标准中关于传导发射的限制仅到30MHz (旧军标到50MHz,新军标到 10MHz ),但是对传导发射的抑制绝不能忽略高频的影响。因为,电源线上高频传导电流会导致辐射,使设备的辐射发射超标。另外,瞬态脉冲敏感度试验中的试验波形往往包含了很高的频率 成份,如果不滤除这些高频干扰,也会导致设备的敏感度试验失败。 电源线滤波器的高频特性差的主要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不理想性。因此,改善高频特性的方法也是从这两个方面着手。 内部结构:滤波器的连线要按照电路结构向一个方向布置,在空间允许的条件下,电感与电 容之间保持一定的距离,必要时,可设置一些隔离板,减小空间耦合。 电感:按照前面所介绍的方法控制电感的寄生电容。必要时,使用多个电感串联的方式。 差模滤波电容:电容的引线要尽量短。要理解这个要求的含义:电容与需要滤波的导线(火线和零线)之间的连线尽量短。如果滤波器安装在线路板上,线路板上的走线也会等效成电容的 引线。这时,要注意保证时机的电容引线最短。 共模电容:电容的引线要尽量短。对这个要求的理解和注意事项同差模电容相同。但是,滤波器的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电 容的高频特性更加重要。使用三端电容可以明显改善高频滤波效果。但是要注意三端电容的正确 使用方法。即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。必要时可以使用 穿心电容,这时,滤波器本身的性能可以维持到1GHz以上。 特别提示:当设备的辐射发射在某个频率上不满足标准的要求时,不要忘记检查电源线在这 个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的。 3滤波器的选择

相关主题