搜档网
当前位置:搜档网 › 电磁场复习提纲

电磁场复习提纲

电磁场复习提纲
电磁场复习提纲

第一章矢量分析

1.理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线的概念;

2.矢量场的散度和旋度、标量场的梯度是矢量分析中最基本的重要概念,应深刻理解,掌握散度、旋度和梯度的计算公式和方法;理解矢量场的性质与散度、旋度的相互关系。注意矢量场的散度与旋度的对比和几个重要的矢量恒等式。注意哈密顿算符在散度、旋度、梯度中的应用。

3.散度定理和斯托克斯定理是矢量分析中的两个重要定理,应熟练掌握和应用。

4.熟悉亥姆霍兹定理,理解它的重要意义。

5.会计算给定矢量的散度、旋度。并能够验证散度定理。理解无旋场与无源场的条件和特点。掌握矢量场的梯度和旋度的两个重要性质(课件例题,课本习题1.16、1.18、1.20,1.27)第二章电磁场的基本规律

1.电荷是产生电场的源,应理解电荷与电荷分布的概念,理解并掌握电流连续性方程的微分形式和积分形式;电流是产生磁场的源,应理解电流与电流密度的概念。

2.掌握真空中静电场的散度与旋度及其物理意义,真空中高斯定理的微分和积分形式。会计算一些典型电荷分布的电场强度。

3.熟悉掌握磁感应强度的表示及其特性。会计算一些典型电流分布的磁感应强度。掌握恒定磁场的散度和旋度及其物理意义;磁通连续性定理的微分、积分形式和安培环路定理的积分、微分形式。

4. 媒质的电磁特性有哪些现象?分别对应哪些物质?(1)电介质的极化有哪些分类?极化强度矢量与电介质内部极化电荷体密度、电介质表面上极化电荷面密度各有什么关系式?电介质中的高斯定理?电位移矢量的定义?电介质的本构关系?(2)磁化强度矢量与磁介质内磁化电流密度、磁介质表面磁化电流面密度之间各有什么关系式?磁化强度矢量的定义?磁介质中的安培环路定理?磁介质的本构关系?(3)导电媒质的本构关系/欧姆定律的微分形式?(式2.4.29),焦耳定律的微分形式、积分形式?

5. 电磁感应定律揭示了随时间变化的磁场产生电场这一重要的概念,应深刻理解电磁感应定律的意义,掌握感应电动势的计算。麦克斯韦发现从静磁场中得到的安培环路定理对时变场是不适用的。他据此提出了位移电流的假说。位移电流揭示了随时间变化的电场产生磁场这一重要的概念,应理解位移电流的概念及其特性。

6麦克斯韦方程组是描述宏观电磁现象的普遍规律,是分析、求解电磁场问题的基本方程。必须牢固掌握麦克斯韦方程组的微分形式、积分形式、复数形式和限定形式(包括有源区域和无源区域),深刻理解其物理意义,掌握媒质的本构关系。

7.电磁场的边界条件是麦克斯韦方程组在不同媒质分界面的表现形式,它在求解电磁场边值问题中起定解作用,应正确理解和使用边界条件。掌握3种不同情况下电磁场各场量的边界条件。

8.能够利用麦克斯韦方程求解简单的电磁场问题。(例题 2.5.3,2.5.4,2.7.1,2.7.3,课件例题)

第三章静态电磁场及其边值问题的解

1.静电场的基本变量和基本方程揭示出静电场的基本性质,也是分析求解静电场问题的基础。应牢固掌握静电场的基本变量和基本方程和不同介质分界面上场量的边界条件,深刻理解静电场的基本性质,并熟练地运用高斯定律求解静电场问题。掌握静电场能量的计算公式。

2.电位是静电场中的一个重要概念,要理解其物理意义,掌握电位与电场强度的关系;

掌握电位的微分方程(泊松方程和拉普拉斯方程),会计算点电荷系统和一些连续分布电荷系统(如线电荷、面电荷、体电荷)的电位。掌握不同介质分界面上电位的边界条件(分界面两侧)(3.1.19,3.1.20),及导体表面电位的边界条件(3.1.22)。了解静电力计算一般采用虚位移法。

3. 理解恒定电场的概念,掌握其基本变量和基本方程,熟悉理想导体、良导体和理想介质的定义,掌握恒定电场的基本方程和边界条件(场量表示的和电位函数表示的),能正确地分析和求解恒定电场问题;了解恒定电场与静电场的异同。

4. 掌握恒定磁场的基本变量、基本方程与边界条件,熟悉恒定磁场的基本性质,熟练运用安培环路定理求解具有一定对称性分布的磁场。矢量磁位和标量磁位对求解磁场分布起着重要作用,应深刻理解矢量磁位和标量磁位的定义,掌握它们所满足的微分方程及边界条件,并会利用矢量磁位和标量磁位求解一些简单的磁场分布问题。掌握库仑规范的表达式及其意义。

5. 恒定磁场的许多公式在形式上与静电场相似,但在物理概念上又存在本质区别。应特别注意恒定磁场与静电场的对比,将静电场中分析求解问题的方法和所得到的一些结论推广应用到恒定磁场中。掌握磁场能量及能量密度的表达式。了解可以用安培定律或虚位移法计算磁场力。

6. 掌握静电场的三类边值问题(定义),明确静态场问题的求解,都可以归结为在给定边界条件下求解位函数的泊松方程和拉普拉斯方程。明确什么是场的惟一性问题。惟一性定理是静电场边值问题的各种解法的理论根据,其概念非常重要,应深刻理解其内容和意义。熟悉静电场的边值问题的求解思路及实际边值问题的三类边界条件。

7. 求解静态场边值问题的方法分类(解析法,数值法)及各自具体分类。具体三种方法(分离变量法、镜像法、有限差分法)的定义、原理。分离变量法是求解边值问题的一种基本方法,应熟悉其基本原理,掌握直角坐标系下分离变量法解题的步骤和方法。

8.镜像法是一种简单而实用的方法,要理解镜像法的原理,熟悉典型的像电荷分布,能够

根据不同情况确定镜像电荷的个数、大小和位置。

9.分离变量法和镜像法都是解析法求解边值问题的实际方法。有限差分法是数值法分析边值问题的方法。

第四章时变电磁场

1.掌握无源区域的波动方程和有源区域的波动方程并能够证明。

2.掌握时变电磁场的矢量位和标量位的概念以及其满足的微分方程,掌握洛仑兹条件和达朗贝尔方程。

3.表征电磁能量守恒关系的坡印廷定理是电磁场的能量转换与守恒定律,应深刻理解其物理意义。坡印廷矢量描述了电磁能量的传输,是电磁场中的一个重要概念,必须熟悉其定义式、深刻理解其物理意义并应用它分析计算电磁能量的传输。

4掌握时变电磁场中麦克斯韦方程解的惟一性定理,并能表述其物理意义。

5.掌握时谐电磁场的复数表示及复矢量的麦克斯韦方程,理解复电容率和复电导率的涵义,掌握损耗角正切的定义及其物理意义,根据损耗角正切的大小如何对媒质进行分类?注意:同一媒质在低频和高频时可能呈现不同的性质。

6.什么是时谐电磁场的平均能流密度矢量?计算公式是什么?(实数形式和复数形式),掌握平均坡印廷矢量的计算。(课件例题,例4.5.4,习题4.11)

第五章均匀平面波在无界空间中的传播

1.掌握亥姆霍兹方程,理解它的推导过程,掌握麦克斯韦方程的复数形式。掌握正弦平面波的平均坡印廷矢量的计算。

2.掌握均匀平面电磁波在无界理想介质和导电媒质中的传播特点,能够熟练计算理想介质中的均匀平面波的频率、波长、波数、波速、波阻抗(本征阻抗)、

电场与磁场的实数与复数表达式及瞬时坡印廷矢量、平均坡印廷矢量等。(?课件上例题,课本例5.1.1,5.1.2,5.1.4,作业题中相关环节题目)

3.掌握波的极化类型的判断,能够对不同表达方式的波进行极化方式及传播方向的判断。(?课件上例题,课本例5,2,1,作业题中相关内容)

4.熟练掌握均匀平面波在导电媒质中传播的相关计算,理解均匀平面波在损耗媒质中的传播特性,能够计算不同导电媒质(弱导电媒质,良导体)中波的衰减因子、相位因子、本征阻抗、相速、波长、磁场和电场的复数和实数表达式、平均坡印廷矢量等相关计算并能灵活应用。(?课件例题,课本例

5.3.1,作业相关题目)

5. 掌握群速和相速之间的关系,掌握色散现象和色散媒质的概念,清楚无色散、正常色散和反常色散的区分条件。理解趋肤深度和趋肤效应等概念及表达式。

第六章均匀平面波的反射与透射

1.熟练掌握均匀平面波对三种不同媒质平面分界面(导电媒质分界面、理想导体平面、理想介质分界面)的垂直入射的分析计算,熟悉均匀平面波在不同媒质平面分界面的波阻抗、波数、反射系数、透射系数和驻波比的概念及公式。能够利用反射系数、透射系数对不同介质的平面分界面两侧的磁场和电场的复数表达式、实数表达式进行分析和计算。

2.能够判断入射波、透射波的极化类型,能够计算入射波、反射波和透射波的平均坡印廷矢量(平均功率密度)。(课件例题,课本例6.1.1,课后作业题)

3.掌握折射定律和反射定律及其表达式;掌握全反射与全透射的概念和特点。掌握临界角和布儒斯特角的概念和公式。

第七章导行电磁波

1.熟悉沿均匀导波装置传播的波的分类及特点(TEM波、TE波、TM波)。掌握用两个纵向场分量表示其余横向场分量的原理,掌握不同导波装置中不同波传播的条件和特点。

2.熟悉矩形波导的特点,掌握矩形波导中能够传输的波是哪些?理解矩形波导中不同结构模式波的模式分布图及不同分区。掌握矩形波导中波的传播特性,了解典型波的截止频率和截止波长。掌握单模传输时不同波对波导的尺寸要求。(例7.2.1,例7.2.2,例7.2.3)

3.矩形波导的主模是TE10模,掌握单模传输的优点。

4.圆柱形波导的特点,其中能够传播的波有哪些?掌握矩形波导中波的传播特性,圆柱形波导的主模是TE11模。

5.同轴波导的特点,其中能够传输的波是什么?同轴波导的主模是什么模?同轴波导中如何根据实际需要选择波导尺寸a,b的值?

6.了解谐振腔的定义与特点。掌握谐振腔的两个重要参量的物理意义及其计算公式。

7.熟悉传输线的三种工作状态及其特点。

考试题型:

填空题(20分)、选择题(单选)(10分)、是非题(5分)、名词解释(8分)、简答题(15分)、综合题(42分)

补充:相关知识总结

1.均匀平面波

均匀平面波的波阵面(或等相位面、波前)为平面,且在波阵面上各点的场强都相等。

也就是说,均匀平面波的电场E和磁场H除与时间t有关外,仅与传播方向的空间坐标变量有关。

均匀平面波:在与波传播方向垂直的无限大平面(即等相位面)内波场的方向、振幅和相位都相同。它的特性及讨论方法简单,但又能表征电磁波重要的和主要的性质。

均匀平面波是电磁波的一种最简单形式。实际应用的各种复杂形式的电磁波可以看成是由许多均匀平面波叠加的结果;远离波源的球面波,当所讨论的区域很小,可近似地看成平面波。分析均匀平面波这一特殊的电磁波形式,既可以使问题大大简化,又不妨碍对电磁波传播特性的认识,因此有着重要意义。重点是掌握均匀平面波在无界理想介质和有损耗媒质中的传播性;波的极化也是重点,它在分析波的反射和透射时有重要意义,不同极化的波有不同的应用领域。

均匀平面波在无界理想介质中传播时,其传播特性可归纳如下:

①是一个横电磁波(TEM波),电场E和磁场H都在垂直于传播方向的横向平面内。

②电场E与磁场H相互垂直,且沿波的传播方向(即波矢量的方向)。

③电场E与磁场H同相位,是实数。

④波在传播过程中无衰减,波形不变化。波的相速只与媒质参数? 、ε有关,与频率无关,是非色散波。

均匀平面波在损耗介质中传播时,其传播特性可归纳如下:

①是一个横电磁波(TEM波),E和H都在垂直于传播方向的横向平面内。

②E与H相垂直,且沿波矢量的方向。

③E与H不同相位,是复数。

④波在传播过程中有衰减,波形要发生变化。波的相速不仅与媒质参数? 、ε、有关,还与频率有关,是色散波。

2.波矢量

波矢量k的大小等于波数k,方向则用波传播方向的单位矢量表示,即。这是描述电磁波传播特性的一个重要参数,它的大小直接表征电磁波的相位、相速、波长、衰减等参数,它的方向就是电磁波的传播方向。

在理想介质中,波矢量是一个实常矢量。它表明波在传播过程中无衰减,波形无变化。

在有损耗媒质中,波矢量是一个复矢量。它表明波在传播过程中有衰减,波形要发生变化。

引入传播常数,表征振幅的衰减,表征相位的变化。都是频率的复杂函数。

3.波阻抗

均匀平面波的电场与磁场的振幅之比称为波阻抗。它是表征电磁波特性的又一个重要参数,其大小和相位直接表征电场和磁场的相对大小和相位关系。

对于理想介质,波阻抗是一个仅与媒质参数?、ε有关的实数,表明电场和磁场同相位。

对于有损耗媒质,波阻抗为是一个不仅与媒质参数有关,还与频率有关的复数,表明磁场的相位落后电场一个临界角。

应该指出,引入波阻抗便于讨论电磁波在分界面上的入射、反射和透射问题,特别是处理对多层媒质的垂直入射问题时,等效波阻抗的概念很有用。

4.均匀平面波的反射和透射

电磁波的反射和透射,涉及不同媒质的分界面。简单的均匀平面波经反射后,将会出现波的叠加,形成驻、混合波、表面波等,引入了许多新概念,是教学中的难点,特别是斜入射问题。

重点是掌握对分界面的垂直入射问题。关于对分界面的斜入射问题,要紧紧抓住波沿任意方向传播的场表示式以及正确应用边界条件,讲清楚分析方法。

5.*波的全反射现象

平面电磁波斜入射到理想导体表面上会发生全反射。在一定条件下,平面电磁波斜入射到理想介质表现时也会发生全反射。这种全反射现象有重要意义和实用价值,例如光纤通信。

当平面波从稠密媒质(介电常数相对较大的介质)入射到稀疏媒质(介电常数相对较小的介质),且入射角等于或大于临界角时,就会发生全反射现象。下面从反射系数的大小和幅角来说明全反射现象。

入射角等于或大于临界角时,无论入射波是平行极化还是垂直极化,反射系数的模都等于1,表明发生了全反射。

应该指出,当发生全反射时,仍有透射波存在,但它已不是通常意义上的透射波,而是只存在于分界面的第二种介质一侧的薄层内、沿分界面方向传播的所谓表面波。这一结果说明在一定条件下,介质分界面也有引导电磁波的可能性。

1

工程电磁场复习提纲及考点

第一部分:电磁场的数学工具和物理模型 来源:工程电磁场原理教师手册 场的概念;场的数学概念;矢量分析; 数学工具:在不同坐标系下的数学描述方法;巩固标量场梯度的概念和数学描述方法;掌握散度在直角坐标系下的表达形式;掌握旋度在直角坐标系下的表达形式;强调几个矢量分析的恒等式:0=???V (任何标量函数梯度的旋度恒等于零);0)(=????A (任意矢量函数旋度的散度恒等于零);() A A A 2?-???=????;?????+??=??A A A )(; V V 2?=???。 亥姆霍兹定理推导出:无旋场(场中旋度处处为零),但散度不为零;无散场(无源场):场中散度处处为零,但其旋度不为零;一般矢量场:场中散度和旋度均不为零。无限空间中的电磁场作为矢量场)(r F 按定理所述,其特性取决于它的散度和旋度特性,而用公式可以表示为:)()()(r A r r F ??+-?=?,其中标量函数?-??= V dV r r r F r '') '('41)(π?,矢量函数?-??= V dV r r r F r A '' ) '('41)(π,由此可见,无限空间中的电磁场)(r F 唯一地取决于其散度和旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。 电场强度E 与电位?的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其电场分布的特点。了解极化电荷、极化强度P 的定义及其物理意义。连接通过极化电荷求极化电场分布的积分形式。 理解电位移矢量D 的定义,以及D 、E 和P 三者之间的关系。对电介质中的静电场,会求解其相应对称的场的分布。

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 00 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

3 静电场基本知识点 (1)基本方程 00 22=?==?- =?=?=??=?=?????A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电 位方程(注意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计 算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 :

电磁学_赵凯华_教学大纲

第1章电磁学教学大纲 (包括讲座共60学时) 第2章静电场参考学时 10 §1 库仑定律 ?扭称实验及其它实验,电力平方反比律?库仑定律的物理内涵 ?库仑定律的成立条件? 电荷守恒定律,电荷的量子性§2 电场电场强度 ?电场,电场强度矢量?场强叠加原理 §3 静电场的高斯定理 ?源与旋,通量与环流?静电场的高斯定理 §4 静电场的环路定理电势 ?静电场的环路定理?关于静电场高斯定理和环路定理的几点说明?电势?场强与电势的微分关系 §5静电场的基本微分方程* 讲座:“电力平方反比律的理论与示零实验”; 第3章静电场中的导体和电介质参考学时 8 §1导体和电介质 §2 静电场中的导体 ?导体的静电平衡条件?导体空腔与静电屏蔽 ?导体的静电平衡的基本性质?静电场边值问题的唯一性定理 ?尖端放电及其应用 §3电容和电容器 ?孤立导体的电容?电容器及其电容 ?平行板电容器球形电容器同轴柱形电容器 ?分布电容?电容器的串并联 §4 电介质极化 ?极化的微观机制?极化的描绘 ?极化强度矢量P和极化电荷q’的关系

?极化强度矢量P和总电场E的关系——极化规律 ?各向异性电介质铁电体?例题 §4有介质时的静电场 ?有介质时的高斯定理电位移矢量?应用例举 §5静电场的边界条件 ?D的法向分量连续?E的切向分量连续 §5带电体系的静电能 ?带电体系的静电势能?电容器储存的静电能 ?静电场的能量 第4章直流电参考学时 4 §1电流的连续性方程恒定条件 ·电流和电流密度矢量·电流的连续性方程恒定条件§2欧姆定律 · 欧姆定律(积分形式)·电阻率和电导率 ·欧姆定律(微分形式)·焦耳定律 ?金属导电的经典微观解释 §3 电源和电动势 ?电源的电动势?电源的路端电压 ?电源的功率?直流电路中的静电场的作用?温差电动势 §4 直流电路 ?简单电路·复杂电路基尔霍夫定律 第5章恒定磁场参考学时 10 §1奥斯特实验 ?磁的基本现象?奥斯特实验?相关实验?研究课题§2毕奥-萨伐尔定律 ?毕奥-萨伐尔定律的建立?磁感应强度?载流回路的磁场§3磁场的“高斯定理”和“安培环路定律”

电磁场与电磁波课程教学大纲

《电磁场与电磁波》课程教学大纲适用专业:电子信息专业本科 学时:50 学分:3学分 课程代码:B01000252 一、教学目的、任务与教学原则和方法 一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。因此,在各国的理工科大学中,《电磁场与电磁波》都是通信工程、电子信息工程等专业的专业基础课,课程理论性、系统性很强,逻辑严谨,学习它不仅可以获得场和波的理论,而且有助于培养正确的思维方法和分析问题的能力。 “电磁场与电磁波”还是多种学科的交叉点,它不仅是微波、天线、电磁兼容的理论基础,而且各种现代通信方式,如光纤通信、移动通信、卫星通信,以及电视、雷达等各种专门学科,都是以电磁波携带信息的方式来实现的。广泛应用的超小超薄的大规模集成电路更是充满了电磁场的问题。由于“电磁场与电磁波”是众多学科的理论基础,从而成为相关专业课程建设的一个非常重要的环节。 本课程包括电磁场与电磁波两大部分。电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法。电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论,其教学目的和要求: (一)内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 (二)能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风。 (三)方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。在帮助学生打下坚实基础的前提下,坚持教学内容与现代科学技术接轨,使现代科学技术的成果渗透到本课程内容之中,提高学生的兴趣,拓宽学生的知识面。 通过本课程的学习,使学生牢固掌握电磁场与电磁波方面的基本概念、基本理论及主要分析方法,具有基本的电磁问题解题能力,对天线理论也要有一定的了解。为以后现代通信技术的学习与应用打下良好的基础。 二、本课程的内容及要求 第一章矢量分析 【教学目的和要求】 理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线

电磁场理论复习题

1. 两导体间的电容与_A__有关 A. 导体间的位置 B. 导体上的电量 C. 导体间的电压 D. 导体间的电场强度 2. 下面关于静电场中的导体的描述不正确的是:____C__ A. 导体处于非平衡状态。 B. 导体内部电场处处为零。 C. 电荷分布在导体内部。 D. 导体表面的电场垂直于导体表面 3. 在不同介质的分界面上,电位是__B_。 A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 4. 静电场的源是A A. 静止的电荷 B. 电流 C. 时变的电荷 D. 磁荷 5. 静电场的旋度等于__D_。 A. 电荷密度 B. 电荷密度与介电常数之比 C. 电位 D. 零 6. 在理想导体表面上电场强度的切向分量D A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 7. 静电场中的电场储能密度为B A. B. C. D. 8. 自由空间中静电场通过任一闭合曲面的总通量,等于B A. 整个空间的总电荷量与自由空间介电常数之比 B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。 C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。 D. 该闭合曲面内所包围的总电荷量。 9. 虚位移法求解静电力的原理依据是G A. 高斯定律 B. 库仑定律 C. 能量守恒定律 D. 静电场的边界条件 10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化? A. 变大 B. 变小 C. 不变 D. 不确定 11. 恒定电场中,电流密度的散度在源外区域中等于B____ A. 电荷密度 B. 零 C. 电荷密度与介电常数之比 D. 电位 12. 恒定电场中的电流连续性方程反映了___A_ A. 电荷守恒定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 13. 恒定电场的源是___B_ A. 静止的电荷 B. 恒定电流 C. 时变的电荷 D. 时变电流 14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的D A. 电量 B. 电位差 C. 电感 D. 电容 15. 恒定电场中,流入或流出闭合面的总电流等于__C___ A. 闭合面包围的总电荷量 B. 闭合面包围的总电荷量与介电常数之比 C. 零 D. 总电荷量随时间的变化率 16. 恒定电场是D A. 有旋度 B. 时变场 C. 非保守场 D. 无旋场 17. 在恒定电场中,分界面两边电流密度矢量的法向方向是B A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 18. 导电媒质中的功率损耗反映了电路中的_D____

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(???????? ?????? ???? ??ρ 本构关系: E J H B E D ? ???? ?σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000?????????????ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-??????????? ???((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-?==-?==-?==-?????????? ???((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ ???????? 本构关系: E D ? ?ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波课程教学大纲通信工程

《电磁场与电磁波》教学大纲 一、课程基本信息 课程名称:电磁场与电磁波 课程编码:58083004 课程类别:专业教育必修 适用专业:通信工程 开课学期:3-3 课程学时:总学时: 64学时;其中理论 48 学时,实验 16 学时。 课程学分:4 先修课程:大学物理、模拟电子线路、数字逻辑电路 并修课程: 课程简介:《电磁场与电磁波》课程是高等学校通信工程等电子科学与技术类各专业本科生必修的一门技术基础课。电磁场与电磁波是通信技术的理论基础,是通信工程专业本科学生的知识结构中重要组成部分。本课程包括电磁场与电磁波两大部分。电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法。电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论。 二、课程教育目标 本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。其教育目标主要表在以下三方面: 1、内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 2、能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风。 3、方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。在帮助学生打下坚实基础的

大学物理电磁学复习提纲(赵凯华)

复习提纲 第一章 §1运用库仑定律 §2理解电场强度电场线能用叠加原理求电场分布(包括离散的电荷分布和电荷的连续分布)求带电体在电场中所受的力及其运动 §3高斯定理熟练运用高斯定理求解电场 §4 理解电势和电势差理解静电场力作功与路径无关及静电场的环路定理能运用叠加原理和电势定义式求电势分布理解等势面理解电势梯度及与电场的关系 §5 熟悉导体静电平衡条件理解静电平衡导体的性质、导体上的电荷分布、静电屏蔽熟练掌握有静电平衡导体问题的一般求法 §6 了解静电能的概念 §7 了解孤立导体的电容熟知典型电容器的电容能熟练求解简单电容器的电容、电容器的能量 §9 理解电流密度矢量熟悉并且能运用欧姆定律的微分形式,理解电流的连续性方程、稳恒电流条件理解电动势并且能在电路中运用 熟悉例题1—15,22—27。 参考习题 3、13、18、25、36、37、46、52、66 第二章 §1 理解电流的磁效应了解安培定律、电流单位的定义 §2 理解B的定义熟悉毕萨定律并且能求解简单情况下的问题(包括2.3, 2.4, 2.5的情形) §3 熟悉安培环路定理且能熟练应用求解问题 §4 了解磁场的高斯定理 §5 熟悉安培力熟练求解导体棒和线圈在磁场中所受的力和力矩 §6 熟悉洛仑兹力及特点,能求解简单磁场分布下带电粒子在磁场中的运动问题理解霍尔效应并且能求解 熟悉例题5—8,12--13 参考习题 1、2、3、4、7、14、16、17、23、28、32、43、50 第三章 §1 熟悉电磁感应现象能熟练应用电磁感应定律和楞次定律了解涡电流和电磁阻尼 §2 熟练应用动生电动势公式了解交流发电机原理理解感生电场能求轴对称磁场情况下感生电动势了解感应加速器 §5 理解互感和自感现象能求简单情况的自感和互感、两线圈顺接和反接的自感、互感系数和自感系数的关系熟悉自感磁能的公式,了解互感磁能 熟悉例题1—3,7—9, 参考习题 3、4、5、11、12、14、26、32、35 第四章 §1 理解极化概念了解极化的微观机制理解极化强度P的定义、退极化场的概念能求解极化电荷面密度熟悉D的定义,理解D、E、P三者的关系能熟练

《电磁学》教学大纲解析

《电磁学》教学大纲 英文名称:electromagnetics 授课专业:物理学学时:72学分:4 开课学期:二年级上学期 适用对象:物理学专业 一、课程性质与任务 电磁学是物理学专业的一门专业基础课。电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。 二、课程教学的基本要求 1 、正确理解以下基本概念和术语: 基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。 2 、掌握以下基本规律及分析计算方法 (1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。 (2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)

(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。 (4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。 (5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。 3 、注意培养学生以下几方面能力 (1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。 (2)积极思考并总结研究方法、实验技能,培养创新意识。 (3)灵活有效应用高等数学知识,解决物理问题,进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。 三、课程教学内容 第一章静电场的基本规律(12课时) 第二章有导体时的静电场(8课时) 第三章静电场中的电介质(8课时) 第四章恒定电流和电路(8课时) 第五章恒定电流的磁场(12课时) 第六章电磁感应与暂态过程(12课时) 第七章磁介质 (8课时) 第九章时变电磁场和电磁波(4课时) 四、教学重点、难点 静电场的高斯定理,静电场的环路定理,电位,静电平衡时导体的性质,用电力线工具讨论静电平衡的若干电现象,电介质存在时场的讨论方法及场强计算,电介质存在时高斯定理的应用,电动势的物理意义及数学表示方法,基尔霍夫方程组求解电路,磁感应强度矢量的概念,毕奥—萨伐尔定律,磁场的

电磁学期末考试试题 2

电磁学期末考试 一、选择题。 1. 设源电荷与试探电荷分别为Q 、q ,则定义式q F E =对Q 、q 的要求为:[ C ] (A)二者必须是点电荷。 (B)Q 为任意电荷,q 必须为正电荷。 (C)Q 为任意电荷,q 是点电荷,且可正可负。 (D)Q 为任意电荷,q 必须是单位正点电荷。 2. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度:[ C ] (A)处处为零。 (B)不一定都为零。 (C)处处不为零。 (D)无法判定 3. 当一个带电体达到静电平衡时:[ D ] (A)表面上电荷密度较大处电势较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ A ] (A) R qQ 06πε,R qQ 06πε-。 (B) R qQ 04πε,R qQ 04πε-。 (C)R qQ 04πε- , R qQ 04πε。 (D)R qQ 06πε-,R qQ 06πε。 5. 相距为1r 的两个电子,在重力可忽略的情况下由静止开始运动到相距为2r ,从相距1r 到相距2r 期间,两电子系统的下列哪一个量是不变的:[ C ]

(A)动能总和; (B)电势能总和; (C)动量总和; (D)电相互作用力 6. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面。今以该圆周为边线,作一半球面s , 则通过s 面的磁通量的大小为: [ B ] (A)B r 2 2π。 (B)B r 2 π。 (C)0。 (D)无法确定的量。 7. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ A ] (A)位移电流是由变化电场产生的。 (B)位移电流是由线性变化磁场产生的。 (C)位移电流的热效应服从焦耳—楞次定律。 (D)位移电流的磁效应不服从安培环路定理。 8.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。问那个区域中有些点的磁感应强度可能为零:[ D ] A .仅在象限1 B .仅在象限2 C .仅在象限1、3 D .仅在象限2、4 9.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为:[ D ] A .P B >Q B >O B B .Q B >P B >O B C . Q B >O B >P B D .O B >Q B >P B

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总 结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ω e =εE 2/2 或者电容(C=Q/φ)。 (3)典型问题 导体球(包括实心球、空心球、多层介质)的电场、电位计算; 长直导体柱的电场、电位计算; 平行导体板(包括双导体板、单导体板)的电场、电位计算; 电荷导线环的电场、电位计算; 电容和能量的计算。 例: a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

电磁场与电磁场教学大纲

《电磁场与电磁波》课程教学大纲 课程编号:210522 课程性质:学科专业基础课 课程组长:申勇/教授 总学分值:总学分:4学分,其中理论4学分,实验实践0学分。 总学时数:总学时:64学时,其中理论学时64,实验实践0学时。 适用专业:电子信息工程 先修课程:高等数学,大学物理 后续课程:电磁场与微波技术、天线理论与设计等 一、课程简介 1、课程性质与定位:(字数原则上控制在260字左右) 《电磁场与电磁波》是通信工程、电子信息工程等专业的专业基础课,是多个学科的理论基础,如微波、天线、电磁兼容等。课程理论性、系统性很强,逻辑严谨,学习它不仅可以获得场和波的理论,而且有助于培养正确的思维方法和分析问题的能力。各种现代通信方式,如光纤通信、移动通信、卫星通信,以及电视、雷达等各种专门学科,都是以电磁波携带信息的方式来实现的。广泛应用的超小超薄的大规模集成电路更是充满了电磁场的问题。因此,《电磁场与电磁波》是相关专业课程建设一个非常重要的环节。 2、教学目的与要求:(字数原则上控制在260字左右) 内容方面,学生应牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 通过本课程的学习,使学生牢固掌握电磁场与电磁波方面的基本概念、基本理论及主要分析方法,具有基本的电磁问题解题能力,对天线理论也要有一定的了解。为以后现代通信技术的学习与应用打下良好的基础。 3、教学重点与难点:(字数原则上控制在260字左右)

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

哈工大电磁场与电磁波课程总结

电磁场与电磁波课程总结 时代背景 麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。它揭示出电磁相互作用的完美统一,而这个理论被广泛地应用到技术领域。 1831年,法拉第发现了电磁感应现象,揭示了电与磁之间的重要联系,为电磁场完整方程组的建立打下了基础。截止到1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培-毕奥-萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。场是一种看不见摸不着而又确实存在的东西,它可以用来描述空间中的物体分布情况,进而用空间函数来表征。“场”概念的提出,使得人们从牛顿力学的束缚中摆脱出来,从而对微观以及高速状态等人类无法用肉眼观测的世界,有了更加深入的认识。1864年,麦克斯韦集以往电磁学研究之大成,创立了电磁场的完整方程组。1868年,麦克斯韦发表了《关于光的电磁理论》这篇短小而重要的论文,明确地将光概括到电磁理论中,创立了“光的电磁波学说”。这样,原来相互独立发展的电、磁和光就被巧妙地统一在电磁场这一优美而严整的理论体系中,实现了物理学的又一次大综合。 德国物理学家赫兹深入研究了麦克斯韦电磁场理论,决定用实验来验证它。通过多年的实验探索,于1886年首先发现了“电磁共振”现象,紧接着在1888年发表了《论动电效应的传播速度》一文,以确凿的实验事实证实了麦克斯韦关于电磁波的预言和光的电磁理论的正确性,到此,麦克斯

电磁场理论复习提纲

电磁场理论复习提纲 一、矢量分析与场论基础 主要内容与问题: ①矢量及矢量的基本运算; ②场的概念、矢量场和标量场; ③源的概念、场与源的关系; ④标量函数的梯度,梯度的意义; ⑤正交曲线坐标系的变换,拉梅系数; ⑥矢量场的散度,散度的意义与性质; ⑦矢量函数的旋度,旋度的意义与性质 ⑧正交曲线坐标系中散度的计算公式; ⑨矢量场的构成,Helmholtz定理; ⑩正交曲线坐标系中散度的计算公式。 二、宏观电磁场实验定律 主要内容与问题: ①库仑定律,电场的定义,电场的力线; ②静电场的性质(静电场的散度、旋度及电位概念); ③Ampere定律;磁感应强度矢量的定义,磁场的力线; ④恒定电流磁场的性质(磁场的散度、旋度和矢势概念);

⑤Faraday电磁感应定律,电磁感应定律的意义; ⑥电流连续原理(或称为电荷守恒定律) ⑦电磁场与带电粒子的相互作用力,Lorentz力公式。 三、介质的电磁性质 主要内容与问题: ①电磁场与介质的相互作用的物理过程; ②介质极化,磁化、传导的宏观现象及其特点; ③介质的极化现象及其描述方法,电位移矢量; ④介质的磁化现象及其描述方法,磁场矢量; ⑤介质的传导现象及其描述方法,欧姆定律; ⑥介质的基本分类方法及电磁特性参数与物质本构方程; ⑦极化电流、磁化电流与传导电流产生原因及其异同点; ⑧介质的色散及其产生的原因,色散在通信中带来的问题; 四、宏观Maxwell方程组 主要内容与问题: ①静态电磁场与电流连续性原理的矛盾; ②位移电流概念及其意义; ③宏观电磁场运动的Maxwell方程组; ④Maxwell方程组的物理意义; ⑤宏观Maxwell的微分形式、积分形式、边界条件;

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

相关主题