搜档网
当前位置:搜档网 › 论物理模型及其构建

论物理模型及其构建

论物理模型及其构建
论物理模型及其构建

论物理模型及其构建

[浙江永嘉县上塘中学 325100 钱呈祥]

物理建模是一种物理的思考方法,是对现实世界的一种用物理语言和方法,通过抽象、简化,建立近似刻画并解决实际问题的物理解决方案。中学物理建模的教学活动,有助于改变物理教学中只重视定义、概念、定律、计算等抽象化和形式化的倾向。在物理模中,学生需要进行对信息的搜寻、筛选和处理,需要对问题进行挖掘、加工,分析问题中包含的信息,了解问题的背景材料,检索与材料有关的资料,这一些都有助于培养学生的转化能力,应用物理思想方法的能力、发展学生的想象能力。大量的常模那么参照测试(即选拔性考试)证明:考核学生物理建模能力的试题往往有较大的区分度。那么,物理教师应如何编制和选用一些考查学生建模能力的习题来提高学生素质呢?下面,笔者结合物理建模的类型和目标,来谈谈如何编制和选用此类习题。

一、模型的识别

要求学生对模型作出识别的习题,一般呈现的是浅层的知识点,如物理概念中出现的理想化模型。如质点、光滑平面、弹簧振子、理想气体、点电荷,薄透镜等。

例1:两个半径为3cm的铁制小球,各带有1.0×10-8C的正电荷,当两球球心相距10cm时,两球间的库仑力为[ ]

A、引力9.0×10-5牛

B、斥力9.0×10-5牛

C、0

D、无法确定

-1-

-2- 评论:部分学生可能会根据库仑定律的数学表达式解得选项B 。实际上此题中指出两球半径为3cm ,两球心相距10cm ,显然均不能看作点电荷,不能应用库仑定律。学生如果掌握点电荷这个理想化模型,易得D 为正确,该题的库仑力精确值计算难度很大,因为两球相距近的一面感应出部分异性电荷,计算将涉及电动力学。

例2:物体A 在斜面B 上以某一初速滑下。已知斜面长12m ,倾角30°,物体A 到达底端时末速为9.8m/s ,历时2S 。该过程的平均速度为 。

评论:可能有学生会认为a=gSin30°=9.8×0.5=4.9(m/s 2)

由V t =V 0+at

得V 0=V t -at=9.8-4.9×2=0 30?

)/(9.42

8.90s m V =+= 当然,这种解法是错的。因为斜面可能粗糙,a ≠gSin30°,如果识别出S=12m ,t=2S 。则易得)/(62

12s m t S V ===。 例3:铜制水平矩形框长宽之比为4:1,其中短边ab 为活动边,电阻为1欧,长度为2米,正具有向左的速度5m/s ,其余各边保持静止。线框所在处有竖直向上匀强磁场,磁感应强度为0.1特斯拉。

求a 、b 两点间的电压。

评论:此题为笔者为本校标准参照测试拟的习

题,区分度为0.4以上。如果学生看出ab 边相当

于电源,ε=BLV ,ab 两点间电压为路端电压,U ab =

10

9ε;则该题迎刃而解。

-3-

千变万化的物理习题都是根据一定的物理模型,结合某些物理关系,给出一定的条件,提出需要求的物理量。我们解题的过程,就是将题目隐含的物理模型识别出来,将其还原。

二、模型的转化

物理模型的转化,指的是通过联想,从一概念到另一概念,从一规律到另一规律,从一模型到另一模型。以一些已知的物理模型为思维元素,并借助它们进行思维,从而迅速把握处理物理问题方向的一种方法。

例1:质量为1kg 的小球,作初速度为10m/s 的平抛运动。求经过2S 的动量改变。

评论:平抛运动的物体,其轨迹为抛物线,速度在切线方向。若据动量塔量的定义来解,则是一个二维问题,必然要用到平行四边形定则,繁琐得很。若转化为重力的冲量,则△P=mg ·t=1×9.8×2=19.6(N ·S )。

例2:质点质量m=1kg ,作匀速圆周运动,ω=

s rad /2π,r=0.5m 。经过时间2S ,求向心力的冲量。

评论:“用向心力乘以作用时间得冲量,”这种做法错误,因为向心力不是恒力。而合外力的冲量即动量的增量。T=)(4222S =-π

π

ωπ

,经2S 即半个周期,

质点末速与初速方向相反,易解得△P ,即I 向。例2与例1的思维过程互逆,为动量增量模型与冲量模型的相互转化问题。

三、模型的构建

-4-

在学生对理想模型的意义有了初步认识的基础上,还应该通过典型模型的使用,进一步掌握抽象的规律。在对常见模型的认识逐步加深以后,还要防止他们知识的僵化,把现成的模型不适当地到处生搬硬套。当已有的模型对解决具体问题确实不完善时,就要引导学生根据具体问题对已有的模型加以演变,建立起合理的模型,使问题得到解决。

例1:电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位时间内通过管内截面的液体的体积)。为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a ,b ,c ,流量计的两端与输送液体的管道相连接(图中虚线)。图中流量计的上下两面是金属材料,前后两面是绝缘材料。现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接。I 表示测得电流值。已知液体的电阻率为ρ,不计电流表的内阻,则可求得流量为:

A 、)(1a c bR

B ρ+ B 、)(1c

b aR B ρ+ C 、)(1b

a cR B ρ+ D 、)(1a bc R B ρ+ 评论:流量计上下表面间的液体运动,相当于长度为c 的金属导体棒切割磁感线,有ε=)(a

b

c R I t Bca +=,从而流量)(1a

c bR B t abc t V ρ+==,还可以这样建模:在垂直于液体的运动方向取一截面,这一运动截面与流量计右边界所

-5- 围空间是变化的。这一空间垂直于磁场方向的面上有磁通量的变化,则ε=t Bca t =??φ,同样易得流量)(1a

c bR B t abc t V ρ+==,通过该题可知,物理建模法是解决物理问题的重要而又基本的方法。正确运用模型的关键在于:正确分析各种因素对物理过程的影响,分清主次,突出主要矛盾,找到突破口。

例2:如图,A 、B 两个质量均为m 的物体间用劲度系数为K 的轻弹簧相连,A 、B 在外力F 作用下,在空中静止,B 离地面的的高度为h ,放手后A 、B 下落,且B 与地面碰撞后不反弹。则当A 的速度达到最大的过程中,A 的重力势能的改变量为 。

评论:该题是温州市竞赛题。物体A 、B 相对于系统的

质心作简谐运动,而质心又做自由落体运动。显然同时考

查了简谐运动和非惯性参照系的两个模型。以质心为参照

系可得A 、B 的加速度图象。

由图知a A +a B =2g;a A ≥0,即A 物体

始终

做加速运动。设弹簧原长l 0,则A 的初位置H 1=h+l 0+

K Mg ,末平衡位置H 2=l 0-K

Mg ,

-6-

A 的高度改变△H=H 1-H 2=h+K Mg 2。则重力势能改变为:Mg(h+K

Mg 2)。 通过对这些例题的评论,可以得出物理建模的流程:

对于物理建模,概括为两句话就是:物理建模是一种重要的科学操作和物理思维方法。它是为解决特定问题,在一定抽象、简化、假设的条件下,再现原型客体的某种本质特性;它是作为中介,从而更好地认识物理原型客体,构建新的客体的一种科学方法。

建立理想模型法1

初中物理建立理想模型法简介 王台中学王建国 百度+自己的总结,请有选择地参考。 把复杂问题简单化,摒弃次要条件,抓住主要因素,只考虑起决定作用的主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。在此基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。 题型分为两类 一、理想模型是从无到有建立的,例子如下 ※光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理情境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。(光的性质波动性、粒子性、沿直线传播)(磁场的性质:对处于其中的磁体、电流、运动电荷有力的作用) ※电路图。(电路的一些性质:电流按照从电源正极流出通过外部电路流回负极、流过用电器会做功、电流有大小、导线有粗细、) ※匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难题,得到的结果又具有极高的精度,在允许的误差范围内与实际相吻合。(运动物体方向和快慢随时间发生变化) ※杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理相化,认为它无形变。(物体有形状,硬棒,能绕固定点转动) ※原子核式结构模型 ※力的示意图或力的图示 二、把实际物体看作已建立的实体模型 ※斜拉索式大桥看作是杠杆模型。(抓住的主要因素:硬、能绕固定点转动。)※汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。(抓住的主要因素:上部开口,底部连通)※水面看作镜面(抓住的主要因素:表面光滑) 考题往往问抓住了什么主要因素,忽略了什么次要因素,该如何回答呢? 答:主要因素就是该模型的定义,次要因素自己想。 你可以把问题改一改,就可以看出主、次要因素,例如改成:哪些物体还可以看作某某模型?这些物体的共同特征就是主要因素,不同特征就是次要因素。 某高人对高中物理的基本理想化模型分类 (1)实体理想化模型:质点,轻杆,轻绳,轻弹簧,点电荷,弹簧振子,单摆,理想气体,点光源,光滑轨道,匀强电场,匀强磁场,理想变压器等; (2).过程化理想模型:匀速直线运动,匀变速直线运动,平抛运动,匀速圆周运动,简谐运动,等温变化,等压变化等; (3)形象化理想模型:电场线,磁场线,等势面等; (4)理想化结构模型:原子核式结构,氢原子能级等。

略论物理模型的建构及其教学策略

略论物理模型的建构及其教学策略 摘要:准确说来物理模型可分为5种类型,但不同类型的物理模型有着共同的特征;教师在教学中传授给学生建模的方法应当有一套自己的策略。 关键词:物理模型分类特征建模方法教学策略物理学所涉及的研究问题往往十分复杂,为了便于分析研究这些复杂问题而建立的一种高度抽象的理想客体叫做物理模型。物理模型是对物理原型的一种近似反映,它突出地反映了物理原型的某一主要特征,完全地忽略了其它方面的特征。可以说,全部物理学的原理、定律都是对一定的物理模型行为的描述。正是不断进化的物理模型把人们的认识一步一步地引向物质世界的真理。 1 物理模型的分类 物理模型的类型有多种,一般可以分为:①理想化的物体模型:如质点、单摆、弹簧振子、理想气体、点电荷、理想变压器、点光源、薄透镜等,这些物理模型都是在物理原型的基础上突出主要因素、忽略次要因素而形成的,这样一来就能使物理问题的求解变得简单容易。②理想化的过程模型:如力学中的匀速直线运动、平抛运动、弹性碰撞、简谐运动,热学中的气体等温(压)变化,电磁学中的恒定电流、等幅振荡等,它们都是一些实际过程的理想化处理,但是又能很好地与实际情况相似。通过认识简单的过程,进而认识复杂的过程、求解复杂的问题。③理想化的条件模型:当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以忽略重力的作用,使问题得到简化;力学中的光滑平面、轻质杆,热学中的绝热容器,电学中的匀强电场、匀强磁场等,都是把物体所处的条件理想化。④科学假说模型:以一定的经验材料和已知的事实为根据,以已有的科学理论和技术方法为指导,对未知的自然事物或现象所作出的推测性解释。如玻尔根据氢原子光谱的规律提出的氢原子理论模型,爱因斯坦为了解释光电效应规律提出的光量子假说等。⑤科学理论模型:如万有引力定律、理想气体状态方程等物理规律,既能解释过去且能预测将来,均属于此模型。 2 物理模型的特征 首先,物理模型是科学性和假设性的统一。物理模型不仅反映了物理原型的直观形象,反映了物理原型的主要特征,而且要以实验事实和科学知识为依据,经过抽象与概括、分析与综合、归纳与推理等一系列严密的逻辑论证,所以建立的物理模型虽然有假设的成分但是仍然具有一定的科学性。其次,物理模型是抽象性和形象性的统一。物理模型的建构过程是突出主要因素忽略次要因素,变复杂为简单,完成由具体到抽象、由现象到本质的一个形象思维和抽象思维相结合的过程,物理模型是形象性与抽象性的统一体。另一方面,由于物理模型是抽象思维的结果,所以它还具有一定的假设性,它正确与否要接受来自实践的检验。最后,物理模型是条件性和发展性的统一。物理模型只在一定的条件下、一定的场合中才能适用,它只是一种近似,因此一定要注意具体问题具体分析。物理模型是在不断发展完善的,随着人们对事物的本质的认识不断深入,物理模型也相应地由初级向高级发展并不断完善。 3 建构物理模型的方法 教学物理模型的意义和目的,不在于只让学生熟悉某种模型的概念,更重要的是让学生在掌握模型概念的基础上,能够应用模型去解决实际问题。实际问题一般都是出题者根据自己头脑中的一个理想化物理模型,结合某些问题情境和物

浅谈构建物理模型在解题中的作用

浅谈构建物理模型在解题中的作用 大多数学生进入高中学习以后,感到物理是一门比较难学的科目,解题时往往感到无从下手,这是由于物理的基本概念和规律建立的基础是理想化过程模型和理想化实体模型,因此在解答物理问题时应首先创设物理情景,构建物理模型。 物理概念和规律具有高度的抽象性和客观性,而物理习题由于是描述一些理想物体的基本运动或基本状态,所以物理习题具有理想性、具体性和形象性。为了沟通概念规律与习题的联系,解题中就应创设具有这种联系的“图景”,通过物理图景,构建物理模型,这样可以使物理过程变得更为形象和清晰,对启发学生思维,正确理解物理概念,分析物理问题起到良好的辅助作用。同时使学生形成科学的思维方法和掌握科学的研究方法。 模型最能反映现象和事物的本质,建立模型就是找出、抓住现象和事物的本质和主要矛盾,抽象出物理本质,研究和解决事物的主要矛盾,这样,解决问题时就会取得事半功倍的效果。 为了便于研究物理问题和对物理现象进行客观描述,现就以下几个方面作出分析: 一、简化确定“研究对象”是建立正确物理模型的基础 “研究对象”是参与所研究的物理对象的客体。由于实际参与的客体众多,影响因素复杂,因此在建立物理模型时,首先要对客体进行简化,抓住其主要特征,舍弃其次要因素,因此,要建立正确的物理模型,首先应具有将实际的物理问题简化成理想模型的能力。 对于多个物理客体参与的物理问题,我们要认真分析各个“研究对象”

之间的相互联系,从现状和所求结果入手,找出关键的客体,作为研究对象,它们是物理模型中的“主角”。 比如,对一列水平横波的研究。如果研究质点的振动,可选取某个质点(如振源)为研究对象;要研究波的周期性,可选取水平距离是波长整数倍的两个质点来研究;要研究质点的振动与波动的关系,就要选取某个质点和波动的形态为对象,就可得到这样一幅简单、清晰的物理图景:质点在竖直方向作简谐振动,波在水平方向作匀速运动,质点的振动方向决定了波的传播方向,在质点完成一次全振动的时间内,波恰好向前移动了一个波长。 下面举例说明物理模型在解题中的实际应用。 例一、(见图1)劲度度系数为k 的弹簧一端固定于 墙壁,另一端连着质量为M 的物体,物体静止于光滑水 平面的O 点上,现有一质量为m 的子弹以水平速度v 0 射进且留在物体中,试问最少需要多少时间物体又到达O 点?物体的最大位移是多少? 解:开始时取子弹和物体组成的系统为研究对象,忽略子弹的转动,认为子弹射进物体的过程为平动,从而建立质点系统模型。因为从子弹开始射进物体到停留在物体中这一过程时间极短,弹簧的形变微小到可以忽略,所以可认为在此过程中,沿水平方向系统所受合力为零,系统的变化为完全非弹性碰撞,从而可建立完全非弹性碰撞过程模型。系统动量守恒,故有: (m+M)v=mv 0 由此可得系统的初速度:v=mv 0/(m+M) 又系统获得速度v 的过程短暂,它们的位移微小到可以忽略,故可以认为系统虽已具有速度v 但还处在平衡位置O 点处.此后,选取子弹、物体和

最新高中物理模型解题法的构建

浅谈高中物理的模型构建 思维定势是人们在思维活动中所倾向的特定的思维模式。它是指人们按照某种固定的思路和模式去考虑问题,表现为思维的倾向性和专注性。它有消极的一面,消极的思维定势是指人将头脑中已有的、习惯了的思维模式生搬硬套到新的物理情景中去,不善于变换认识的角度和改变解决问题的方式。但是它也有积极的一面,积极的思维定势有利于物理概念的形成和对物理规律的理解。构建物理模型一定程度上可以说是利用了思维定势积极的一面。 物理学科的研究对象是自然界物质的结构和最普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。如运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。物理模型是同类通性问题的本质体现和核心归整。 高中物理模型可以分为三类,即实物模型、过程模型、试题模型。接下来分别详细阐述: 一、实体模型 它是用来代替由具体物质组成的,代表研究对象的实体系统。这一类模型在中学物理中最为常见,如力学中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子;热学中有弹性球分子模型、理想气体、黑体;电学中有点电荷、试验电荷、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管;光学中的薄透镜、光的波粒二象性模型、原子物理中原子的核式结构模型等。 这种模型教材中较常见,是研究问题时,抓住事物的主要因素,忽略次要因素建立起来的实物模型,对理解的概念起着不可估量的作用。 例1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有:()

题型一-高中生物学中“模型建构”

题型一高中生物学中“模型建构” 1.(2015·天津卷,1)如图表示生态系统、群落、 种群和个体的从属关系。据图分析,下列叙述正确的是() A.甲是生物进化的基本单位 B.乙数量达到环境容纳量后不再发生波动 C.丙是由生产者和消费者构成的 D.丁多样性的形成受无机环境影响 解析根据生态系统、群落、种群和个体的从属关系可以判断出,甲是个体、乙是种群、丙是群落、丁是生态系统。生物进化的基本单位是种群,而不是个体,A错误;在自然环境中种群的增长往往呈S型增长,达到K值即环境容纳量后,由于受到各种因素的影响,数量在K值附近呈现波动,B错误;生态系统中的群落根据功能划分包括生产者、消费者和分解者,C错误;生态系统是无机环境和生物群落相互作用的统一整体,所以其多样性的形成受无机环境的影响,D正确。 答案D 2.(2014·福建卷,4)细胞的膜蛋白具有物质运输、信息传递、免疫识别等重要生理功能。下列图中,可正确示意不同细胞的膜蛋白及其相应功能的是()

解析血红蛋白存在于红细胞内,不是在细胞膜上,A错误;抗原对T淋巴细胞来说是信号分子,通过T淋巴细胞膜上的受体来接受,而不是抗体,B错误;受体具有特异性,胰高血糖素应作用于胰岛B细胞上的胰高血糖素受体,而不是胰岛素的受体,C错误;骨骼肌作为反射弧中的效应器,骨骼肌细胞上有接受神经递质的受体,同时葡萄糖进入细胞也需要载体协助,D正确。 答案D 解答此类试题的总体思路:加强对基础知识的理解→迁移、整合→联系实际形成应用能力。也就是说,在复习中要狠抓基础知识,搞清概念的内涵和外延,明确原理的内容、适用对象和条件,尤其要对教材中主要模型加以梳理整合。在此基础上要学会对相关概念、原理的迁移和整合,达到举一反三的目的;最后学会应用相关原理、概念去解决生产生活中的实际问题,也就是要培养应用能力。 1.模型及类型 (1)模型:模型是人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。 (2)模型类型: ①概念模型:即构建相关概念、原理及生理过程的内在包含关系。 ②物理模型:物理模型是指以实物或图画形式直观地表达认识对象的特征。如沃森和克里克

建立理想模型法

建立理想模型法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

初中物理建立理想模型法简介 王台中学王建国 百度+自己的总结,请有选择地参考。 把复杂问题简单化,摒弃次要条件,抓住主要因素,只考虑起决定作用的主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。在此基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。 题型分为两类 一、理想模型是从无到有建立的,例子如下 ※光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理情境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。(光的性质波动性、粒子性、沿直线传播)(磁场的性质:对处于其中的磁体、电流、运动电荷有力的作用) ※电路图。(电路的一些性质:电流按照从电源正极流出通过外部电路流回负极、流过用电器会做功、电流有大小、导线有粗细、) ※匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难题,得到的结果又具有极高的精度,在允许的误差范围内与实际相吻合。(运动物体方向和快慢随时间发生变化) ※杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理相化,认为它无形变。(物体有形状,硬棒,能绕固定点转动) ※原子核式结构模型 ※力的示意图或力的图示 二、把实际物体看作已建立的实体模型 ※斜拉索式大桥看作是杠杆模型。(抓住的主要因素:硬、能绕固定点转动。) ※汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。(抓住的主要因素:上部开口,底部连通) ※水面看作镜面(抓住的主要因素:表面光滑) 考题往往问抓住了什么主要因素,忽略了什么次要因素,该如何回答呢? 答:主要因素就是该模型的定义,次要因素自己想。 你可以把问题改一改,就可以看出主、次要因素,例如改成:哪些物体还可以看作某某模型这些物体的共同特征就是主要因素,不同特征就是次要因素。 某高人对高中物理的基本理想化模型分类

高中物理常见的理想化模型

一理想化的定义 理想化方法是一种科学抽象,是研究物理学的重要方法,它根据所研究问题(一般都是十分复杂,涉及诸多因素)的需要和具体情况,确定研究对象的主要因素和次要因素,保留主要因素,忽略次要因素,排除无关干扰,从而简明扼要地揭示事物的本质。 二理想化模型的优点 建立这种理想模型的目的是为了暂时忽略与当前考察不相关的因素,以及某些影响很小的次要因素,突出主要因素,借以化繁为简,以利于问题的分析、讨论,从而较方便地找出当前所研究的最基本的规律,这是一种重要的科学方法,也是物理学中常用和科学分析方法。 三理想化模型的分类 理想化方法包括理想实验方法和理想模型方法。 (1)理想实验方法 理想实验又叫假想实验或思想上的实验,它是人们在思想中塑造的一种理想实验,是逻辑推理的一种特殊形式,在实际中并不能进行。伽利略用著名的理想斜面实验发现了力与运动的关系,指出运动不需要力来维持;研究电场强度时,设想在电场中放置不会引起电场改变的电荷,考查场中各点F/q的值,引入电场强度的概念。显然上述实验是人们在思维中进行的理想过程,与实际实验相比,理想实验能更大程度地突出实验中的主要因素,得出更本质的结论。理想实验是在大量实验与观察基础上的理想归纳,是建立在以事实为根据上的科学抽象。 (2)理想模型 理想模型可分为对象模型、条件模型和过程模型。 (1)对象模型: 用来代替研究对象实体的理想化模型,如质点、弹簧振子、单摆、理想气体、点电荷、理想变压器、点光源、光线、薄透镜以及关于原子结构的卢瑟福模型、玻尔模型等都属于对象模型。是对实物的一种理想简化。 (2)条件模型: 把研究对象所处的外部条件理想化建立的模型叫做条件模型。如光滑表面、轻杆、轻绳、均匀介质、匀强电场和匀强磁场都属于条件模型。是对相关环境的一种理想简化。 (3)过程模型: 实际的物理过程都是诸多因素作用的结果,忽略次要因素的作用,只考虑主要因素引起的变化过程叫做过程模型。是对干扰因素的一种简化。 例如:在空气中自由下落的物体,在高度不大时,空气的作用忽略不计时,可抽象为自由落体运动;另外匀速直线运动、匀变速直线运动、抛体运动、匀速圆周运动、简谐振动、弹性碰撞、等温过程、绝热过程、稳恒电流都属于过程模型。

浅谈物理模型的作用及其建立

浅谈物理模型的作用及其 建立 Last revision on 21 December 2020

浅谈“物理模型”的作用及其建立 布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式。在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程。所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。 一、什么是“物理模型” 自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化”的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。 物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。 二、物理模型的种类和特点 1、中学中常见物理模型的种类 (1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等; (2)运动变化过程中理想化模型,如:“自由落体运动”、“简谐运动”、“热平衡方

高中物理理想模型

题目:高中物理教材中的理想模型 Title:High school physics textbooks in the ideal model

目录 摘要................................................. - 2 - 1绪论 ............................................... - 3 - 1.1 开展高中物理教材中的理想模型的背景 ............ - 5 - 1.2开展高中物理教材中的理想模型的意义............. - 6 - 1.3 本论文讨论的主要问题.......................... - 7 - 2 中学物理教材中的理想物理模型的建立和举例 ........... - 7 - 2.1 如何建立物理理想模型及应注意什么问题 .......... - 7 - 2.2 中学物理教材中的理想模型举例................. - 11 - 3 物理理想模型的作用和特点.......................... - 12 - 3.1 物理理想模型的作用........................... - 12 - 3.2 物理理想模型的特点........................... - 13 - 4 物理理想模型在中学教学中的应用.................... - 14 - 4.1 物理理想模型在课堂教学应用................... - 14 - 4.2 物理理想模型在使用时应注意的问题............. - 15 - 参考文献............................................ - 17 - 致谢.................................... 错误!未定义书签。声明.................................... 错误!未定义书签。

浅谈物理模型的学习及理解

浅谈物理模型的学习及理解 我们知道,建立物理模型是物理学研究问题的基本方法之一。对于任意一个实际物体,因其自身的形状、体积、组成的均匀性等多方面的情况,使其在一个实际环境中的物理表现就不具有多少规律性,而物理学的分析问题的基本方法,如受力分析等,对此当然既不能定量描述,甚至也不能定性地分析。这是我们每个学习了基本物理学知识的人必然都形成的观念。 那么,我们如何学习和理解物理模型呢?我想物理模型的建立是为了突出问题的实质,从而进一步建立理论,能在实验室中进行有针对性的验证或探索等。从中,我们进一步能体会物理模型(或说概念)本身的重要性。但需要过分地基于模型本身进行“深挖”和无休止地讨论吗?我感到这种问题是不能确定性地回答的,套用物理学的一个出发点,即具体问题应具体分析。 1.一些“定势”的影响 我们新课标人教版教材物理1中(现已经删除)有一习题,大致内容是:高速飞行的子弹射穿一个吊着的苹果,在射穿苹果的短暂过程中,问子弹能被看成是“质点”吗?答案是不能。有老师指出,在穿透苹果的短暂时间内,子弹整体作平动,即子弹上各点的运动情况相同,因此,子弹可看成质点。 我本人写过一道题:物理学研究问题一般是通过建立物理模型进行的,质点就是一个物理模型。关于质点,以下说法正确的是 A.研究地球的自转时,把地球当作质点 B.研究火车通过隧道所用的时间时,把火车当作质点 C.研究宇宙飞船在轨道上的运动时,把飞船当作质点 D.研究跳水运动员的空中运动情况时,把运动员当作质点 有老师提出B答案也是正确的。 我们仔细思考上面的问题,其实所要表述的思想是明确的,我们都明白其中的物理问题,应该说这两题的考核目标达到了。当然,仅仅从一个题目求解的角度来看,老师的质疑也是合理的。如果我们把题目的要求改为“在以下各问题的分析处理中,所采取的方法合理的是?”的话,那么,无论是从概念上分析,还是从物理问题的阐述的层面上看,就都有意义了。 2.平面运动的研究 透过以下的介绍,有助于我们合理地理解、把握物理模型的建立和运用。

高中物理模型气体题库

2016-2017学年度学校11月月考卷 学校:___________姓名:___________班级:___________考号:___________ 一、计算题 1.如图所示粗细均匀的U形玻璃管竖直放置,左端用水银封闭着长L=13cm的理想气体,右端开口,当封闭气体的温度T=312K时,两管水银面的高度差△h=4cm.现对封闭气体缓慢加热,直到左、右两管中的水银面相平.设外界大气压p o=76cmHg. ①求左、右两管中的水银面相平时封闭气体的温度; ②若保持①问中气体温度不变,从右管的开口端缓慢注入水银,直到右侧管的水银面比左侧管的高△h′=4cm,求注入水银柱的长度. 2.一定质量的理想气体在1个标准大气压下、0℃时的体积为6.72×10-1 m3, 已知该状态下1mol气体的体积就是2.24×10-2m3,阿伏加德罗常数N A= 6.0×1023mol-1。求该气体的分子数。 3.一定质量的理想气体体积V与热力学温度T的关系图象如图所示,气体在状态A时的压强p A=p0,温度T A=T0,线段AB与V轴平行,BC的延长线过原点。求: (i)气体在状态B时的压强p B; (ii)气体从状态A变化到状态B的过程中,对外界做的功为10J,该过程中气体吸收的热量为多少; (iii)气体在状态C时的压强p C与温度T C。

4.如图,气缸竖直固定在电梯内,一质量为m、面积为s的活塞将一定量的气体封闭在气缸内,当电梯做加速度大小为a的匀加速下降时活塞与气缸底相距L。现让电梯匀加速上升,加速度大小也为a,稳定时发现活塞相对于气缸移动了距离d。不计气缸与活塞间的摩擦,整个过程温度保持不变。求大气压强p0. 5.如图所示,一圆柱形绝热气缸竖直放置,通过绝热活塞封闭着一定质量的理想气体。活塞的质量为m,横截面积为S,与容器底部相距h,此时封闭气体的温度为T1。现通过电热丝缓慢加热气体,当气体吸收热量Q时,气体温度上升到T2。已知大气压强为p0,重力加速度为g,不计活塞与气缸的摩擦,求: ①活塞上升的高度; ②加热过程中气体的内能增加量。 6.如图所示,水平放置一个长方体的封闭气缸,用无摩擦活塞将内部封闭气体分为完全相同的A、B两部分.初始时两部分气体压强均为p、热力学温度均为T.使A的温度升高△T而保持B部分气体温度不变.则A部分气体的压强增加量为多少。 7.小方同学在做托里拆利实验时,由于操作不慎,玻璃管漏进了一些空气。当大气压强为76cmHg时,管内外水银面高度差为60cm,管内被封闭的空气柱长度就是30cm,如图所示.问:

物理模型的构建步骤及使用注意点

龙源期刊网 https://www.sodocs.net/doc/bc14573062.html, 物理模型的构建步骤及使用注意点 作者:刘秋岳 来源:《中学物理·高中》2014年第05期 “物理模型”是高中物理知识教学与应用的载体,我们在实施教学的过程中,注重引导学生构建并运用物理模型,既培养了学生获知的方法,也提升了学生创造性思维能力.本文就物理 模型构建的策略及实践案例进行简单分析,并探讨在建立和使用物理模型时的注意点,望能有助于教学实践. 1 物理模型的构建步骤 1.1 分析物理对象原型 物理模型建立的过程是对实际的物理对象进行抽象概括的过程,对原型或实际问题做出准确的、科学的抽象,本身就是一种非常严密的思维.如,“质点”这是学生进入高中学到的第一个理想模型,在建立模型时,首先应引导学生弄清“将物体简化为质点的原因”,把握建立模型的“物理需要”,接着,引导学生思考“什么时候、什么样的物体可以简化为质点”,即将思维引向对物理原型中主、次因素的分析. 1.2 分析物理对象的主、次因素 物理模型就是抓实际对象的主要矛盾和主要特点,因此在建立模型时,应引导学生分析物理对象的主、次因素,考虑在什么时候可以忽略次要特点,将客观事物的本质规律凸显出来进行深入的研究.如,“质点”这个物理模型就是忽略了大小、形状对物体运动的影响而突出质量这一主要特点所建立起来的. 1.3 基于主要因素进行科学的抽象 分析了物理对象的主、次因素后,抓住物理对象的本质特征进行合理的抽象,建立能够解释和说明问题的物理模型,揭示一类事物的本质属性及其间的联系,实际物理问题往往是很复杂的,建立模型的目的就在于定量地描述物理规律,形成系统化的理论,逐渐逼近对实际问题更为全面、真实地理解. 1.4 实验验证 “实践是检验真理的唯一标准!”模型是经过物理思维进行分析和推理建立起来的,那么是否可用呢?是否简单、高效?这些都必须经过实验验证或由实践检验.例如,平抛运动模型, 运用“运动的分解”可以将平抛运动抽象为水平匀速、竖直自由落体的匀加速曲线运动,这样的抽象是否正确呢?可以借助于实验进行验证.

重点高中物理建模论文

重点高中物理建模论文

————————————————————————————————作者:————————————————————————————————日期:

运动模型的应用 内容摘要:中学物理教材中无论哪一部分的内容都是以物理模型为基础向学生传达物理知识的。物理模型是中学物理知识的载体,通过对其进行分析与讲解,是学生获得物理知识的一种基本方法,更是培养学生创造思维能力的重要途径。本文拟从习题教学中浅谈提高运动模型的建模能力。 关键词:运动模型、匀速圆周运动 学好物理,关键是学习物理思想和物理方法。常有高中学生说,物理听课易懂,做题难。难就难在对物理模型的应用上,也就是学生在解题过程中往往存在一些问题,读不懂题或做题过程思维混乱。这在很大程度上是由于学生不良解题习惯、建模能力差造成的。据对学生的调查,发现大多数学生的解题模式是: 一般来说,较为有效的解决物理问题的思维流程应该是通过审题先确定研究对象,对其进行抽象建立物理模型,再应用模型知识求解。此过程大致可以归纳为: 求解 读题 想公式

如果在解题过程中快速准确地建立起与题目相符合的物理模型是至关重要的。这个解题流程学生容易模仿,如果说正确识别或建立物理模型是正确解题的前提,那么在解决具有物理过程的物理习题时,学生头脑中对物理过程的一个清晰的图景则是解决此类物理问题的关键和保证。下面以力学中运动模型的应用为例。 一、 基本模型 1. 两种直线运动模型 匀速直线运动:00,v v t v x == 匀变速直线运动:at v v at t v x +=+=02210,(特例: 自由落体运动:gt v gt h ==,221 ) 2. 两种曲线运动模型 平抛运动: 水平方向为匀速直线运动 竖直方向为自由落体运动 匀速圆周运动:r T m r mw r mv ma F F n 22 22n 4π=====合(天体运动:物理解释 数学演算 数学抽象 科学抽象 一个具体的物理问题 物理模型 数学方程(物理问题的数学表达式) 方程的数学解 物理问题之解

高中物理理想化模型

高中物理理想化模型 邓嘉豪 质点匀速直线运动平抛运动匀速圆周运动弹性碰撞轻绳轻杆轻弹簧理想气体理想变压器 1.质点 质点不一定是很小的物体﹐只要物体的形状和大小在所研究的问题中属于无关因素或次要因素﹐即物体的形状和大小在所研究的问题中影响很小时﹐物体就能被看作质点。它注重的是在研究运动和受力时物体对系统的影响,忽略一些复杂但无关的因素。 2.匀速直线运动 ⑴一个物体在受到两个或两个以上力的作用时,如果能保持静止或匀速直线运动,我们就说物体处于平衡状态。 ⑵不能从数学角度把公式s=vt理解成物体运动的速度与路程成正比,与时间成反比。匀速直线运动的特点是瞬时速度的大小和方向都保持不变,加速度为零,是一种理想化的运动。 ⑶带电粒子受恒力和洛仑兹力共同作用下运动时,只要是直线运动,一定是匀速直线运动。(原因:像F洛这样的力会随速度的变化而变化,即速度直接影响合力,合力又直接影响加速度,即影响运动方向。) 3.平抛运动 ⑴运动时间只由高度决定。 ⑵水平位移和落地速度由高度和初速度决定。 ⑶在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动 ⑷任意时刻,速度偏向角的正切等于位移偏向角正切的两倍。 ⑸任意时刻,速度矢量的反向延长线必过水平位移的中点。 ⑹从斜面上沿水平方向抛出物体,若物体落在斜面上,物体与斜面接触时的速度方向与水平方向的夹角的正切是斜面倾角正切的二倍。 ⑺从斜面上水平抛出的物体,若物体落在斜面上,物体与斜面接触时速度方向、物体与斜面接触时速度方向和斜面形成的夹角与物体抛出时的初速度无关,只取决于斜面的倾角。 4.匀速圆周运动 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其切向加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动法向(向心)加速度方向始终指向圆心。 5.轻绳 ⑴不能伸长,质量和重力可以视为零; ⑵同一根绳的两端和中间各点的张力相等; ⑶只能产生压力,与其他物体相互作用时总是沿绳子方向;在瞬间问题中轻

物理模型的建构在初中生物教学中的应用

物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 2015-05-26 生物论文 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 吕国庆 (江苏省常州市新北区实验中学) 摘要:探讨在初中生物教学中常见的几种物理模型的建构。物理模型的设计非常有利于生物教学的有效开展,提高学生的学习效率,培养学生的各种技能和科学素养。 关键词:物理模型;创新;生物 人们认识客观世界的时候,直观化、形象化,更便于人们探索科学世界的客观规律。物理模型建构的研究旨在教学活动中建构学生的建模意识,物理模型建构的创新研究实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性思维活动。能够培养学生的想象力,思维能力,假想、变换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新的关键是人才,人才的成长靠教育。”要真

正培养学生的’创新能力,自觉地在学习过程中构建物理模型,只有这样,才能使学生分析和解决问题的能力得到有效提高,也只有这样才能真正提高学生的创新能力。 那什么是物理模型呢?物理模型就是以实物或图画形式直接表达认识事物的特征。根据相似原理,把真实事物制成相关模型,其状态变量和原事物基本相同,可以模拟客观事物的某些功能和性质。物理模型包括:实物模型、模拟模型、图画。通过下面以三个具体实例来阐述本人对物理模型的理解与探索。 一、模拟模型建构能将抽象化的知识活化为具体直观 主题举例:植物细胞的模型模拟建构。 材料的选择:一次性方型塑料盒,透明塑料袋,带壳核桃或熟鸡蛋,清水和有颜色的水,气球,不能水溶的绿色胶囊若干,长粒香大米若干粒。 设计方案:学生根据自己对植物细胞的结构和功能的理解,小组成员利用教师所提供的材料制作模型,小组成员展示模型并介绍,同时接受其他小组成员点评,并答疑。 具体实施过程:一次性塑料盒充当细胞壁,透明塑料袋可充当细胞膜,带壳核桃或熟鸡蛋可充当细胞核,清水可充当细胞质,气球可充当液泡,有颜色的水可充当细胞液。 评价:在班级内部交流小组制作模型,从科学性、技术性、正确性等方面进行评价。小组成员根据班内成员的评价完善自己的设计。 解释:模拟模型,就是根据系统或过程的特性,按一定规律,用实物材料模拟系统原型的方法。形象大于思维,七年级学生对细胞的认识较浅显,由于细胞很

谈谈如何在物理学中构建理想模型

谈谈如何在物理学中构建理想模型构建模型是科学研究的基本方法之一,模型在物理学中也得到了广泛的应用,物理模型是物理学理论体系的基石,物理模型的构建当然地也是物理学研究的主要方法之一,构建物理模型,可以采用多种方式方法,本文只对物理模型的构建中的理想化方法构建,提出一些粗浅的看法。 理想化方法是构建物理模型最主要的一种方法,他是将复杂的物理过程、物理现象中最本质具有共性的东西抽象出来,将其理想化、模型化,略去其次要因素和条件,抓住主要因素,即将其理想化,找出他们在理想状况下所遵循的基本规律,并构建出相应的物理模型。这是研究物理问题的重要思想方法。 1、构建理想的物理模型是科学理论的依据 纵观物理学发展史,许多重大的发现与结论,都是由科家们经过大胆的猜想构思,创建出科学的理想化的物理模型,并通过实验检验或实践验证,模型与事实基础很好吻合的前提下获得的。 伽利略让小球从弯曲的斜槽上自由下落,当斜槽充分光滑时,小球可沿另端斜槽上升到初始高度,如果另端斜槽末端越接近水平,小球为达到初始高度,将运动很远。如果末端完全水平,小球将一直运动下去,永不停止。正因为伽里略构建了光滑这一理想化的模型,才有惯性定律的重大发现。

法拉第在1852年,对带电体、磁体周围空间存在的物质,设想出电场线、磁感线一类力线的模型,并用铁粉显示了磁棒周围的磁力线分布形状,从而建立了场的概念,对当前的传统观念是一个重大的突破。 1905年爱因斯坦受普朗克量子假设的启发,大胆地建立了光子模型,并提出著名的爱因斯坦光电效应方程,圆满地解释了光电效应现象。 卢瑟福以特有的洞察力和直觉,抓住粒子轰击金箔有大角度偏转这一反常现象,从原子内存在强电场的思想出发,于1911年构思出原子的核式结构模型。 倘若离开了物理模型,不仅物理研究无法进行,而且对物理学科的纵深发展必然会起阻碍束缚的作用。 2、在中学物理中应用的理想化模型构建归纳起来有以下几种 一是将物质形态自身理想化,如质点、系统、理想气体、点电荷、匀强电场、匀强磁场等。二是将所处的条件理想化,如光滑、绝热等;三是将结构理想化,如分子电流、原子模式结构、磁力线、电力线。三是将运动变化过程理想化,如匀速圆周运动、等压过程等温、等容、等压过程;匀速、匀变速直线运动;抛体运动;简谐振动;稳恒电流等。其四是将物理实验理想化,包括将实验条件理想化、实验器材理想化等。

物理学中的模型和方法

第26卷第3期 2007年9月 《新疆师范大学学报》(自然科学版) Journal of Xi~iang Normal University (Natural Sciences Edition) Vo1.26,No.3 Sep.2007 浅议物理学中的理想模型及其 在大学物理教学中的作用 谢绍平 (凯里学院物理系,贵州凯里556000) 摘要:理想模型在物理学的研究中具有十分重要的地位和作用,它是形成物理概念、建立物理规律的基础,能简化物理问 题,帮助研究者寻找研究方向。在大学物理的教学中,要注意培养学生建立理恕模型的能力和利用理想模型去思考和解决具体物理 问题的能力。 关键词:理想模型;物理学研究;教学;作用 中图分类号: G642.4 文献标识码: A 文章编号: 1008—9659一(2007)一03—0368—03 物理学是研究物质最普遍、最基本的运动形式的基本规律的一门学科。这些运动形式包括机械运动、分子热运动、电磁 运动、原子及原子内部微观粒子的运动等。由于自然界的物质种类繁多,运动情况错综复杂,相互作用的物理过程常包含许 多矛盾,且各具特征,几乎任何一个具体问题都会牵涉到诸多因素。因此在物理学的研究中为了抓住主要矛盾,忽略次要矛 盾,就必须要采用理想模型的研究方法。 理想模型是根据物理研究对象和问题的特点.撇开、舍弃次要的、非本质的因素,抓住主要的、本质的因素,从而建立起的 一个易于研究的、能反映研究对象主要特征的新形象。实际上.物理学中的研究客体。许多都是利用科学抽象和概括的方法 建立起来的理想模型。物理学中有很多理想模型,如力学中的质点、刚体,热学中的理想气体,电磁学中的点电荷,量子力 学中的黑体、无限深势阱、谐振子等等。理想模型无论是在物理学的研究中,还是大学物理的教学中。都具有非常重要的地位 和作用。 1 理想模型在物理学研究中的作用 1.1 理想模型是形成物理概念、建立物理规律的基础 物理学的目的是探索自然界广泛存在的各种最基本的运动形态、物质结构及相互作用的规律,为自然界物质的运动、结 构及相互作用描绘出一幅幅绚丽多彩、结构严谨的图画,以便人们认识自然和改造自然。要达到这样的目的,就必须反映物 理现象,物理过程在一定条件下必然发生、发展和变化的规律,揭示物理事物本质之间的关系,此即物理规律,并要求在此基

浅谈物理概念教学汇总

浅谈物理概念教学 一、物理概念的特点 物理概念准确地反映了物理现象及过程的本质属性,它是在大量的观察、实验基础上,获得感性认识,通过分析比较、归纳综合,区别个别与一般、现象与本质,然后把这些物理现象的共同特征集中起来加以概括而建立的,是物理事实本质在人脑中的反映。任何一个物理概念的学习又会与其他概念相联系,概念之间的这种关联着的逻辑关系,是构成物理规律和公式的理论基础。物理概念不仅是物理基础理论知识的一个重要组成部分,也是学生通过逻辑推理方法,构建知识体系的基本元素,学生学习物理知识的过程,就是要不断地建立物理概念,弄清物理规律。如果概念不清,就不可能真正掌握物理基础知识,不可能有效构建物理模型,不可能形成清晰的思维过程。在解决物理问题时,常常表现出选择题选不全,计算题审题时,由于对某些概念理解不到位,导致挖掘不出有效信息、不能快速建立未知量与已知量之间的联系,解题效率低下。因此,在中学物理教学中,概念教学是一个重点,也是一个难点,搞好物理概念的教学,使学生的认识能力在形成概念的过程中得到充分发展,是物理教学的重要任务。 二、影响高中物理概念学习的主要因素 1、教材因素 初中物理教材与高中教材相比较,对知识和思维能力的要求都有一个较大的跨越,存在一个较大的台阶。高中物理教材所讲述的知识不仅要求采用观察、实验,更多的要求具备分析归纳和综合等抽象思维能力,要求能熟练的应用数学知识解决物理问题。对于多个研究对象、多个状态、多个过程的复杂的问题,从物理现象到构建物理模型,从物理模型到数学化的描述,建立一系列的方程,学生接受难度大。初中、高中物理教材对知识的表述也有很大差别。初中物理教材文字叙述比较浅显通俗,学生容易看懂和理解,而高中物理教材对物理概念和规律的表述严谨简捷。对物理问题的分析、推理、论述科学严密,学生不易读懂、阅读难度大。另外,高中教材与所需数学知识的衔接不当,也对学生的物理学习造成了困难。如学生尚未学到极限的概念,在学习瞬时速度时就难以理解;高一新生没有三角函数知识,就不能灵活处理力的合成与分解;没有函数图像的知识,用图像法研究各种问题就会比较困难。由于学科之间的横向联系的失调,也加大了高一物理学习难度,使高一学生成绩分化。2、学生因素 高中物理概念有些是从直观的实验直接得出的,有些概念则需要学生从已有的物理概念出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。虽然高中学生具有一定的认知能力及逻辑思维能力,但由于他们物理基础知识有限,物理思维方法不足,个别高中学生由于在以往的学习过程中形成了被动接受知识的习惯,积极主动思考问题的能力较差,不善于将陌生、复杂、困难的问题转化为熟悉、简单、容易的问题,不善于将实际问题转化为物理问题,不善于根据具体问题灵活选择方法,学习物理概念时习惯于机械记忆,盲目练习,往往被个别表面现象所迷惑,形成一些片面的、肤浅的概念。主要表现在解决物理问题时对于隐含条件的分析,临界状的把握,多过程的衔接等分析不完整,顾此失彼,答案不全面,条理不清楚。如个别学生不理解加速度及电阻率的概念,造成“加速度大速度就大;电阻率大电阻一定大”的错误认识。 3、教师因素 教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生自己一看就懂,没有必要花费时间去探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。为了更有效

相关主题