搜档网
当前位置:搜档网 › 分子发光光谱法

分子发光光谱法

分子发光光谱法
分子发光光谱法

二、激发光谱与荧光(磷光)光谱荧光(磷光):光致发光,照射光波长

如何选择?

1.荧光(磷光)激发光谱曲线

固定测量波长(选最大发射波长),化

合物发射的荧光(磷光)强度与照射光

波长的关系曲线(图中曲线I )。

激发光谱曲线的最高处,处于激

发态的分子最多,荧光强度最大

第五章分子发光分析法习题答案

第五章分子发光分析法 2、简述影响荧光效率的主要因素 答:荧光效率(Ψ?)=发荧光的分子数/激发态分子总数。荧光效率越高,辐射跃迁概率越大,物质发射的荧光也就越强,则Ψ?=K?/( K?+∑Ki), 一般来说,K?主要取决于物质的化学结构,而∑Ki则主要取决于化学环 境,同时也与化学结构有关,其影响因素有: ①分子结构:发荧光的物质分子中必须含有共轭双键这样的强吸收基 团,且共轭体系越大,л电子的离域性越强,越易被激发而产生荧光。 随着共轭芳环增大,荧光效率提高,荧光峰向长波方向移动。 ②a其次,分子的刚性平面结构有利于荧光的产生,有些有机配位剂与金属离子 形成螯合物后荧光大大增强;b给电子取代基如-OH、-NH 2、-NR 2 和-OR等可 使共轭体系增大,导致荧光增强;吸电子基如-COOH、-NO和-NO 2 等使荧光减弱,c随着卤素取代基中卤素原子序数的增加,物质的荧光减弱,而磷光增强。 ③环境a溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大;b对于大多数荧光物质,升高温度会使非辐射跃迁概率增大,荧光效率降低;c大多数含酸性或碱性取代基团的芳香族化合物的荧光性质受溶液PH的影响很大;d溶液中表面活性剂的存在减小非辐射跃迁的概率,提高荧光效率;e溶液中溶解氧的存在,使激发态单重态分子向三重态的体系间窜跃速率加大,会使荧光效率减低。 3、试从原理和仪器两方面比较吸光光度法和荧光分析法的异同,并说明为什么 荧光法的检出能力优于吸光光度法 答:原理:紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,而荧光分析法是由于处于第一激发单重态最低能级的分子以辐射跃迁的形成返回基态各振动能级时产生的荧光的分析方法,两者的区别在于前者研究的是吸收光谱,且电子跃迁为激发态的振动能级到基态的振动能级间的跃迁。 仪器:荧光分析仪器与分光光度计的主要差别有:a 荧光分析仪器采用垂直测量方式,即在与激发光相垂直的方向测量荧光,以消除透射光的影响;b 荧光分析器有两个单色器,分别用于获得单色器较好的激发光和用于分出某一波长的荧光,消除其它杂散光干扰。 因为荧光分析法的灵敏度高,其检出限通常比分光光度法低2~4个数量级,选择性也比分光光度法好,这是由于:a 荧光分析仪器在与激发光相垂直的方向测量荧光,与分光光度在一直线上测量相比,消除了透射光的影响,测量更为准确,灵敏度高;b 吸光光度法只采用一个单色器,而荧光分析仪器有两个单色器,

紫外可见分子吸收光谱习题集及答案

第二章、紫外可见分子吸收光谱法 一、选择题( 共20题) 1. 2 分 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值(2) 极小值(3) 零(4) 极大或极小值 2. 2 分 在紫外光谱中,λmax最大的化合物是( ) 3. 2 分 用实验方法测定某金属配合物的摩尔吸收系数ε,测定值的大小决定于( ) (1) 配合物的浓度(2) 配合物的性质 (3) 比色皿的厚度(4) 入射光强度 4. 2 分 1198 有下列四种化合物已知其结构,其中之一用UV 光谱测得其λmax为302nm,问应是哪种化合物?( )

CH 3CH CHCOCH 3 CH 3CH 3(4)(3) (2) Br O HO O CH 3 3 CH 3(1) 5. 5 分 下列四种化合物中,在紫外光区出现两个吸收带者是 ( ) (1)乙烯 (2)1,4-戊二烯 (3)1,3-丁二烯 (4)丙烯醛 6. 2 分 助色团对谱带的影响是使谱带 ( ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 7. 5 分 对化合物 CH 3COCH=C(CH 3)2的n — *跃迁,当在下列溶剂中测定,谱带波长最短的 是 ( ) (1)环己烷 (2)氯仿 (3)甲醇 (4)水 8. 2 分 紫外-可见吸收光谱主要决定于 ( ) (1) 分子的振动、转动能级的跃迁 (2) 分子的电子结构

(3) 原子的电子结构(4) 原子的外层电子能级间跃迁 9. 1 分 下面哪一种电子能级跃迁需要的能量最高? ( ) (1) σ→σ*(2) n→σ * (3) π→π* (4) π→σ* 10. 2 分 化合物中CH3--Cl在172nm有吸收带,而CH3--I的吸收带在258nm处,CH3--Br 的吸收 带在204nm ,三种化合物的吸收带对应的跃迁类型是( ) (1) σ→σ*(2) n→π* (3) n→σ * (4)各不相同 11. 2 分 某化合物在乙醇中λmax乙醇=287nm,而在二氧六环中λmax二氧六环=295nm,该吸收峰的跃迁类型是() (1) σ→σ* (2) π→π* (3) π→σ* (4) π→π* 12. 2 分 一化合物溶解在己烷中,其λmax己烷=305 nm,而在乙醇中时,λ乙醇=307nm,引起该吸收的电子跃迁类型是( ) (1) σ→σ * (2)n→π * (3) π→π* (4) n→σ* 13. 2 分

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

紫外可见分子吸收光谱习题集及答案(学习资料)

第二章、紫外可见分子吸收光谱法 一、选择题 ( 共20题 ) 1. 2 分 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的 ( ) (1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值 2. 2 分 在紫外光谱中,λmax 最大的化合物是 ( ) 3. 2 分 用实验方法测定某金属配合物的摩尔吸收系数ε,测定值的大小决定于( ) (1) 配合物的浓度 (2) 配合物的性质 (3) 比色皿的厚度 (4) 入射光强度 4. 2 分 1198 有下列四种化合物已知其结构,其中之一用 UV 光谱测得其λmax 为 302nm , 问应是哪种化合物? ( ) CH 3CH CHCOCH 3 CH 3 CH 3(4)(3) (2) Br O HO O CH 3 3 CH 3 (1) 5. 5 分 下列四种化合物中,在紫外光区出现两个吸收带者是 ( ) (1)乙烯 (2)1,4-戊二烯 (3)1,3-丁二烯 (4)丙烯醛

6. 2 分 助色团对谱带的影响是使谱带 ( ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 7. 5 分 对化合物 CH 3COCH=C(CH 3)2的n —π*跃迁,当在下列溶剂中测定,谱带波长最短的 是 ( ) (1)环己烷 (2)氯仿 (3)甲醇 (4)水 8. 2 分 紫外-可见吸收光谱主要决定于 ( ) (1) 分子的振动、转动能级的跃迁 (2) 分子的电子结构 (3) 原子的电子结构 (4) 原子的外层电子能级间跃迁 9. 1 分 下面哪一种电子能级跃迁需要的能量最高? ( ) (1) σ→σ * (2) n →σ * (3) π→π * (4) π→σ * 10. 2 分 化合物中CH 3--Cl 在172nm 有吸收带,而CH 3--I 的吸收带在258nm 处,CH 3--Br 的吸收 带在204nm ,三种化合物的吸收带对应的跃迁类型是( ) (1) σ→σ * (2) n →π * (3) n →σ * (4)各不相同 11. 2 分 某化合物在乙醇中λmax 乙醇=287nm,而在二氧六环中λmax 二氧六环=295nm ,该吸收峰的跃 迁类型是( ) (1) σ →σ * (2) π→π * (3) π→σ * (4) π→π * 12. 2 分 一化合物溶解在己烷中,其λmax 己烷=305 nm ,而在乙醇中时,λ 乙醇=307nm ,引起该吸收的电子跃迁类型是( ) (1) σ→σ * (2)n →π * (3) π→π * (4) n →σ * 13. 2 分 在分子CH 3的电子能级跃迁中,下列哪种电子能级跃迁类型在该分子 中不发生 ( ) (1) σ →π * (2) π→σ * (3) n →σ * (4) n →π * 14. 2 分 比较下列化合物的UV -VIS 光谱λmax 大小 ( )

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

分子发光分析法(精)

第五章分子发光分析法 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。光致发光按激发态的类型又可分为荧光和磷光两种。本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。 第一节荧光分析法 一、概述 分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。 早在16世纪,人们观察到当紫外和可见光照射到某些物质时。这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。1867年

Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。 荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。 二、基本原理 (一)分子荧光的产生 大多数分子含有偶数电子。根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。处于电子激发态的分子是不稳定的,它会很快地通过无辐射跃迁和辐射跃迁释放能量而返回基态。辐射跃迁发生光子的发射,产生分子荧

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

分子荧光光谱实验报告

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。 激发光谱:在发射波长一定的条件下,被测物吸收的荧

光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm) 400000 荧光黄/水体系第二次发射光谱S1 / R1 (CPS /

荧光分析法基本概念

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n 电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是:(σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、 (吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。

四、紫外光谱中常用的几个术语 1.发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的一些基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时使吸收强度增加。助色基团通常是由含有孤对电子的元素所组成(-NH2, -NR2, -OH , -OR , -Cl等),这些基团借助P-π共轭使发色基团增加共轭程度,从而使电子跃迁的能量下降。 2.红移、蓝移、增色效应和减色效应 由于有机化合物分子中引入了助色基团或其他发色基团而产生

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

01. 溶液有颜色是因为它吸收了可见光中特定波长范围的光。若某溶液呈蓝色,它吸收的是什么颜色的光?若溶液无色透明,是否表示它不吸收光? 答:溶液呈蓝色,表明其吸收了蓝光的互补光,即黄光(若答是吸收了黄光外的所有可见光,不能说错,但是这样的情况过于巧合,少见!)。若溶液无色透明,仅能说明其不吸收可见波段的光。 2. 分别在己烷和水中测定某化合物UV-Vis 光谱,发现该化合物的某个吸收峰由285 nm (己烷)蓝移至275 nm (水),(1)判断产生该吸收峰的跃迁类型;(2)试估算该化合物与水生成氢键的强度。 答:(1)溶剂极性增大,λmax 蓝移,表明该吸收峰是由n →π*跃迁产生的。 (2)()()? ?? ? ??λ-λ??=己烷氢键max O H max A 1 1hc N E 2 ? ?? ??????????=--99834-23102851-102751100.31063.61002.6 1mol J 28.15-?= 3. 按从小到大顺序对下列化合物的λmax 排序,并简单说明理由(不要想得太复杂) A. NO 2 B. NO 2 t-C 4H 9 t-C 4H 9 C. NO 2CH 3 D. NO 2 C 2H 5 答:B

分子发光分析法

1. 下列说法中错误的是( ) A 荧光和磷光都是发射光谱 B 磷光发射发生在三重态 C 磷光强度IP与浓度C的关系与荧光一致 D 磷光光谱与最低激发三重态的吸收带之间存在着镜像关系 2. 分子荧光分析中,含重原子(如Br和I)的分子易发生:( ) [ID: 1291] A 振动弛豫 B 内部转换 C 体系间窜跃 D 荧光发射 3. 三线态的电子排布应为( ) [ID: 1303] A 全充满 B 半充满 C D 4. 下列说法正确的是( ) [ID: 1307] A 分子的刚性平面有利于荧光的产生 B 磷光辐射的波长比荧光短 C 磷光比荧光的寿命短 D 荧光猝灭是指荧光完全消失 5. 分子荧光与化学发光均为第一激发态的最低振动能级跃至基态中各振动能级产生的光辐射,他们的主要区别在于( ) [ID: 1309] A 分子的电子层不同 B 跃至基态中的振动能级不同 C 产生光辐射的能源不同 D 无辐射弛豫的途径不同 6. 根据下列化合物的结构,判断哪种物质的荧光效率最大( ) [ID: 1310] A 苯 B 联苯 C 对联三苯 D 9-苯基蒽 7. 欲测定污水中痕量三价铬与六价铬应选用哪种方法( ) [ID: 1312] A 原子发射光谱法 B 原子吸收光谱法 C 荧光光度法 D 化学发光法

8. 若需要测定生物试样中的伟良氨基酸应选用哪种分析方法( ) [ID: 1315] A 荧光光度法 B 化学发光法 C 磷光光度法 D X荧光光谱法 9. 若需检测尿液中的对-硝基苯酚刻采用哪种方法( ) [ID: 1319] A 荧光光度法 B 化学发光法 C 磷光光度法 D X荧光光谱法 10. 若需测定生物体中的磷酸三腺甙(ATP),其浓度为-时,应采用下述哪种方法( ) [ID: 1326] A X荧光光谱法 B 荧光光度法 C 磷光光度法 D 化学发光法 DCDAC DDACD 第五章分子发光分析法[填空题测试] 1. 分子荧光分析法试根据物质的_________________进行定性,以_______进行定量的一种分析方法。答案 分子荧光光谱荧光强度 2. 分子的外层电子在辐射能的照射下,吸收能量跃迁至激发态,再以无辐射弛豫转入最低三重态,然后跃回基态的各个振动能级,并产生光辐射。这种发光现象应称为________。[ID: 1334] 答案 分子磷光 3. ________类型的化学反应可以产生化学发光,化学发光反应自由能的变化(ΔG)一般应在________(kJ/mol)。[ID: 1337] 答案 氧化还原170-300 4. ________溶剂对荧光的光谱干扰最小,荧光光谱分析中的主要干扰是________。[ID: 1339] 答案 极性溶剂产生的散射光 5. 在极稀的溶液中,荧光物质的浓度________,荧光强度________,在高浓度时荧光物质的浓度增加,荧光强度________。[ID: 1340] 答案

分子发光光谱法重点

分子发光光谱法重点 几个概念 光致发光物质吸收辐射以后再发射的过程。 光致发光分荧光和磷光两种。 荧光当用一种波长的光照射某种物质的时候,物质会在极短的时间内,发出比照射光波长更长的光,这种光叫做荧光。 磷光当用一种波长的光照射某种物质的时候,如果该物质在较长的时间内,发出比荧光波长更长的光,这种光叫做磷光光。 分子的去激发过程的可能的几个途径 (1)振动弛豫(2)内转换(3)荧光发射(4)外转换(5)系间跨越(6)磷光发射 只有那些具有π-π共轭键的分子才能发射较强的荧光 荧光效率 荧光分析可用于物质的定性或定量分析。 定性分析:依据不同结构的物质所发射的荧光波长不同; 定量分析:同种物质的稀溶液,其产生的荧光强度与浓度呈线性关系。含有 荧光物质常见的分子结构 a 含有低能π→π* 跃迁能级的芳香环或杂环化合物; b 含有脂肪族和脂肪族羰基结构或高共轭双键结构的化合物也可能发生荧光。 分子去活化过程 (1)振动弛豫(2)内转换(3)外转换(4)系间跨越(5)荧光发射 分子产生荧光的条件 (1)物质分子必须具有能吸收一定频率紫外光的特定结构 (2)物质分子在吸收了特征频率的辐射之后,必须具有较高的荧光效率 环境对荧光的影响 1.温度的影响 一般说来,大多数荧光物质的溶液随着温度的降低,荧光效率和荧光强度将增加,相反,温度升高荧光效率将下降。 2.溶剂的影响 同一种荧光物质溶于不同溶剂,其荧光光谱的位置和强度可能有明显不同。 3.溶剂的pH值影响 当荧光物质是弱酸或弱碱时,溶液的pH值对荧光强度有较大的影响。 产生猝灭的原因 1 荧光物质与猝灭剂分子碰撞而损失能量; 2 荧光分子与猝灭剂分子作用,生成不发光的化合物; 3 在荧光物质的分子中引入卤素离子后发生体系间跨越; 4 溶解氧的存在使荧光物质氧化,或者氧分子的顺磁性促进体系间跨越; 5 自猝灭:荧光物质浓度过大引起的猝灭。 猝灭剂:吸电子极性物质 温度对物质的荧光强度有显著影响,一般随温度的降低,荧光强度增加。 从简单的滤光片荧光计到精密的荧光分光光度计,均包括如下四部分:

分子发光分析法

第7章分子发光分析法 【7-1】解释下列名词。 (1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。 答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。此时分子所处的电子能态称为单重态或单线态,用S表示。 (2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。 (3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。 (4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。 表示。(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用 f (7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。 (9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。即分子由激发单重态以无辐射形式跨越到激发三重态的过程。 (10)内转换:相同多重态的两个电子态之间的非辐射跃迁。 (11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。 【7-2】试从原理和仪器两方面比较分子荧光、磷光和化学发光的异同点。 答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。

紫外可见吸收光谱习题集及答案

五、紫外可见分子吸收光谱法(277题) 一、选择题( 共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1) 消失(2) 精细结构更明显 (3) 位移(4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为( ) 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是( ) (1) 比色法(2) 示差分光光度法 (3) 光度滴定法(4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为20% 的标准溶液作参比溶液,则试液的透 光率应等于( ) (1) 8% (2) 40% (3) 50% (4) 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1) 红色(2) 黄色(3) 绿色(4) 蓝色 6. 2 分(1074) 下列化合物中,同时有n→*,→*,→*跃迁的化合物是( ) (1) 一氯甲烷(2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7. 2 分(1081) 双波长分光光度计的输出信号是( ) (1) 试样吸收与参比吸收之差(2) 试样在1和2处吸收之差 (3) 试样在1和2处吸收之和(4) 试样在1的吸收与参比在2的吸收之差8. 2 分(1082) 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值(2) 极小值(3) 零(4) 极大或极小值 9. 2 分(1101) 双光束分光光度计与单光束分光光度计相比,其突出优点是( ) (1) 可以扩大波长的应用范围(2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差(4) 可以抵消因光源的变化而产生的误差

分子荧光分析法

分子荧光分析法 发光光谱:物质分子或原子吸收辐射被激发后,电子以无辐射跃迁至第一电子激发态的最低振动能级,再以辐射的方式释放这一部分能量而产生的光谱称为荧光、磷光。 根据物质接受的辐射能量的大小及与辐射作用的质点不同,荧光分析法可分为以下几种: 1. X射线荧光分析法 用X射线作光源,待测物质的原子受激发后在很短时间内(10-8 s)发射波长在X 射线范围内的荧光。 2. 原子荧光分析法: 待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8 s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。 荧光的波长如与激发光相同,称为共振荧光。 荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。 3. 分子荧光分析法: 有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。

基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1:S=1/2+1/2=1 其多重性:M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的10-6~10-7。(二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能

分子发光分析试卷..

分子发光分析 中国·武汉 二O 一五 年 六 月

华中农业大学本科课程考试试卷 考试课程与试卷类型:分子发光分析姓名: 学年学期:2014-2015-2 学号: 考试时间:班级: 一、选择题(选出一个正确答案,将序号填写在【】里。每小题1分,共12分。) 1.下列哪一项不是n→π*跃迁的最低激发单重态的性质【】A.是自旋禁阻的跃迁 B.摩尔吸光系数小 C.激发态寿命长 D.S1到T1系间窜越的几率小 2.下列哪一种分子的去激发过程是磷光过程? 【】A.分子从第一激发三重态的最低振动能级返回到基态 B.分子从第二激发单重态的某个低振动能级过渡到第一激发单重态 C.分子从第一激发单重态非辐射跃迁至三重态 D. 分子从第一激发单重态的最低振动能级返回到基态 3.荧光属于下列哪一种放光形式【】A.化学发光 B.光致发光 C.生物发光 D.场致发光 4.下列关于强荧光物质应具有的特征错误的是【】A.具有大的共轭π键结构 B.具有刚性的平面结构 C.取代基团为吸电子基团 D.具有最低的单线电子激发态S1为π,π1*型 5.喹啉在下列哪种介质中荧光强度最高【】A.乙醇 B.甲醇 C.水

D.苯 6.下列化合物磷光最强的是【】A. B. C. D. 7.下列关于室温磷光法的说法错误的是【】A.固体基质室温磷光法所用的载体可以将分析物束缚在表面或基质中而增加其刚性B.胶束增稳的溶液室温磷光法利用了胶束对磷光团的约束力而减少了内转化和碰撞能量损失 C.室温磷光法中分析物的磷光量子产率通常比低温磷光法中的高 D.敏化溶液室温磷光法的分析物质本身并不发射磷光,而是引发受体发磷光 8.分子荧光分析法比紫外-可见分光光度法的灵敏度高2~4个数量级的原因 【】A.荧光物质的摩尔吸光系数大;提高激发光的强度可以提高荧光的强度 B.荧光信号是在暗背景下测量的;提高激发光的强度可以提高荧光的强度 C.荧光发射的量子产率高;荧光物质的摩尔吸光系数大 D.荧光发射的量子产率高; 9.在分子荧光分析法中,下面说法正确的是【】A.荧光发射光谱不随激发波长的变化而改变 B.荧光发射光谱要随激发波长的变化而改变 C.荧光激发光谱与它的紫外-可见吸收光谱互为镜像对称关系 D.荧光发射光谱与它的紫外-可见吸收光谱形状相似且波长位置也一样 10.在分子荧光测量中,要使荧光强度正比于荧光物质的浓度,必要的条件是什么? 【】A.用高灵敏度的检测器 B.在稀溶液中测量

分子荧光分析法基本原理

分子荧光分析法基本原理 发布日期:2005-10-07 浏览次数:9297 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称―单线态‖; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即―单线(重)激发态‖; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1:S=1/2+1/2=1 其多重性:M=2S+1=3

即分子在磁场中受到影响而产生能级分裂,这种受激态称为―三线(重)激发态‖; ―三线激发态‖ 比―单线激发态‖ 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为―去活化过程‖,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

分子发射光谱法剖析

仪器分析课程结业论文 题目:分子发射光谱法 学生姓名:王凯鸿 学生学号:130111116 专业班级:13级高分子材料与工程一班 2015年11月初

分子发射光谱法 摘要 本课程名为仪器分析,顾名思义仪器分析就是以物质的物理和物理化学性质为基础建立起来的一种分析方法。仪器分析就是利用能直接或间接地表征物质的物理、化学、生理性质的实验现象,通过探头或传感器、放大器、分析转化器等转变成人可直接感受的已认识的关于物质成分、含量、分布或结构等信息的分析方法。而分子发射光谱法作为仪器分析中重要的一种分析手段,更是有它独特的地位的。 关键词:分子发射光谱;发射光谱;仪器分析;跃迁;辐射。 承诺 本人对抄袭行为不抱好感,也不会在本人身上发生抄袭行为,借鉴与参考的文献和资料将会于文章末尾列出。本人在此郑重发誓:本篇论文纯属个人编辑,绝无抄袭。望周知,谢谢。

一、什么是(分子)发射光谱 1.1发射光谱 望文生义,物体发光直接产生的光谱叫做发射光谱(emission spectrum)处于高能级的原子或分子会在向较低能级跃迁时产生辐射,会将多余的能量发射出去。如果此时进行光谱检测,那么形成的光谱就叫做发射光谱。 那么,如果要使原子或分子处于较高能级就要供给它能量,以便使之激发,并处于激发态。 图1.1-1原子发射光谱原理图 分子(原子)外层电子由基态到激发态,处于激发态电子不稳定,被激发的处于较高能级的分子(原子)向低能级跃迁放出频率为n 的光子,也就是以光辐射的形式向外释放(发射)出能量,而回到基态或其他较低的能级。如果此时进行光谱检测,得到的线状光谱即是分子(原子)发射光谱。

分子光谱基础知识

分光光度计的原理分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。但物质对光的吸收是有选择性的,各种不同的物质都有其各自的吸收光谱。所以根据定律当一束单色光通过一定浓度范围的稀有色溶液时,溶液对光的吸收程度A与溶液的浓度c(g/l)或液层厚度b(cm)成正比。其定律表达式A=abc 荧光分光光度计原理:在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光. 三. 荧光与分子结构的关系1. 分子结构与荧光具有p、p及n、p电子共轭结构的分子能吸收紫外和可见辐射而发生p -p* 或n - p* 跃迁,然后在受激分子的去活化过程中发生p*- p 或p*- n 跃迁而发射荧光。发生p - p* 跃迁分子,其摩尔吸光系数(?)比n - p* 跃迁分子的大100—1000倍,它的激发单线态与三线态间的能量差别比n - p* 的大的多,电子不易形成自旋反转,体系间跨越几率很小,因此,p - p* 跃迁的分子,发生荧光的量子效率高,速率常数大,荧光也强。所以——只有那些具有p- p共轭双键的分子才能发射较强的荧光;p电子共轭程度越大,荧光强度就越大(lex与lem长移)大多数含芳香环、杂环的化合物能发出荧光,且p电子共轭越长,F越大。2. 取代基对分子发射荧光的影响(1)(苯环上)取代给电子基团,使p共轭程度升高à荧光强度增加:如–CH3,–NH2 ,–OH ,–OR等(2)(苯环上)取代吸电子基团,时荧光强度减弱甚至熄灭:如:–COOH ,–CHO,–NO2 ,–N=N–(3)高原子序数原子,增加体系间跨越的发生,使荧光减弱甚至熄灭。如Br,I 。3. 共面性高的刚性多环不饱和结高的分子有利于荧光的发射。例如:荧光素呈平面构型,其结构具有刚性,它是强荧光物质;而酚酞分子由于不易保持平面结构,故而不是荧光物质。 有机化合物的紫外-可见吸收光谱,是其分子中外层价电子(三种:σ电子、π电子、n电子)跃迁的结果。分子轨道理论:一个成键轨道必定有一个相应的反键轨道。通常外层电子均处于分子轨道的基态,即成键轨道或非键轨道上。当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量(ΔΕ)大小顺序为:n→π* < π→π* < n→σ* < σ→σ* 1.σ→σ*跃迁饱和烷烃的分子吸收光谱出现在远紫外区(吸收波长λ<200nm,只能被真空紫外分光光度计检测到)。如甲烷的λmax为125nm,乙烷λmax为135nm。2.n→σ*跃迁含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n→σ* 跃迁。 分子吸收光谱仪分子中包含有原子和电子,分子,原子,电子都是运动着的物质,都具有能量,且都是量子化的.在一定的条件下,分子处于一定的运动状态,物质分子内部运动状态有三种形式:1电子运动:电子绕原子核作相对运动;2原子运动:分子中原子或原子团在其平衡位置上

相关主题