搜档网
当前位置:搜档网 › 中文翻译网络综合法得到的低通原型滤波器

中文翻译网络综合法得到的低通原型滤波器

中文翻译网络综合法得到的低通原型滤波器
中文翻译网络综合法得到的低通原型滤波器

《网络综合法得到的低通原型滤波器》

4.01绪论

本书以后的章节将要讨论许多滤波器的设计方法,这些方法利用了本章中论述的集总元件低通原型滤波器。我们讨论的大多数低通,高通,带通和带阻微波滤波器,它们的主要传输特性都来源于它们设计时使用的低通原型滤波器。这些低通原型滤波器的元件的值最初是用达林顿和其他人发明的网络综合法获得的。但是,近来建立了更简明的方程,能方便的使用计算机程序来计算本书中各种类型的重要的低通原型滤波器的元件数值,而且,大量滤波器的设计已经被制成表格。本书中的一些表格是从温伯格的工作中得到的,其他则是斯坦福研究所根据本书的要求计算出来的。本书中没有把包括对网络综合法正式的讨论,因为在其他地方已经广泛的讨论了这些方法,而且为设计提供的表格使这些讨论没有必要。本章的主要目标是弄清楚已制成表格的原型滤波器,时延网络和阻抗匹配网络的特性,以便使他们能被合理的应用,来解决第一章中多种微波电路设计的问题。

必须注意到,第六章中的阶梯型传输器也可以作为第九章中讨论的某些类型的微波滤波器的设计原型。

4.02滤波器设计的影像法和网络综合法的比较

正如第三章中所讨论的,滤波器某个截面上的影像阻抗和衰减函数根据一个无数相同的滤波器连接在一起来定义。用一个有限的无损耗带终端电阻的滤波器网络会允许影像阻抗只在分散的频率匹配,并且反射效应会导致通带的极大衰减,就像阻带边缘的失真一样。

在3。08节中,已经讨论了设计终端部分来降低这些反射效应的原理。但是这些方法在用影像法进行滤波器设计时只能有限的降低反射的大小,它们不能准确的给出通呆内反射损失的峰值。因此,虽然影像法概念简单,但是当要求准确的设计,包括较低的通带反射损失和准确的带边定义时,需要很多的分割尝试或知道怎样。

滤波器设计的网络综合法一般开始于指定一个传输函数(就像公式2。10-6传输系数t ),作为综合频率p 的一个函数。根据传输函数,电路的输入阻抗是p 的一个函数。然后,由多种连续的部分或独立的部分的扩展过程,输入阻抗发展为给出电路的元件值。通过这些过程得到的电路的传输系数与开始指定的相同,所有的推测工作和分割尝试被消除。影像概念从没有这些过程,并且终端的影响已经被考虑在传输函数的最初指定中。

一般来说,用影像法设计的低通滤波器和网络综合法设计的相同功能的滤波器是非常相似的。但是,用网络综合法设计出来的滤波器在制定的响应时,元件值略有不同。

在接下来的部分中讨论的切比雪夫和最平坦转移函数经常被指定作为滤波器应用。对于元件数值在4.05节中的表格中列出的滤波器,将在4。03节中精确的推论它们产生的响应。而起,将包括从低通集总元件原型近似值出发设计微波滤波器。然而,这种近似一般来说在相当大的频率范围内都非常好,这种原型的使用取决于微波滤波器的参数,它消除了经典影像法内在的推测工作。

4.03最平坦和切比雪夫的衰减特性

图4。03-1显示了一个典型的最平坦低通滤波器的衰减特性。频率'1ω处被定义为通带边缘,衰减为r A L 。这个特性的数学表达为公式(4。03-1)其中公式(4。03-2)图4。03-1中的响应能用4。04和4。05节中所讨论的低通滤波器电路实现,公式(4。03-1)中的参数n 相当于电路中要求的电抗元件的数目。这种衰减特性得到“最平坦”之名是由于在公式(4。03-1)中方括号内的量在'

1ω=0时有(2n -1)个零点。

在大多数情况下,最平坦低通滤波器的'1ω北定义为3分贝带边点。图4。03-2显示了r A L ,n =1~15的最平坦滤波器的阻带衰减特性图。注意,为了方便,图中数1/1-''ωω作为横坐标。在''1/ωω上加上绝对值符号,这是因为在后面讨论从低通变换为带通或带阻时,可能会遇上''1/ωω的值为负的情况,这时的衰减与''1/ωω的值为正时相同。

另一种用的衰减特性是从图4。03-3所示的切比雪夫或“等波纹”特性。在这种情况下,r A L 还是通带内的最大分贝衰减,'1ω是等波纹带边频率。图4。03-3所示的衰减特性可用数学表达为公式(4。03-3)和公式(4.03-4) 其中公式(4.03-5)。

这种特性也可以用4。04节和4。05节中所描述的滤波器结构实现,公式(4.03-3)和公式(4.03-4)中的参数n 也是电路中电抗元件数目。如果n 为偶数,则低通切比雪夫响应有n/2个频率处r A L =0,如果n 为奇数,则有(n +1)/2个频率。图4。03-4到图4。03-10 显示了r A L =0。01,0。10,0。20,0。50,1。00,2。00和3。00分贝通带波纹时切比雪夫的阻带衰减特性,横坐标还是1/1-''ωω。

将图4。03-2中的最平坦衰减特性与图4。03-4到图4。03-10中的切比雪夫特性相比较是有趣味的。对于给定的通带衰减r A L 和电抗元件数目n ,切比雪夫滤波器的阻带衰减斜率陡很多。例如,图4。03-2中的最平坦衰减特性与图4。03-10中的切比雪夫衰减特性都是r A L =3分贝,若n =15,则最平坦原型当ω'=1。7'1ω时,r A L 达到70分贝;对于切比雪夫原型,当ω'=1。18'

1ω时,r A L 达到70分贝。与其它特性相比,切比雪夫响应经常作为首选,因为它的选择性好。但是,如果滤波器的电抗元件有较明显的损耗,任何一种通带响应的形状,会与无损耗时不同,并且这种影响对切比雪夫滤波器特别大。这些问题将在4。13节中讨论。与切比雪夫滤波器相比,最平坦滤波器被认为具有更小的延迟失真。但是,正如4。08节中所讨论的,这不一定正确,这取决于r A L 的大小。

图4。03-1和图4。03-3中的最平坦和切比雪夫响应并不是这一类型中唯一可能的响应,例如,4。09节和4。10节中所讨论的阻抗匹配网络的切比雪夫响应的形状相似,但是在波纹的底部r A L 不会为0。有时,设计切比雪夫滤波器使它不仅在通带有等波纹响应,而且在阻带内一个特定的衰减水平上有一个“等波纹”近似。虽然这些滤波器可以用在低频,但是很难精确的设计微波频率上的应用。在7。03节中将讨论这种微波滤波器的一种可能的例外。 4.04低通滤波器参数的定义

本章中讨论的低通原型滤波器的元件值1210,....,,+n g g g g 的定义如图4。04-1所示。(a )显示了原型滤波器的一种可能的形式,它的对偶形式在(b)中显示。它们两个给出了相同的

响应,因此两个都可以使用。因为这个网络是可逆的,所以左边的电阻和右边的电阻都可以定义为信号源的内阻。应该注意到图4。04-1中有下列的约定:公式(4。04-1)

使用这些约定的原因是因为当使用一个给定的电路或它的对偶电路时,它们会导出相同形式的方程。除了电路元件值k g 外,还将使用一个附加的原型参数'1ω。参数'1ω是通带边缘的频率,它在这里所讨论的最平坦滤波器和切比雪夫滤波器类型中的定义见图4。03-1和图4。07节中讨论了它在最平坦时延滤波器中的定义。

本章中讨论的原型滤波器的元件数值都归一花,使0g =1,'1ω=1。使用下列电路元件的变换公式,这些原型可以很容易的变换为其他的阻抗水平和频率标度。对于电阻和电导,公式(4。04-2)对于电感,公式(4。04-3)对于电容,公式(4。04-4)

在这些公式中,带撇的量是归一化原型的,不带撇的量是响应的变换电路的。正如在前面的讨论中所指出的,对本章的归一化原型来说,0g ='0R =1或0g ='0G =1。

举一个例子来说明怎样实现这种变换,假设我们有一个低通原型,它的'

0R =1。000欧姆,'1C =0.8430法拉,'2L =0.6220亨利,'3G =1。3554姆欧。这些是0。1分贝波纹切比雪夫

滤波器的元件值,它的等波纹带边频率'

1ω=1【见表4。05-2(a )中0。1分贝波纹和n =2时的情况】。假定要求把这个原型变换为0R =50欧姆,等波纹带边频率1f =1000兆赫,那么('00

R R )=50,(11ωω')=1/(9910159.0)102(-?=π。然后,根据公式(4。04-2)

到(4。04-4),0R = 50欧姆,12911068.2)8430.0)(10159.0)(50

1(--?=?=C 法拉,10921094.4)6220.0)(10159.0(50--?=?=L 亨利,0271.0)3554

.1)(50/1(3==G 姆欧。 4.05双终端最平坦和切比雪夫原型滤波器

对于双端都是电阻的最平坦滤波器,响应如图4。03-1,r A L =3分贝,0g =1,'1ω=1,其元件数值可用下面的公式来计算:

公式(4。05-1)

表4。05-1(a )中给出了这种滤波器的电抗元件数n =1到10时的元件值,表4。05-1(b )中给出了这种滤波器的电抗元件数n =11到15时的元件值。

对于两端都是电阻的切比雪夫滤波器,相应如图4。03-3,通带波纹r A L 分贝,0g =1,'1ω=1,其元件数值可用下面的公式来计算:

公式(4。05-2)

然后计算:公式

表表4。05-2(a )中给出这种滤波器的电抗元件数n =1到10时的元件值,表4。05-2(b )中给出了这种滤波器的电抗元件数n =11到15时的元件值。

应该注意的是这节中讨论的所有滤波器原型当n 为奇数时是对称的。如果n 为偶数,他们具

有2。11节和3。07节中所提到的反对称性。在这种情况下,通过一个正实常数h R ,可以把网络的一半与网络的另一半对应起来,h R 可被定义为:公式(4。05-3)

这里的'0R 和'+1n R 是滤波器终端的电阻。如果'k Z 是滤波器梯形网络一个分支的阻抗,那么 公式(4。04-4)

其中k n Z -+1是滤波器另一端分支的阻。根据公式(4。05-4),可以看到滤波器一段的电感感抗与另一端的电容相关,

公式(4。04-5)

还有,

公式(4。05-6)

因此,如果滤波器是反对称的,就可以从其中一半元件值求得另一半元件值(就像对称的滤波器那样)。

在图4。04-1中的双终端最平坦和切比雪夫滤波器中,可以发现上面所讨论的对称和反对称特性,设计滤波器使它在通带内有一个或多个频率处r A L =0,如图4。03-1和图4。03-3中所示。在4。06节,4。09节,和4。10节中所讨论的最平坦和切比雪夫滤波器没有这种特性。在4。07 节中所讨论的最平坦时延滤波器,虽然在ω'=0处r A L =0,但是它不是对称或反对称的。

有些较少的情况下可能要求设计时n 大于15。在这些情况下可以增大n =14或n =15的设计,重复滤波器的两个中间元件得到很好的近似设计。这样,假定希望设计n =18,可以增大n =14的设计得到n =18的设计,把电路在元件7g 之后断开,将原件6g 和7g 重复两次,然后再和元件8g 以及其他元件相连。这样,用带撇的g 表示n =18滤波器的元件数值,用不带撇的g 表示n =14滤波器的元件数值,则n =1有下列的元件数值:

当然,这是一种近似方法,但是它的根是:对于给定的切比雪夫波纹,如果n 在10左右或更大,则当n 改变时,涉及元件的值变化非常小。这一点可以很容易看出,只要比较表4。05-2(b )中左边各烂中不同n 值对应的元件数值。

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

低通滤波器设计

微波低通滤波器 设计一个切比雪夫微波低通滤波器,技术指标为:截止频率f c =2.2 GHz ,带内波纹L Ar =0.2dB ;在阻带频率f s =4GHz 处,阻带衰减L As ≥30dB 。输入、输出端特性阻抗Z 0=50Ω。 方法1:用同轴线实现,其外导体直径为D =16mm ;高阻抗线特性阻抗Z 0h =138Ω;低阻抗线内、外导体间相对介电常数 r ε=2.54,特性阻抗Z 0l =10Ω。 方法2:用微带实现,其基片厚度h =0.8mm ,T =0.01mm ,相对介电常数r ε=9.0;高阻抗 线特性阻抗Z 0h =106Ω,低阻抗线Z 0l =10Ω。 任选一种方法,确定滤波器的结构尺寸,测量滤波器的参数 11 S 、 21 S 。进行适当调节,使 之达到最佳。记录滤波器的最终结构尺寸,并总结设计、调节经验。 设计步骤: 1.确定原型滤波器 利用MWO 软件中Wizard 模块的Filter Synthesis Wizard 功能,输入各项技术指标,即可自动画出原型滤波器的原理图,各个元件值还可进行优化。省去了传统方法的第一、二步。 启动Filter Synthesis Wizard 功能后,依次选择Lowpass ;Chebyshev ;在参数定义页,设 N:5 元件数目为5 FC:2.2 截止频率为2.2 GHz PP:Ripple(dB) 带内参数为波纹衰减 PV:0.2 波纹衰减值为0.2dB RS:50 输入端特性阻抗为50Ω RL:50 输出端特性阻抗为50Ω 再依次选择Ideal Electrical Model ;Lumped Element (集总元件);Shunt Element First (并联优先,即电容输入式);在原理图定义页,去掉Set Project Frequencies 项的选勾,其它保持不变。全部完成后,即生成名为Filter 的原型滤波器的原理图,以及相关的测量图、优化项。 设置工程的工作频率。范围设为1.0~4.5,每阶0.01,单位GHz 。 分析,即得滤波器响应图,包括参数11S 和12S 。 优化。先设置优化目标:即 2.2f GHz <时,11 2110, 0.2S dB S dB <->-;4f G H z >时, 2130S dB <- 。设好后,从主菜单选Simulate/Optimize ,进行优化。 最终确定原型滤波器的各个元件值(C1=C5=1.938pF ,C3=3.134pF ,L2=L4=4.836nH )。 2.不同结构滤波器的实际尺寸 ⑴ 同轴线结构 ① 计算内直径 从主菜单选Window/Txline ,分别计算各阻抗线的内直径。 设εr =1,f 0=1.1GHz , o D =16mm ,阻抗Z 0h =138Ω,得 i D =1.6013mm ;

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

低通滤波器

实验名称:FIR 低通滤波器的DSP 实现 一、实验目的 1、掌握用窗函数法设计FIR 数字滤波器的原理和方法。 2、熟悉线性相位FIR 数字滤波器的特性。 3、了解各种窗函数对数字滤波器的特性的影响。 二、实验设备 PC 兼容机一台(操作系统为Windows XP ),安装Code Composer Studio 2.2.1软件和MATLAB 6.5.1(含SIMULINK 工具包)软件。 三、实验内容 FIR 低通滤波器的DSP 实现 1、实验要求:用窗口法设计线性相位的FIR 低通滤波器,截止频率为1kHz ,采样速率为8kHz 。窗口大小N=11,分别加矩形窗和海明窗。检验结果并计算峰值的位置和过渡带宽度。 2、对设计要求的理解 (1)要设计的滤波器为理想低通滤波器,便于FIR 低通滤波器的实现。 (2)FIR 滤波器满足线性相位应具有以下两个条件:一是)1,,1,0()(-=N n n h 为 实数;二是h(n)满足以2 1 -= N n 的偶对称或奇对称,即)1()(n N h n h --±=。 故使用窗函数设计滤波器时,所加的窗都以原点对称,设计的理想滤波器的单位脉冲响应d(k)都以原点为偶对称或奇对称。同时保证了d(k)加窗平移后得到的h(n)以M=(N-1)/2对称,也就是保证了设计出的FIR 滤波器具有线性相位。 (3)低通滤波器的系数采用MATLAB 软件仿真工具产生,并把仿真产生的系数导出成头文件,运用到CCS 程序中。课题一中要求采用两种窗函数设计滤波器,两者仅仅是窗函数不同,相应的滤波器系数不同。运用MATLAB 产生两个窗函数对应的系数文件。同时对两种窗函数滤波效果进行对比。 (4)峰值和过滤带的宽度通过理论计算后,再和实际的信号波形进行对比。 3、窗函数法设计FIR 滤波器的思路 首先从窗口大小N 中计算出M ,其中2 1 -=N M ;其次是利用离散时间傅里叶 反变换,从)(ωd 中计算出滤波器系数d(k);最后考虑到滤波器的因果性,把d(k)延迟M 个单位得到因果的滤波器系数h(n),其中1,,1,0,)()(-=-=N n M n d n h 。 四、实验原理

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

巴特沃斯数字(精选)低通滤波器

目录1.题目...................................................................... (2) 2.要求...................................................................... . (2) 3.设计原理...................................................................... .. (2) 3.1数字滤波器基本概念 (2) 3.2数字滤波器工作原理 (2) 3.3巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法...................................................................... . (4) 3.5实验所用MATLAB函数说明 (5)

4.设计思路...................................................................... (6) 5、实验内容...................................................................... .. (6) 5.1实验程序...................................................................... (6) 5.2实验结果分析...................................................................... (10) 6.心得体会...................................................................... .. (10) 7.参考文献...................................................................... .. (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤

理想滤波器、原型模拟滤波器和窗函数的特性matlab6

实验六《理想滤波器、原型模拟滤波器和窗函数的特性》1、实验内容 1、计算下列理想数字滤波器的单位冲激响应,并画出其频率响应和单位冲激响应,观察单位冲激响应波形的对称特性 1)理想低通滤波器,截止频率0.3π,群延时10 2)理想高通滤波器,截止频率0.65 π,群延时20 3)理想带通滤波器,下、上截止频率0.35 π、0.7 π,群延时15 2、画出下列原型模拟滤波器的幅度响应特性、相位响应特性和衰减特性,频率范围0—12000Hz (调用freqs),观察它们在通带、阻带、过渡带宽度、相位特性等方面的特点。 1)巴特沃斯低通滤波器,截止频率5000π,阶数5,调用butter 2)切比雪夫I型低通滤波器,截止频率5000 π,阶数5,通带波纹0.5dB,调用cheby1 3)切比雪夫II型低通滤波器,截止频率5000 π,阶数5,阻带衰减50dB,调用cheby2 4)椭圆滤波器,截止频率5000 π,阶数5,通带波纹0.5dB,阻带衰减50dB,调用ellip 3、编写程序画出下列窗函数的时域图形和频域特性(幅度dB表示和相位),与矩形窗函数 相比,观察它们在阻带最小衰减、主瓣宽带等方面的特点。 1)矩形窗,长度40 2)三角窗,长度40 3)升余弦窗,长度40 4)Blackman,长度40 2、编程原理、思路和公式 1、首先写出理想低通、高通、带通滤波器的频率响应,画出其频谱图,然后根据计算 得到的各滤波器的脉冲响应,写出它们的Matlab表达形式,画出脉冲响应图形。 三者的程序类似,只是在具体的频率响应和脉冲响应的形式上有所差别。 低通单位脉冲响应: 1,|| () 0,|| ja j c LP c e H e ω ω ωω ωωπ - ?? ? ?? ≤ = <≤ 对应的单位脉冲响应为: 1 ()() 2 sin[()] 11 2() j j n LP LP ja j n c h n H e e d n a e e d n a πωω π πωω π ω π ω ω ππ - - - = - == - ? ? 高通单位脉冲响应为: sin[()] () () n a n a c h n HP n a ω π = - =- - 对应的单位脉冲响应为: sin[()]sin[()] () () H L n a n a h n BP n a ωω π --- = - 2、以butterworth低通滤波器为例,其余三种只是调用的函数不同而已,原理相同。首 先写出滤波器的阶数、截至频率,然后调用butter函数得到滤波器的系统函数,再调用freqs函数得到0-12000Hz范围内的频谱函数,最后画出幅度响应特性、相位响应特性和衰减特性的图形。 3、首先调用各种窗的Matlab函数生成各自的时域函数并画出时域图形,然后进行fft 变换得到频谱特性,再转化为幅度特性(db表示)和相位特性。各种窗的Matlab 函数是:矩形窗rectwin,三角窗triang,升余弦窗hanning,blackman窗blackman。

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器

《数字信号处理》 课程设计报告 用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器 学院: : 班级: 学号:

目录 一、设计目的及设计容 (2) 二、概念设计 (4) 三、详细设计 (14) 四、实验总结 (22) 五、参考文献 (23)

一、设计目的及设计容 当今,数字信号处理(DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。 数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。上述这些信号大部分是模拟信号,也有小部分是数字信号。模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。例如,对数字信号经行滤波以限制他的频带或滤除噪音和干扰,或将他们与其他信号进行分离;对信号进行频谱分析或功率谱分析以了解信号的频谱组成,进而对信号进行识别;对信号进行某种变换,使之更适合于传输,存储和应用;对信号进行编码以达到数据压缩的目的,等等。 数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。在所有的电子系统中,使用最多技术最复杂的要算数字滤波器了。数字滤波器的优劣直接决定产品的优劣。 1.1设计目的: (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。(3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

用窗函数法设计FIR数字低通滤波器要点

河北科技大学课程设计报告 学生姓名:学号: 专业班级: 课程名称: 学年学期 指导教师: 20 年月

课程设计成绩评定表 学生姓名学号成绩 专业班级起止时间 设计题目 指 导 教 师 评 指导教师: 语 年月日

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计内容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 1.6心得体会 (14) 参考文献 (15)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 () ?????≤<≤=-π ωωωωωαω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

相关主题