搜档网
当前位置:搜档网 › 变频器的应用和抗干扰措施

变频器的应用和抗干扰措施

变频器的应用和抗干扰措施
变频器的应用和抗干扰措施

变频器的应用和抗干扰措施

----江苏德源药业有限公司

【内容提要】

变频器是利用电力半导体器件的通断作用,将工频电源变换为另一频率的电能控制装

置。变频器在使用过程中出现故障在所难免。我对江苏德源药业有限公司目前的变频器运行情况进行了专项调查,通过调查发现发生故障时除了变频器本身原因外和使用环境、电网质量、工作人员、操作方法息息相关。对此,我在综合分析的基础上提出自己一些不成熟的看

法及建议。

【关键词】变频器的应用抗干扰措施

一.变频器的应用

由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故

障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分

析显得尤为重要。

如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起

控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器

自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,

消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三不”原则

的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压

的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分

离;指定采用屏蔽线回路,须按规定进行,变频器接地端子应按规定进行,不能

同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干

扰。

1 .1 安装环境

变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特

殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电

子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。

1.2 电源异常

电源异常表现为各种形式,但大致分以下3种,即缺相、低电压、停电,有时也出现它们的混和形式。这些异常现象的主要原因多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。而雷击因地域和季节有很大差异。除电压波动外,有些电网或自行发电单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。

如果附近有直接起动电动机和电磁炉等设备,为防止这些设备投入时造成的电压降低,应和变频器供电系统分离,减小相互影响;对于要求瞬时停电后仍能继续运行的场合,除选择合适价格的变频器外,还因预先考虑负载电机的降速比例。变频器和外部控制回路采用瞬停补偿方式,当电压回复后,通过速度追踪和测速电机的检测来防止在加速中的过电流;对于要求必须量需运行的设备,要对变频器加装自动切换的不停电电源装置。

二极管输入及使用单相控制电源的变频器,虽然在缺相状态也能继续工作,但整流器中个别器件电流过大及电容器的脉冲电流过大,若长期运行将对变频器的寿命及可靠性造成不良影响,应及早检查处理。

1.3 雷击、感应雷电

雷击或感应雷击形成的冲击电压有时也能造成变频器的损坏。此外,当电源系统一次侧带有真空断路器时,短路器开闭也能产生较高的冲击电压。

变压器一次侧真空断路器断开时,通过耦合在二次侧形成很高的电压冲击尖峰。为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件,保证输入电压不高于变频器主回路期间所允许的最大电压。当使用

真空断路器时,应尽量采用冲击形成追加RC浪涌吸收器。若变压器一次侧有真空断路器,因在控制时序上保证真空断路器动作前先将变频器断开。过去的晶体管变频器主要有以下缺点:容易跳闸、不容易再起动、过负载能力低。由于IGBT 及CPU的迅速发展,变频器内部增加了完善的自诊断及故障防范功能,大幅度提高了变频器的可靠性。

如果使用矢量控制变频器中的“全领域自动转矩补偿功能”,其中“起动转矩不足”、“环境条件变化造成出力下降”等故障原因,将得到很好的克服。该功能是利用变频器内部的微型计算机的高速运算,计算出当前时刻所需要的转矩,迅速对输出电压进行修正和补偿,以抵消因外部条件变化而造成的变频器输出转矩变化。

此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后仍能保持继续运行,例如:对自由停车过程中的电机进行再起动;对内部故障自动复位并保持连续运行;负载转矩过大时能自动调整运行曲线,能够对机械系统的异常转矩进行检测。变频器对周边设备的影响及故障防范

变频器的安装使用也将对其他设备产生影响,有时甚至导致其他设备故障。因此,对这些影响因素进行分析探讨,并研究应该采取哪些措施时非常必要的。

1.4 电源高次谐波

由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响,通常采用以下处理措施:采用专用变压器对变频器供电,与其它供电系统分离;在变频器输入侧加装滤波电抗器或多种整流桥回路,降低高次谐波分量,对于有进相电容器的场合因高次谐波电流将电容电流增加造成发热严重,必须在电容前串接电抗器,以减小谐波分量,对电抗器的电感应合理分析计算,避免形成 LC振荡。

电动机温度过高及运行范围对于现有电机进行变频调速改造时,由于自冷电机在低速运行时冷却能力下降造成电机过热。此外,因为变频器输出波形中所含有的高次谐波势必增加电机的铁损和铜损,因此在确认电机的负载状态和运行范围之后,采取以下的相应措施:对电机进行强冷通风或提高电机规格等级;更换变频专用电机;限定运行范围,避开低速区。

1.5 震动、噪声

振动通常是由于电机的脉动转矩及机械系统的共振引起的,特别是当脉动转矩与机械共振电恰好一致时更为严重。噪声通常分为变频装置噪声和电动机噪声,对于不同的安装场所应采取不同的处理措施:变频器在调试过程中,在保证控制精度的前提下,应尽量减小脉冲转矩成分;调试确认机械共振点,利用变频器的频率屏蔽功能,使这些共振点排除在运行范围之外;由于变频器噪声主要有冷却风扇机电抗器产生,因选用低噪声器件;在电动机与变频器之间合理设置交流电抗器,减小因PWM调制方式造成的高次谐波。

1.6高频开关形成尖峰电压对电机绝缘不利

在变频器的输出电压中,含有高频尖峰电压。这些高次谐波冲击电压将会降低电动机绕组的绝缘强度,尤其以PWM控制型变频器更为明显,应采取以下措施:尽量缩短变频器到电机的配线距离;采用阻断二极管的浪涌电压吸收装置,对变频器输出电压进行处理。

二.变频器的抗干扰问题及措施

2.1 变频器应用中的干扰问题

在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。

2.1.1变频器干扰的来源

先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落(3)

尖峰电压脉冲(4)射频干扰。

2.1.1.1晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。

2.1.1.2电力补偿电容对变频器的干扰

电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。

其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。

(1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。

(2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。

2.1.2干扰信号的传播方式

变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、

感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。

(1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传播方式。

(2)感应耦合方式当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。感应的方式又有两种:a、电磁感应方式,这是电流干扰信号的主要方式;b、静电感应方式,这是电压干扰信号的主要方式。

(3)空中幅射方式即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。

2.2 变频器抗干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

2.2.1

所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

2.2.2

在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏

感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。滤波器就是用于削弱频率较高的谐波分量的主要手段。根据使用位置的不同,可分为:

(1)输入滤波器通常又有两种:a、线路滤波器主要由电感线圈构成。它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。b、辐射滤波器主要由高频电容器构成。它将吸收掉频率很高的、具有辐射能量的谐波成分。

(2)输出滤波器也由电感线圈构成。它可以有效地削弱输出电流中的高次谐波成分。非但起到抗干扰的作用,且能削弱电动机中由高次谐波谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意以下方面:a、变频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管;b、当输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。

2.2.3

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

2.2.4

正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。

于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。建议变频器的接地与其它动力设备接地点分开,不能共地。

2.2.5采用电抗器

在变频器的输入电流中频率较低的谐波分量(5次谐波、7次谐波、11次谐

波、13次谐波等所)所占的比重是很高的,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因数大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种:

(1)交流电抗器串联在电源与变频器的输入侧之间。其主要功能有:a、通过抑制谐波电流,将功率因数提高至(0.75-0.85);b、削弱输入电路中的浪涌电流对变频器的冲击;c、削弱电源电压不平衡的影响。

(2)直流电抗器串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因数方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。

2.2.6合理布线

对于通过感应方式传播的干扰信号,可以通过合理布线的方式来削弱。具体方法有:(1)设备的电源线和信号线应量远离变频器的输入、输出线;(2)其他设备的电源线和信号线应避免和变频器的输入、输出线平行;

三结论

通过对变频器应用过程中干扰的来源和传播途径的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,重视变频器的EMC 要求,已成为变频调速传动系统设计、应用必须面对的问题,也是变频器应用和推广的关键之一。变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。我们相信变频器的EMC问题一定会得到有效解决。

主要参考文献:

1、《变频器维修技术》出版社:广东科技出版社

2、刘美俊《变频器应用与维修问答》出版社:电子工业出版社出版时间:2010-01-06

变频器如何抗干扰

变频器如何抗干扰 怎样减少变频器对PLC与外围设备通讯的干扰?plC应用中需要注意的问题 PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。因此在使用中应注意以下问题: 1.工作环境 (1)温度 PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。

(2)湿度 为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。 (3)震动 应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。 (4)空气 避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。 (5)电源 PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。 2.控制系统中干扰及其来源 现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必

变频器抗干扰解决方案

变频器抗干扰解决方案 变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。这种工作原理导致以下三种电磁干扰: 1、谐波干扰 整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电子设备仅能工作在正弦波电压条件下),常见的电压畸变是正弦波的顶部变平。谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关; 2、射频传导发射干扰 由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关; 3、射频辐射干扰 射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。 根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。以下内容是解决现场干扰的主要步骤: 1、采用软件抗干扰措施 具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。如果这个方法不能奏效,那么只能采取下面的硬件抗干扰措施。 2、进行正确的接地

EMI抗干扰磁环在变频器上的应用

EMI抗干扰磁环在变频器上的应用 变频器干扰问题的处理方法及技巧工业控制系统中,加EMI抗干扰磁环去除干扰问题变得越来越引起人们的重视,特别是变频器对其它设备的干扰问题,我们如何去减少这些干扰呢? 下面我们要说说,变频器干扰问题最有效的处理方变频器干扰问题最有效的处理方法及技巧,加EMI抗干扰磁环去抗干扰问题的处理方法如下:1、加EMI抗干扰磁环的原理与作用数码设备传输线带有一根圆柱形的东西。这个是什么呢?是磁环,抗干扰磁环,或者说吸收磁环、铁氧体磁环。为什么要设置抗干扰磁环?电脑机箱内的主板、CPU、电源、及IDE数据线都工作于很高的频率状态下,所以导致机箱里存在着大量的空间杂散电磁干扰信号,而信号强度也是机箱外的数倍至数十倍!没有磁环的USB线在这个空间内没有采取屏蔽措施,那么这些USB线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在本来传输的信号上,甚至会改变原来传输的有用信号,容易出现问题。为了提高传输速率及稳定性,也为了减小传输线在传送数据时对其他设备,如声卡的干扰,设计了静电屏蔽层。这个屏蔽层是由一个较薄的金属箔片或者是多股细铜丝编织成网状做成,应用的是静电场的表面效应原理。也就是将数据传送线的外表面包上一层金属膜,并将这个屏蔽层与机箱进行接地,就可以很好地将数据线与空间干扰信号隔离! 吸收磁环,又称EMI抗干扰磁环,常用于可拆卸的分离时磁环,它是电子电路中常用的抗干扰元件,对于高频噪声有很好的抑制作用,一般使用铁氧体材料(Mn-Zn)制成。磁环在不同的频率下有不同的阻抗特性,一般在低频时阻抗很小,当信号频率升高磁环表现的阻抗急剧升高。使正常有用的信号很好的通过,又能很好的抑制高频干扰信号的通过,而且成本低廉。铁氧体抗干扰磁心特性铁氧体抗干扰磁心是近几年发展起来的新型的价廉物美的干扰抑制器件,其作用相当于低通滤波器,较好地解决了电源线,信号线和连接器的高频干扰抑制问题,而且具有使用简单,方便,有效,占用空间不大等一系列优点,用铁氧体抗干扰磁心来抑制电磁干扰EMI抗干扰磁环是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。 铁氧体是一种利用高导磁性材料渗合其他一种或多种镁、锌、镍等金属在2000℃烧聚而成,在低频段,铁氧体抗干扰磁心呈现出非常低的感性阻抗值,不影响数据线或信号

关于变频器干扰案例分析及其处理方案

关于变频器干扰案例分析及其处理方案 1引言交流感应异步电动机变频器调速是20世纪电气传动领域划时代的技术 进步。随着变频器的广泛应用,变频器日益成为工厂自动化领域最大的电磁污染源。可以经常的看到在一间设备密集型工厂装机几十台上百台变频器。变频器直—交逆变器的非线性等效负荷使得变频器在许多系统集成工程中不仅污染工厂 供电系统,还直接对自动化工程项目干扰,引起测控系统失准失灵,严重破坏大系统的稳定性,甚至变频器自身受到干扰引发“自举”式的调速故障。尽管国际标准对电气设备E M C(I E C61000系列电磁兼容设计)有严格的规范,并且国家质量技术监督局已决定在国内“等同”采用,同时,中国国家标准电能质量公用电网谐波G B/T14549-93已经生效14年之久,但是国家经济技术的飞速发展使得功率电子开关器件的污染控制已经刻不容缓。 在近年的客服中经常遇到变频器的干扰问题,造成设备误动作,使得工厂的生产 线不能运行,而且这一类问题的原因查找起来也比较困难,经过查阅有关资料,再 结合工作中处理问题的一些经验来具体谈一下变频器干扰的来源,传播方式以及一些针对实际应用中遇到干扰问题的不同情况的处理,希望不同于教科书的教条说教。 2变频器干扰分析 变频器的干扰问题一般分为变频器自身干扰;外界设备产生的电磁波对变频器干扰;变频器对其它弱电设备干扰3类情况。变频器本身就是一个干扰源,众所周知,变频器由主回路和控制回路两大部分组成,变频器主回路主要由整流电路,逆变电路,控制电路组成,其中整流电路和逆变电路由电力电子器件组成,电力、电子器件具有非线性特性,当变频器运行时,它要进行快速开关动作,因而产生高次谐波,这样变频器输出波形除基波外还含有大量高次谐波。无论是哪一种干扰类型,高次谐波是变频器产生干扰的主要原因。变频器本身就是谐波干扰源,所以对电源侧和输出侧的设备会产生影响。与主回路相比,变频器的控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰。因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。 3变频器干扰案例问题分析及其处理 3.1怎样来判定变频器出现干扰问题 变频器的干扰问题主要体现在电机的运行情况上。例如电机在运行过程中突然停机,电机运行时快时慢,运行速度不稳定.电机停不下来,按钮不起任何作用等等, 这些都是变频器受到干扰情况的体现。 3.2第三种方式接地 干扰问题的一般处理方法是要保证良好的接地,接地端子的一般要求为:接地端 子以“第三种方式”接地(单独接地),接地线愈短愈好,而且必须接地良好;控制回

变频器故障及处理方法

变频器故障及处理方法 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。 1、晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。 (1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。 (2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传

变频器抗干扰技术样本

引言: 在鼠笼式异步电动机的各种调速方式中, 变频调速传动系统占有极其重要的地位, 其具有强大的生命力。这类系统具有功率因数高、输出谐波小、起动平稳、调速范围宽等优点。由于变频器具有高效、节能和智能化的特点, 因而成为电力电子技术和交流传动的重要组成部分。变频器大多运行于恶劣的电磁环境, 且作为电力电子设备, 内部由电子元器件、计算机芯片等组成, 易受外界的一些电气干扰, 其输入侧和输出侧的电压、电流含有丰富的高次谐波, 投入运行既要防止外界干扰它, 又要防止它干扰外界, 即所谓的电磁兼容性。变频器的电磁兼容性问题解决的好坏很大程度决定了交流变频调速传动系统的可靠性。因此电磁兼容性越来越成为需要迫切关切和解决的重要技术问题。 变频调速传动系统的主要电磁干扰源及途径: 主要电磁干扰源 电磁骚扰, 称电磁干扰(EMI), 是以外部噪声和无用信号在接收中所造成的电磁骚扰, 以路的传导和以场的形式传播。变频器的整流桥对电网来说是非线性负载, 它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用 PWM 技术, 当工作于开关模式且作高速切换时, 产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。另一方面, 电网中的谐波干扰主要经过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备, 非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变, 从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理, 电网噪声就会经过电网电源电路干扰变频器。供电电源的干扰对变频器主要有: ( 1) 过压、欠压、瞬时掉电 ( 2) 浪涌、跌落 ( 3) 尖峰电压脉冲 ( 4) 射频干扰其次, 共模干扰经过变频器的控制信号线也会干扰变频器的正常工作。 电磁干扰的途径 变频器能产生功率较大的谐波, 由于功率较大, 对系统其它设备干扰性较强, 其干扰途径与一般电磁干扰途径是一致的, 主要分传导、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声, 使得电机铁耗和铜耗增加;并传导干扰到电源, 经过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合, 感应出干扰电压或电流。同样, 系统内的干扰信号经过相同的途径干扰变频器的正常工作。 抗电磁干扰的措施 据电磁性的基本原理, 形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰, 可采用硬件抗干扰和软件抗干扰。其中, 硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施, 一般从抗和防两方面入手来抑制干扰, 其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。 隔离 所谓干扰的隔离, 是指从电路上把干扰源和易受干扰的部分隔离开来, 使它们不发生电的联系。在变频调速传动系统中, 一般是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰, 电源隔离变压器可应用噪声隔离变压器。 使所有的信号线很好地绝缘, 使其不可能漏电, 这样, 防止由于接触引入的干扰; 将不同种类的信号线隔离铺设( 在不同一电缆槽中, 或用隔板隔开) , 我们能够根据

变频器常见故障分析和预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 变频器常见故障分析和预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8745-86 变频器常见故障分析和预防措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。 1、外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三

不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较长,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 2、安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

变频器干扰的解决方法,如何解决变频器的电磁干扰

变频器干扰的解决方法,如何解决变频器的电磁干扰 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。在工业现场,变频器的干扰问题出现得比较多,且比较严重,甚至导致控制系统无法正常投入使用。比如使得PLC通讯控制变得不稳定,比如使得现场控制柜的指示灯常亮,让人误解。用户都非常苦恼因为变频器干扰带来的困扰。然而,变频器的工作原理注定其会产生强电磁干扰。 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。这种工作原理导致以下三种电磁干扰: (1)射频辐射干扰:射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。 (2)谐波干扰:整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

提高变频器抗干扰能力的方法

一、使用复位和再启动功能。失电后,滤波电容器放电,逆变器控制电源失电时能够自动复位。另外,若选择瞬时停电后继续运行功能时,不需要复位操作,复电后能自动再启动。有些变频器有“工频切换选用件”,使用这种选用件可使因瞬停等原因脱离变频器的电机在复电时继续运转,即作为瞬停再启动装置使用。 二、调低低电压保护值。对有些品牌的变频器,当电压低到额定值的90%左右时即停机,造成同一电源系统中有些大启动电流负载启动时,变频器都停机,这些生产商对用户极不负责任。为提高这类变频器抗电压波动能力,可以适当调低这类变频器低电压保护值,有些厂家的变频器的低电压保护值用户可以直接整定,最低可到65%,在些厂家的变频器用户不能直接调整,因此只能重新选择变频器低电压检测回路的元器件,用户可以和变频器厂协商调整。我们认为低电压保护设定值设为75%的额定电压比较合适。 三、使用两台变频器互为热备用。两台变频器供电电源分别引自不同的供电系统,当一台变频器由于某种原因停止运行后,另一台变频器自动投入运行。为了保证切换成功,使用这种切换方式时,应根据旋转中电机的残留电压检出其转速,使变频器的输出频率与其一致,安全地将电动机切换到另一台变频器运行,否则新投入运行的变频器会因过电流而停止运行。 四、交流侧安装电抗器。对于变频器而言,交流侧交流侧安装电抗器主要是为了解决电源电压三相不平衡度超出规定范围(如富士变频器要求不平衡度≤3%),此电抗器的安装对提高变频器抗电压波动能力大有好处。 五、使用瞬停再启动控制。在发生瞬时停电时,如停电时间在规定数值范围内,变频器将继续运转,如果停电时间超过该规定值,变频器将自行切断输出。由于有些负载要求复电时能够自动地再启动,对于这类负载可以使用变频器的瞬停再启动功能。具体有两种方法:一是电机完全停止后再启动,二是在旋转中检出电机实际转速后,自动地将变频器输出频率调节在对应值再启动。对于富士变频器,瞬停再启动控制是一个内藏式可选件 (FR-PNS-H),电源复归0.5S-2S(可调)后可再启动。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

浅谈变频器抗干扰措施

浅谈变频器抗干扰措施 随着变频高速技术的发展与综合利用,使变频器行业在诸多领域得到空前的发展和应用,几乎国民经济各行各业都与变频器密不可分。“十二五”规划出台以来,节能减排就是各行各业发展的关键,受益于节能减排、绿色环保等战略的拉动,变频器的新技术改造越来越受到人们的重视。主要介绍了在工业控制系统中,变频器在抗干扰方面的一些相应措施和技术改进措施。 标签:变频器;抗干扰;措施 1 变频器应用状况 随着工业自动化程度的不断提高,变频调速系统由于具有调速范围宽、调速精度高、动态响应快、运行效率高、节能效果显著等优点,被广泛的应用到了工业控制的各个领域中。变频器是利用电力半导体器件的通断作用将工频电源|稳压器变换为另一频率的电能控制装置。通常情况下采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。 2 变频器干扰的来源及途径 变频器干扰来源可以分为两个方面,一个是外部电网的干扰,另外就是变频器自身的干扰。电网中的谐波干扰,这些负荷都使电网中的电压、电流产生波形畸变,电网噪声就会通过电网电源电路干扰变频器。比如晶闸管换流类设备对变频器的干扰。另外就是自身的干扰,在诸多控制系统中,多采用微机或者PLC 进行控制,在系统设计或者改造过程中变频器对微机控制板自身有干扰问题。当变频器的供电系统附近,存在高频冲击负载,变频器本身容易因为干扰而出现保护。 变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。对模拟传感器检测输入和模拟控制信号进行电气屏蔽和隔离。在变频器组成的控制系统设计过程中,建议尽量不要采用模拟控制,特别是控制距离大于1M,跨控制柜安装的情况下。因为变频器一般都有多段速设定、开关频率量输入输出,可以满足要求。如果非要用模拟量控制时,建议一定采用屏蔽电缆,并在传感器侧或者变频器侧实现远端一点接地。如果干扰仍旧严重,需要实现DC/DC隔离措施。可以采用标准的DC/DC模块,或者采用V/F转换,光藕隔离再采用频率设定输入的方法。

变频器干扰的处理方法

干扰问题的一般处理方法是要保证良好的接地,接地端子的一般要求为:接地端子以“第三种方式”接地(单独接地),接地线愈短愈好,而且必须接地良好; 控制回路线使用屏蔽线,而且屏蔽线远端屏蔽层悬空,近端接地; 根据产品要求,合理布线,强电和弱电分离,保持一定距离,避免变频器动力线与信号线平行布线,应分散布线; 增加抗无线干扰滤波器,变频器输入和输出抗干扰滤波器或电抗器; 采取防止电磁感应的屏蔽措施,甚至可将变频器用金属铁箱屏蔽起来; 适当降低载波频率; 若用通讯功能,RS485通讯线用双绞线。 三相五线制供电 曾经遇到过这样一种情况,变频器一直运转,按停止按钮不起作用,经检查发现变频器的地线只与变压器的中性线相连接,而变压器的中性线没有连接到大地,将变压器的中性线接地后变频器恢复正常。现在的很多小型工厂里面一般不重视地线的连接。机床出厂时,按照国家电工法规定的标准,地线与中性线是严格分开的,配电柜里中性线有专用接线端子,地线有专用接地螺钉。 由于该用户从变压器过来三根相线和一根中性线,只把中性线接到“N”端子上,而地线没有和中性线相连,虽说控制线使用了屏蔽线,屏蔽层也接到了接地螺钉,但没有和大地相连,起不到屏蔽作用,导致了变频器因干扰失控电机停不下来。把配电柜里中性线和地线连接后即恢复正常,也可以把配电柜里地线直接接到大地。许多用户都是采取把地线与中性线相连的办法,但是采用这种办法存在弊端,就是假如中性线断开,启动机床某一动作,可能使机床带电,对人身造成安全危胁。这种干扰属于变频器本身干扰类型。 外界设备对变频器的干扰案例 (1)现象。电机偶尔停不下来,经检查屏蔽层接地正确良好,降低载波频率不起作用。变频器输入侧及输出侧加磁环滤波器不起作用。 (2)分析。安装变频器的配电柜与动力配电室相距太近,配电室配电柜有大电流流过,在电流周围有较强磁场,干扰了变频器正常工作,把配电柜远离配电室后即恢复正常,这属于外界设备对变频器干扰。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如何消除变频器对模拟量的干扰

如何消除变频器对模拟量的干扰 在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 由于水系统的两台富士变频器离控制柜较远分别为30m 和20m,因此连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 二.关于接地 1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,同时由于在机组上PLC与变频器共用一个大地,因此建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。2.变频器的接地 ·400V级:C种接地(接地电阻10Ω以下)。 ·接地线切勿与焊机及动力设备共用。 ·接地线请按照电气设备技术基准所规定的导线线径规格。 如35KW的变频器接地线线径推荐为22mm2,87KW的接地线线径推荐为50mm2。 ·接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。

变频器干扰的解决方法

变频器干扰的解决方法 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不 可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。 电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有: (1)过压、欠压、瞬时掉电; (2)浪涌、跌落; (3)尖峰电压脉冲;

(4)射频干扰。 1、晶闸管换流设备对变频器的干扰 当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 其次是变频器自身对外部的干扰。 变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。

抗干扰处理方法(1)

PLC抗干扰处理办法 一、模拟量抗干扰处理办法 1.1、模拟量类型: 1.1.1模拟量输入类型(可根据客户需求定制) 1.1.2 模拟量输出类型 1.2模拟量输入抗干扰处理办法 1.2.1热电偶 特点: 1.测温范围广: 2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。 3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用 4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; 5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期

1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; 注意: 1.热电偶不能和强电放在一个线槽内 2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶) 处理方法: 1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确; 1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器) 2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开 3.加104瓷片电容、磁环做防干扰处理 4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线 5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。 6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。 1.2.2 PT100 特点: 1.测温范围:-99.9~499.9℃,线距越长线损越大 注意: 1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端 2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小) 3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。 4.采用双绞线作为信号线:串模干扰和被测信号的频率相当,这时很难用滤波的方法消除,此时可在信号源到PLC之间选用带屏蔽层的双绞线作为信号电缆,并确保接地正确可靠。采用双绞线作为信号线的目的是减少电磁干扰,双绞线能使各个小环路的感应电势相互抵消。 5.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。 6.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设 7,采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。 8,采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC 1.2.3 NTC10K/50K/100K

变频器谐波问题干扰范围及处理方法

变频器常见谐波问题以及解决方法

变频器常见谐波问题以及解决方法 在现代化港口、矿井、运输港的建设中,变频软启动渐渐替代机 械软启动,如常规液力耦合器,CST液力软启动,成为市场主流, 其主要原因为可控性高,精度强。 变频器在使用过程中也会相应的出现自己的问题,重点介绍下在 现场安装中变频器谐波问题以及处理办法。 就矿井使用的变频器而言,非下运皮带大都使用二象限的,因不 需要对电网进行电能反馈,下运皮带在运行以后对电网进行电能反馈,既逆向输送电力,而非使用电力,四象限变频器就是除了正反 转外还能控制,实现能量反馈回电网的变频器。2象限指的就是普 通的控制速度的变频器。内部除了控制方式不同外,硬件方面主要 就是4个象限变频器整流和逆变电路都使用可双向导通的半导体元件,一般是IGBT。而2象限的整流部分一般是晶闸管或二极管。 而就谐波问题而言,问题重点出现在四象限变频器,因产生的奇 数次谐波较强,且干扰问题严重,频器正常工作中,由于变频器高 次谐波的影响引发控制电路发生串联谐振,造成系统电源故障,就 功率等级而言,75KW以上四象限变频器因考虑进行谐波治理,而二 象限变频功率在100KW以下可以进行常规处理即可。 在变频器使用过程中,经常出现误指示、乱码等情况;变频器停 止工作时系统完全恢复正常。 很明显这是由于变频器高次谐波分量对电源的干扰造成的,通常,对此最为行之有效的办法就是对控制电路的供电电源加装电源滤波器。 在加装市售的通用电源滤波器后,系统恢复了正常,但是随之又 有新的问题出现了,控制电路中的熔断器频繁熔断。停电后对电路 进行检查,经现场详细观察发现,在系统逐渐升速过程中,变频器 运行输出在某个频段之间时频繁发生短路故障。而且,将变频器的 负载(电动机)断开后,该故障现象仍频繁出现,在去掉电源滤波器 后该故障消失。因此,首先对该滤波器进行了检查,拆开后发现滤 波器采用的是常见的π型滤波。

关于变频器干扰问题

关于DCS和变频器规范布线的建议 关于变频器干扰问题:变频器在运行时就好象一台功率强劲的干扰器,干扰的源头就在输出模块的6个IGBT管上,有的变频器开关电源也会造成一定的干扰,电源线及电机线就是干扰器的天线,地线接地不良则干扰信号也可通过接在外壳的地线发出去,线路越长则干扰范围就越大,不仅干扰周围的电子设备,也可干扰变频器本身!有的变频器在防止干扰信号辐射及输入下了一定的工夫,变频器不会经常误动作,一些偷工减料的变频器则有时因干扰问题令你头痛!如果你的控制系统在使用变频器的同时还有一些靠模拟信号、脉冲信号通讯的电子设备,如电脑,人机界面、感应器等,你在选购变频器及布线时就要很小心。防干扰有很多措施,如加电抗器、滤波器、控制线加磁环,用屏蔽线(没有屏蔽线的要把控制线绞在一起)、变频器放在铁柜里(变频器是铁壳比较好),进出电源线套在铁管里,控制线不要与电源线一起走线,布线纵横有序、调低载波频率、接地良好,很多变频器控制线公共端并不能接地(很多人接了)!检查变频器对周围干扰有多大也很简单,请你带上一个小收音机!防止变频器干扰有时是一个复杂的问题,还要结合现场情况。 在控制系统中,使用DCS的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;因此为了最大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。 一.关于布线 1.信号线与动力线必须分开走线 使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm 以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部 如变频器离控制柜较远,连接DCS和变频器的信号线不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。压接端子选择如下图:

相关主题