搜档网
当前位置:搜档网 › 高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型(强烈推荐)
高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型

数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。

高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用

在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式

斜边对边正弦= 邻边对边正切=

斜边邻边余弦=

对边

邻边余切=

(二)探寻规律

1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类;

3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”.

(三)速写

第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边

正弦

对边斜边=

余弦邻边斜边=

2、由斜边求直角边

正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求

正切邻边对边?= 余切对边邻边?=

(四)典例分析

经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少?

θtan 1?=mg F

θ

cos 2mg

F =

经典例题2 如图3所示,质量为m 的小球静止于斜面与挡板之间,斜面倾角为θ,挡板与斜面垂直,求小球对挡板和对斜面的压力大小分别是多少?

【解析】小球受到的重力产生的效果是压紧 挡板和使球压紧斜面,重力的分解如图4所示。

θsin 1?=mg F

图 3

图2

图 4

θcos 2?=mg F

二、三角函数求物理极值

因正弦函数和余弦函数都有最大值(为1),如果我们整理出来的物理量的表达式为正弦函数或余弦函数,我们可直接求其极值;若物理量的表达式不是正弦(或余弦)函数的基本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然后在确定极值。现将两种三角函数求极值的常用模型归纳如下:

1.利用二倍角公式求极值

正弦函数二倍角公式 θθθcos sin 22sin =

如果所求物理量的表达式可以化成 θθcos sin A y = 则根据二倍角公式,有 θ2sin 2

A

y = 当 0

45=θ时,y 有最大值 2

max A y =

经典例题 1 一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦地运动,那么图5所示四种情况中符合要求的是( )

【解析】雨滴沿房顶做初速度为零的匀加速直线运动,设房顶底边长为L ,斜面长为S ,倾角为θ,根据运动学公式2at 21S =

有θθsin gt 21cos 2L 2?=,解得θ

θθ2sin gL 2cos sin gL

t =

?=,当0

45=θ时,t 有最小值.

【答案】C

经典例题2 如图6所示,一辆1/4圆弧形的小车停在水平地面上。一个质量为m 的滑块从静止开始由顶端无摩擦滑下,这一过程中小车始终保持静止状态,则小车运动到什么位置时,地面对小车的静摩擦力最大?最大值是多少?

【解析】设圆弧半径为R ,滑块运动到半径与竖直方向成θ角时,静摩擦力最大,且此时滑块速度为v ,根据机械能守恒定律和牛顿第二定律,应有

2

2

1cos mv mgR =?θ ①

R

v m mg N 2

cos =-θ ②

由①②两式联立可得滑块对小车的压力 θcos 3mg N = 而压力的水平分量为

θθθθ2sin 2

3

cos sin 3sin mg mg N N x =

?=?= 设地面对小车的静摩擦力为f ,根据平衡条件,其大小 θ2sin 2

3

mg N f x =

= 从f 的表达式可以看出,当θ=450时,sin2θ=1有最大值,则此时静摩擦力的最大值

图5

图6

mg f 2

3max =

2.利用和差角公式求物理极值 三角函数中的和差角公式为

βαβαβαsin cos cos sin )sin(±=±

βαβαβαsin sin cos cos )cos(μ=±

在力学部分求极值或讨论物理量的变化规律时,这两个公式经常用到,如果所求物理量的表达式为

θθcos sin b a y +=,我们可以通过和差角公式转化为

)cos sin (

2

2

2

2

22θθb

a b b

a a

b a y ++++=

φcos 2

2

=+b

a a ,

φsin 2

2=+b

a b

则 )sin(22φθ++=

b a y

当 0

90=+φθ时,y 有最大值 22max b a y +=

经典例题1 重为G 的木块与水平面间动摩擦因数为μ,一人欲用最小的作用力F 使木块沿地面匀速运动,则此最小作用力的大小和方向如何?

【解析】木块受四个力的作用,即重力G ,地面的支持力F N ,摩擦力f F 和施加的外力F ,受力分析如图7所示,设力F 与x 轴夹角为θ,由于物体在水平面上做匀速直线运动,处于平衡状态,所以在x 轴和y 轴分别列平衡方程:

f F F =θcos ①

G F F N =+θsin ② 且有

N f F F μ= ③

联立①②③式,θ

μθμsin cos +=

G

F

利用和差角公式变形为 )

sin(12

φθμμ++=

G

F (其中μ

φ1

=

tg )

当1)sin(=+φθ 时,F 具有极小值 2

min 1μμ+=

G

F F 与x 轴正方向间夹角μθ1

-=tg

若变形为 )

cos(12

φθμμ-+=

G

F (其中μφ=tg )

当1)cos(=-φθ 时,F 具有极小值 2

min 1μμ+=

G

F F 与x 轴正方向间夹角μθ1

-=tg

由以上分析可知,两种变形得到的结果一样。

经典例题2 用跨过定滑轮的绳牵引物块,使其从图8所示位置起沿水平面向左做匀速运动。若物块与地面间的动摩擦因数为1<μ,绳与滑轮质量不计。试分析运动过程中绳拉力的变化情况。 【解析】本题为讨论物理量的变化规律的问题, 设绳子拉力为F ,受力分析、列平衡方程、求解F 同上一例题。

θ

μθμsin cos +=G

F

利用和差角公式变形为 )

sin(12

φθμμ++=

G

F (其中μ

φ1

=

tg )

∵1<μ,1>φtg ∴ 900≥φ≥450 而随物块向左运动, 450≤θ≤900

则 1800≥>+)(φθ900 随θ增大,)sin(φθ+减小,F 增大, 若变形为 )

cos(12φθμμ-+=

G

F (其中μφ=tg )则0

45<φ,据前面所述,

φθ- 在第一象限,随θ增大,)cos(φθ-减小,F 增大。

由以上分析可知,两种变形得到的结果一样。

图8

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

(完整word版)高中物理竞赛的数学基础

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 本节中的不少内容读者在初等数学及中学物理课中已学过了,现在我们只是把它们联系起来复习一下。 1.1函数自变量和因变量绝对常量和任意常量 在数学中函数的功能是这样定义的:有两个互相联系的变量x和y,如果每当变量x取定了某个数值后,按照一定的规律就可以确定y的对应值,我们就称y是x的函数,并记作 y=f(x),(A.1) 其中x叫做自变量,y叫做因变量,f是一个函数记号,它表示y和x数值的对应关系。有时把y=f(x)也记作y=y(x)。如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号, 如 (x)、ψ(x)等等。① 常见的函数可以用公式来表达,例如 e x等等。 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面 切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a、b、c等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量。

在数学中经常用拉丁字母中最前面几个(如a、b、c)代表任意常量,最后面几个(x、y、z)代表变量。 当y=f(x)的具体形式给定后,我们就可以确定与自变量的任一特定值x0相对应的函数值f(x0)。例如: (1)若y=f(x)=3+2x,则当x=-2时y=f(-2)=3+2×(-2)=-1. 一般地说,当x=x0时,y=f(x0)=3+2x0. 1.2函数的图形 在解析几何学和物理学中经常用平面 上的曲线来表示两个变量之间的函数关系, 这种方法对于我们直观地了解一个函数的 特征是很有帮助的。作图的办法是先在平面 上取一直角坐标系,横轴代表自变量x,纵 轴代表因变量(函数值)y=f(x).这样一 来,把坐标为(x,y)且满足函数关系y=f (x)的那些点连接起来的轨迹就构成一条 曲线,它描绘出函数的面貌。图A-1便是上 面举的第一个例子y=f(x)=3+2x的图形,其中P1,P2,P3,P4,P5各点的坐标分别为(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线。图A-2是第二个例子 各点连接成双曲线的一支。 1.3物理学中函数的实例 反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的。下面我们举几个例子。 (1)匀速直线运动公式 s=s0+vt,(A.2) 此式表达了物体作匀速直线运动时的位置s随时间t变化的规律,在这里t相当于自变量x,s相当于因变量y,s是t的函数。因此我们记作s=s(t)=s0+vt,(A.3) 式中初始位置s0和速度v是任意常量,s0与坐标原点的选择有关,v对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值。

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

高中物理学习中常用的数学知识专题

高中物理学习中常用的数学知识专题 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ ④几个特殊角的三角函数值: θ a b c

⑤二倍角公式:(含万能公式) θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2 cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=±

常用的三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A =2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+

tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = - 2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2

三角函数值表

三角函数值表一常用三角函数值:

二反三角函数值

同角三角函数的基本关系式 1,倒数关系: 1csc sin =?x x 1sec cos =?x x 1cot tan =?x x 2,商数关系: x x x cos sin tan = x x x sin cos cot = 3,平方关系 1cos sin 22=+x x x x 22sec tan 1=+ x x 22csc cot 1=+ 倍角公式:

x x x cos sin 22sin = 2 cos 2sin 2sin x x x = x x x 22sin cos 2cos -= 2 sin 2cos cos 2 2 x x x -= 1cos 22 -=x 12 cos 22 -=x x 2 sin 21-= 2 sin 212 x -= x x x 2tan 1tan 22tan -= 2 tan 12tan 2tan 2x x x -= 半角公式: 2cos 12sin x x -±= 22cos 1sin 2x x -= 2cos 12cos x x +±= 2 2cos 1cos 2x x += x x x x x x x cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 万能公式: 2 tan 12tan 2sin 2x x x +=

2 tan 12tan 1cos 22 x x x +-= 2 tan 12tan 2tan 2x x x -= 奉送直线有关 1,斜截式 斜率K 和在Y 轴的截距是b b kx y += 2点截式 点()111,y x P 和斜率k ()11x x k y y -=- 3,两点式 点()()222111,,y x P y x P 和 1 21 121x x x x y y y y --=-- 4,截距式 在x 轴上截距是a 1=+b x a x 在y 轴上截距是b 两条直线平行的充要条件:21k k = 两条直线垂直的充要条件:121-=?k k 圆: 圆心在圆点,半径为r 的圆的方程是: 222r y x =+ 圆心在点()b a C ,,半径为r 的圆的方程是: ()()22 2 r b y a x =-+-

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 α αcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α α α α2tan 1tan 22tan -= 45、升幂公式 1±sin2α= (sin α±cos α) 2 1 + cos2α=2 cos 2α 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()β αβαβαtan tan 1tan tan tan μ±= ± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=ααtan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=α α tan 45tan 1tan 45tan ?+-?= tan (4π-α) 8、两角和差正弦公式的变形(合一变形)

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2 π-α) = cos α cos (2 π-α) = sin α sin (2 π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T π ω = ;函数 tan()y x ω?=+,,2 x k k Z π π≠+ ∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω = . 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○),2 sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○B A B A B A cos cos ,sin sin <>?>; ○三内角成等差数列0 120,60=+=?C A B 2(ABC )sin sin sin a b c R R A B C ===?是的外接圆半径2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-= +-=

(完整版)高中物理学习中常用的数学知识

高中物理学习中常用的数学知识 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ θ a b c

θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=± β αβ αβαtg tg tg tg tg ?±= ±μ1)( )1)((βαβαβαtg tg tg tg tg ?±=±μ γ βγαβαγ βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++= ++1)( 其中当A+B+C=π时,有:

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

三角函数常用公式公式及用法

三角函数常用公式及用法 珠海市金海岸中学 唐云辉 1、终边相同的角及其本身在内的角的表示法: S={ | k 360°,k Z},或者 S { | 用法:用来将任意角转化到 0?2的范围以便于计算。 公式中k 的求法: 如是正角就直接除以3600或2,得到的整数 就是我们 要求的k ,剩余的角就是公式中 的;如果是 负角,就先取绝对值然后再去除以 3600或者2,得到 的整数加1后再取相反数就是上述公式中的 k,等于3600或者2减去剩余的角的值。 用法:前者是弧长公式,用以计算圆弧的长度;后者为扇形的面积公式,用以计算扇形的面积。 3.三角形面积公式: 1 , 1 1 1 abc 2 S 』= a h a = ab si nC =—bc si nA = —ac si nB = =2R sin A si n B si nC 2 2 2 4R 2 a sin BsinC 2 sin A 2 2 b sinAsinC c sinAsinB = = =pr= P (P a)(p b)(p c) 2si nB 2sinC 1 ( 其中p -(a 2 4 ?同角关系: b c) , r 为三角形内切圆半径) (1 )、商的关系:① tan =y = sin x cos 用法:一般用来计算三角函数的值。 (2 )、平方关系:sin 2 cos 2 1 行运算,遇到sin cos m 就先平方而后再运算, 遇到sin cos sin 2 cos 2 这类题目就联想 2 2 到分母为"1” =s in cos 进行运算即可。 --------- K (3)、辅助角公式: asin bcos Va 2 b 2 sin( ) (其中 a>0,b>0 ,且 tan —) a 用法:用以将两个异名三角函数转化成同名三角函数,以便于求取相关的三角函数。 5、函数y= Asin( x ) k 的图象及性质:( 0, A 0 ) 2、 L 弧长= n nR R =180 扇 =丄LR 」F 2 2 2 n R 2 360 2k ,k Z} 用法:凡是见了 sin cos m 或者sin cos ?2 sin 2 cos 的形式题目都可以用上述平方关系进

(完整版)高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 斜边对边正弦= 邻边 对边正切= 斜边邻边余弦= 对边 邻边余切= (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 正弦 对边斜边= 余弦邻边斜边= 2、由斜边求直角边 正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求 正切邻边对边?= 余切对边邻边?= (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】小球受到的重力产生的效果是压紧挡板和使球压紧斜面,重力的分解如图2所示。 θtan 1?=mg F

常用三角函数值

高中数学常用公式一常用三角函数值:

二反三角函数值 同角三角函数的基本关系式 1,倒数关系: 1c s c s i n =?x x 1s e c c o s =?x x 1c o t t a n =?x x 2,商数关系: x x x c o s s i n t a n = x x x s i n c o s c o t = 3,平方关系 1c o s s i n 2 2 =+x x x x 2 2 s e c t a n 1=+

x x 2 2c s c c o t 1=+ 倍角公式: x x x c o s s i n 22s i n = 2 c o s 2 s i n 2s i n x x x = x x x 2 2s i n c o s 2c o s -= 2 s i n 2 c o s c o s 2 2 x x x -= 1c o s 22 -=x 12 c o s 22 -=x x 2 s i n 21-= 2 s i n 212 x -= x x x 2 t a n 1t a n 22t a n -= 2 t a n 12 t a n 2t a n 2 x x x -= 半角公式: 2 c o s 12s i n x x -± = 2 2c o s 1s i n 2 x x -= 2c o s 12c o s x x +±= 22c o s 1c o s 2 x x += x x x x x x x c o s 1s i n s i n c o s 1c o s 1c o s 12t a n +=-=+-±= 万能公式: 2 t a n 12 t a n 2s i n 2 x x x += 2 t a n 12t a n 1c o s 2 2 x x x +-=

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

相关主题