搜档网
当前位置:搜档网 › 压型钢板计算手册范本

压型钢板计算手册范本

压型钢板计算手册范本
压型钢板计算手册范本

本软件针对压型钢板、铝合金板进行截面承载力、挠度、施工荷载及排水能力进行验算。在计算过程中,

压型板按受弯构件考虑,主要遵循GB50018-2002《冷弯薄壁型钢结构技术规范》中关于压型钢板计算的条文规定、GB 50429-2007 《铝合金结构设计规范》中关于铝合金压型板相关的计算条文规定及《冷弯薄壁

型钢结构设计手册》中关于屋面排水计算的相关条文。压型板截面计算过程中,考虑到其实际的受力情况,所以选择了在一个波距范围内进行验算。因为无论是屋面板、墙面板或者是楼承板其实际作用过程中,均

是多块板横向搭接成为整体,所以选择其中一个波距来进行计算更贴近于压型板实际工作状态下的受力情况。压型板根据《建筑结构静力计算手册》计算各验算点的弯矩及剪力情况。

压型板的计算过程主要包含以下几个方面:毛截面惯性矩的计算、加劲肋是否有效的判别、腹板剪应力承

载能力计算、支座处腹板局部受压承载力验算、跨中位置最大正负弯矩和剪力作用下截面承载力验算、支

座位置最大负正弯矩和支座反力下截面承载力验算、最大正负挠度验算、屋面板排水能力验算。上述承载

力验算过程中均包含该种情况下该位置的有效截面宽度的验算。

计算采用的组合情况如下:

1.2恒+1.4活;

1.0恒-1.4负风吸;

1.2恒+1.4正风压;

1.2恒+1.4活+0.84正风压;

1.0恒+1.4活-0.84负风吸;

1.2恒+0.98活+1.4正风压;

1.0恒+0.98活-1.4负风吸;

1.2恒+1.0施工(屋面板);

1.2恒+1.4活载(楼面均布施工荷载)(楼承板);

1.2恒+1.4施工(楼面集中施工荷载)(楼承板)。

一:压型钢板

一)板材力学参数的确定

对于规范中已给出抗拉、抗剪强度设计值的材料牌号,我们按规范中数值采用,如Q235、Q345等。对现今压型板常用的冷轧板牌号如G300、G550等,规范没有给出明确的抗拉、抗剪强度设计值,厂家在供货的时候仅提供材料的屈服强度为300 N/mm2、550 N/mm2,所以我们根据《冷弯薄壁型钢结构技术规范》4.1.4条规定,取抗力分项系数,计算其抗拉强度设计值,抗剪强度设计值按抗拉强度设计

值除以计。

二)截面惯性矩的计算

软件根据截面几何形状,通过线积分的方法求得截面的惯性矩。在计算过程中忽略了腹板上的一些加劲措施,但上下翼缘的加劲肋是考虑在其中的,其计算结果经过测试满足实际计算要求。用户也可以通过AutoCAD对需计算的板型直接查询面域特性得到截面惯性矩,并可与软件计算所得相比较。

三)上下翼缘加劲肋是否有效的判别

《冷弯薄壁型钢结构技术规范》7.1.4条,受压翼缘纵向加劲肋的规定:

因我们计算过程中取中间一个有效波距进行计算,所以无需考虑边加劲肋的作用效果,仅考虑中间加劲肋

的判别。

针对中间加劲肋:

其中:代表中间加劲肋截面对平行于被加劲板件截面之重心轴的惯性矩;

代表被加劲的子板件的宽度;

代表板件的厚度。

其中对理解如下:加劲肋截面对自身重心轴的惯性矩,重心轴为平行于被加劲板件的重心轴,其数值

可以通过线积分的方法得到。

当中间加劲肋满足上述要求时,认定加劲肋有效;当不满足要求时,忽略加劲肋的作用,按无肋板考虑。四)板件截面是否失效的判别

均匀受压翼缘、不均匀受压腹板是否失效需根据其所处位置在该工况组合下经过验算确定。

受拉翼缘按全截面有效考虑。

五)受压板件截面有效宽厚比计算的分类情况及计算原理

《冷弯薄壁型钢结构技术规范》7.1.2条规定如下:

压型钢板受压翼缘的有效宽厚比应按下列规定采用:

因我们计算过程中取中间一个有效波距进行计算,所以无需考虑边加劲板件的计算。

两纵边均与腹板相连,或一纵边与腹板相连、另一纵边与符合7.1.4条要求的中间加劲肋相连的受压翼缘,可按加劲板件由本规范第5.6.1条确定其有效宽厚比;

我们对此条文做如下理解:

两纵边均与腹板连接即我们所说的加劲板件,按规范给出的计算方法计算。一纵边与腹板相连、另一纵边

与符合7.1.4条要求的中间加劲肋相连的受压翼缘,可按加劲板件由本规范第5.6.1条确定其有效宽厚比。但当两纵边均与中间加劲肋相连的子板件的计算方法规范中并没有明确给出。现实中这部分的计算对整个

板型来说也是非常重要的,在现有的新板型中,也会出现多个加劲肋的情况,而规范中给出的应该是只有

一个中间加劲肋的情况,对其他多肋的情况未有提及。

针对这个问题,我们参照澳大利亚冷弯薄壁型钢AS-NZS-4600-1996规范(第2.5条)。对其中多个加劲肋部分的计算方法,我们归纳如下:

当出现多个有效的中间加劲肋的时候(软件默认为加劲肋均分被加劲板件):

1、受压翼缘两侧均与腹板相连,当中间有多个加劲肋(加劲肋满足条件要求)时,与腹板相连的第一子板件(被加劲板件)如果部分失效(同理,因为加劲肋之间的间距相等,所以如果第一子板件部分失效,

那么其他各段子板件在均匀受压的情况下也必然出现部分失效的情况),则仅离腹板最近的两个加劲认为

有效,其他各中间加劲肋的加劲效果忽略,也就是离腹板最近的两个加劲肋之间的翼缘部分认为是平板,

按两边支承板件计算其有效宽度;

2、有多个加劲肋(加劲肋满足条件要求)时,当第一子板件全截面有效时,其他子板件也是全截面有效(等距),我们可以说中间加劲肋密集布置,加劲肋足够近,这时可以用折算厚度的概念来代替此有加劲板件。

为加劲板件(子板件与加劲肋一起)对其自身中和轴的截面惯性矩;

为受压翼缘宽度;

是折算后的厚度。

后续的计算有效截面惯性矩时同样用即可。(加劲肋数量大于等于2)

上述两种情况在中国《冷弯薄壁型钢结构技术规范》中没有提及,所以此处我们加以引用,实际计算时根

据折算后的厚度来再次计算其有效宽度、及截面的有效截面惯性矩。这里我们之所以对其加以考虑,

主要是因为会出现以下这种情况:翼缘板的板幅较宽,同时加劲肋也比较密集的情况下,我们不该很主观

的认为其全部有效,这里利用折算厚度的概念的话则更加清晰准确。

软件计算过程中,用澳大利亚冷弯薄壁型钢AS-NZS-4600-1996规范(第2.5条)补充中国冷弯薄壁型钢结构技术规范中未提及的部分,这样就可以基本包含压型钢板加劲肋计算的所有情况。这里仅是软件制作

组针对压型钢板计算方法的理解,并加以整理。同时也希望国标冷弯型钢规范可以进一步完善,更明确的

给出上述规范中未提及到的加劲肋之间的子板件计算情况,以及加劲肋密集的较宽板失效宽度的计算方法,和列出各种现今适用的冷轧板的强度设计值或其强度设计值的计算方法,以使其可以计算现今新产品的所

有型号,也使规范具有更好的适应性,同时也使现在的新的板型计算也能更加有据可依。

六)有效宽厚比的计算

有效宽厚比计算是在指定位置指定工况组合情况下的计算,各受力点在同一组合下失效情况各不相同,同

一受力点在不同组合情况下也各不相同。按《冷弯薄壁型钢结构技术规范》5.6.1条执行:

加劲板件、部分加劲板件、非加劲板件的有效宽厚比按下列公式计算

1)当时

2)当时

3)当时

为板件宽度

为板件厚度

为计算系数,,当时按1.15取。

为压应力分布不均匀系数,,

若,则,若,则。

为板件受压区宽度

当时,;当时,。

为计算系数

为受压板件边缘的最大控制应力,与板件所受力的各种情况有关

为板件受压稳定系数,与板件纵边支承类型和所受应力的分布情况有关

为板组约束系数,与邻接板件的约束程度有关,若不计相邻板件的约束作用时取1。

此处老规范中给出的值均按1考虑,与新规范比较后得出老规范偏保守的结论。在对无肋型压型板的计算中,对的计算方法在新规范中是明确的,但是对有肋型压型板的计算中,对加劲肋对被加劲板件

的约束作用并没有给出明确的计算方式。同时由于新板型的不断推出,加劲肋的形式多样化,有折角型V 字型,有U字型,有宽度较大的加劲肋等等,其约束方式很难界定,其自身的受压稳定系数也难以计算,

所以此处我们仍按老规范=1来考虑,计算结果偏安全。同时希望新规范中对现今流行的加劲方式的板

组约束系数给出更为明确的计算方法。

为板件受压稳定系数

按《冷弯薄壁型钢结构技术规范》5.6.2条中加劲板件情况下计算:

对于加劲板件:

当时,

当时,

此时为压应力分布不均匀系数,当小于-1时,按-1取。

当出现部分截面失效的情况时,根据《冷弯薄壁型钢结构技术规范》5.6.5条求出失效位置(截面受拉部分

全部有效)。

针对压型板的受力形式,可以知道上下翼缘为均匀受压或者受拉,受拉时全截面有效,腹板为非均匀受力,均匀受压时压应力分布不均匀系数为,不均匀受压时可按求得。

图中b e1、b e2按下列方法计算

对于加劲板件:

当时

当时

七)有效截面惯性矩的计算

当截面出现失效时,应再次计算截面有效部分的惯性矩(注:中和轴位置改变,板部分失效,软件以线积

分方法计算),并以有效截面特性代替毛截面特性,验算压型板截面承载力及挠度是否满足要求。

八)截面承载力的计算

1、根据《冷弯薄壁型钢结构技术规范》7.1.6条进行压型板的剪应力的验算:

当时(为腹板实际展开宽度),腹板的平均剪应力应满足下列要求:=

当时(为腹板实际展开宽度),腹板的平均剪应力应满足下列要求:=

为腹板平均剪应力

为腹板的剪切屈曲临界剪应力

为腹板的高厚比

2、根据《冷弯薄壁型钢结构技术规范》7.1.7条进行压型板支座处腹板局部受压承载力验算:

支座反力

为一块腹板的局部受压承载力设计值。

为系数,中间支座取0.12,边支座取0.06。

为强度设计值

为腹板厚度

为材料弹性模量

为支座处支承长度,中跨位置可以取支承构件宽度

为腹板倾角

3、根据《冷弯薄壁型钢结构技术规范》7.1.8条进行压型钢板同时承受弯矩M和支座反力R的截面承载力验算:

其中。为截面的弯矩承载力设计值。需根据所在位置的截面有效特性求得。

在此M与R同时作用的位置必在支座处,所以此处的为支座反弯位置的有效截面模量。为支座的

反弯矩。与按前面的方法求得。

4、根据《冷弯薄壁型钢结构技术规范》7.1.9条进行压型钢板同时承受弯矩M和剪力V的截面承载力验算:

(完整版)钢筋桁架楼承板设计手册2

目录 1 钢筋桁架楼承板简介 (2) 1.1 产品概况 (2) 1.2 产品形状 (2) 1.3 构件规格 (3) 2 材料 (3) 2.1 钢筋 (3) 2.2 混凝土 (4) 2.3 底模 (4) 2.4 焊条 (5) 3 钢筋桁架混凝土模板 (5) 3.1 钢筋桁架混凝土模板的形成 (5) 3.2 适用范围 (5) 3.3 设计需遵守的相关规定 (5) 4 钢筋桁架混凝土楼板受力特点 (6) 5 钢筋桁架混凝土楼板设计 (6) 5.1 设计内容 (6) 5.2 计算方法 (6) 5.3 设计步骤 (9) 5.4 构造要求 (9) 6 设计相关事宜 (9) 7 设计实例 (10) 7.1 工程概况 (11) 7.2 钢筋桁架楼承板长度确定 (11) 7.3 钢筋桁架楼承板选用及附加钢筋计算 (11) 7.4 施工示意图 (36) 附录一钢筋桁架楼承板选用表 (38) 附录二等跨连续板在均布荷载作用下的弯矩系数 (46) 附录三钢筋桁架楼承板节点详图 (48)

1 钢筋桁架楼承板简介 1.1 产品概况 1.1.1 钢筋桁架楼承板是将楼板中钢筋在工厂加工成钢筋桁架,并将钢筋桁架与底模连接成一体的组合楼承板。见图1.1.1。钢筋形成桁架,承受施工期间荷载,底模托住湿混凝土,因此这种技术免去支模、拆模的工作及费用。 注:左下角标注为肋高3mm 。 图1.1.1钢筋桁架楼承板 1.2 产品形状 1.2.1 A 型钢筋桁架楼承板形状见图1.2.1-1、图1.2.1-2; 1.2.2 B 型钢筋桁架楼承板形状见图1.2.2-1、图1.2.2-2; 图1.2.1-1 A型钢筋桁架楼承板横剖面图 h t c 下弦钢筋 上弦钢筋腹杆钢筋钢筋桁架间距 底模 C h 图1.2.1-2 A型钢筋桁架楼承板纵剖面图t 上弦钢筋下弦钢筋腹杆钢筋支座竖筋支座水平筋 底模钢筋桁架节点间距h t c 下弦钢筋 上弦钢筋钢筋桁架间距上弦钢筋底模

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

模板计算书

400x1600梁模板支架计算书一、梁侧模板计算 (一)参数信息 1、梁侧模板及构造参数 梁截面宽度 B(m):;梁截面高度 D(m):; 混凝土板厚度(mm):; 采用的钢管类型为Φ48×3; 次楞间距(mm):300;主楞竖向道数:4; 穿梁螺栓直径(mm):M12; 穿梁螺栓水平间距(mm):600; 主楞材料:圆钢管; 直径(mm):;壁厚(mm):; 主楞合并根数:2; 次楞材料:木方; 宽度(mm):;高度(mm):; 2、荷载参数

新浇混凝土侧压力标准值(kN/m2):; 倾倒混凝土侧压力(kN/m2):; 3、材料参数 木材弹性模量E(N/mm2):; 木材抗弯强度设计值fm(N/mm2):;木材抗剪强度设计值fv(N/mm2):; 面板类型:胶合面板;面板弹性模量E(N/mm2):; 面板抗弯强度设计值fm(N/mm2):; (二)梁侧模板荷载标准值计算 =m2; 新浇混凝土侧压力标准值F 1 (三)梁侧模板面板的计算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。 面板计算简图(单位:mm) 1、强度计算 面板抗弯强度验算公式如下: σ = M/W < f 其中,W -- 面板的净截面抵抗矩,W = 150××6=81cm3; M -- 面板的最大弯矩(N·mm); σ -- 面板的弯曲应力计算值(N/mm2) [f] -- 面板的抗弯强度设计值(N/mm2); 按照均布活荷载最不利布置下的三跨连续梁计算:

M = 1l+ 2 l 其中,q -- 作用在模板上的侧压力,包括: 新浇混凝土侧压力设计值: q 1 = ×××= kN/m; 倾倒混凝土侧压力设计值: q 2 = ××4×=m; 计算跨度(次楞间距): l = 300mm; 面板的最大弯矩 M= ××3002+××3002= ×105N·mm; 面板的最大支座反力为: N= 1l+ 2 l=××+××=; 经计算得到,面板的受弯应力计算值: σ = ×105/ ×104=mm2; 面板的抗弯强度设计值: [f] = 15N/mm2; 面板的受弯应力计算值σ =mm2小于面板的抗弯强度设计值 [f]=15N/mm2,满足要求! 2、抗剪验算 Q=××300+××300)/1000=; τ=3Q/2bh=3××1000/(2×1500×18)=mm2; 面板抗剪强度设计值:[fv]=mm2; 面板的抗剪强度计算值τ=mm2小于面板的抗剪强度设计值 [f]=mm2,满足要求! 3、挠度验算 ν=(100EI)≤[ν]=l/150 q--作用在模板上的侧压力线荷载标准值: q=×; l--计算跨度: l = 300mm; E--面板材质的弹性模量: E = 6000N/mm2; I--面板的截面惯性矩: I = 150×××12=72.9cm4; 面板的最大挠度计算值: ν = ××3004/(100×6000××105) = 0.722 mm; 面板的最大容许挠度值:[v] = min(l/150,10) =min(300/150,10) = 2mm; 面板的最大挠度计算值ν =0.722mm 小于面板的最大容许挠度值 [v]=2mm,满

悬挑板模板(扣件式)计算书

板模板(扣件式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土楼板名称XTB 新浇混凝土楼板板厚(mm) 100 新浇混凝土楼板边长L(m) 4.5 新浇混凝土楼板边宽B(m) 4.5 二、荷载设计 施工人员及设备荷载标准值Q1k 当计算面板和小梁时的均布活荷载(kN/m 2 ) 2.5 当计算面板和小梁时的集中荷载(kN) 2.5 当计算主梁时的均布活荷载(kN/m 2 ) 1.5 当计算支架立柱及其他支承结构构件时的均布活荷载(kN/ m2) 1 模板及其支架自重标准值G1k(kN/m2) 面板自重标准值0.1 面板及小梁自重标准值0.3 楼板模板自重标准值0.5 模板及其支架自重标准值0.75 新浇筑混凝土自重标准值G2k(kN/m3) 24 钢筋自重标准值G3k(kN/m3) 1.1 风荷载标准值ωk(kN/m2) 基本风压ω0(kN/m2 ) 0.2 0.21 风压高度变化系数 μz 1.29

风荷载体型系数μs0.8 三、模板体系设计 模板支架高度(m) 12 立柱纵向间距l a(mm) 600 立柱横向间距l b(mm) 1200 水平拉杆步距h(mm) 1500 立柱布置在混凝土板域中的位置中心对称 立柱距混凝土板短边的距离(mm) 150 立柱距混凝土板长边的距离(mm) 450 主梁布置方向平行楼板长边 小梁间距(mm) 400 小梁两端各悬挑长度(mm) 250,250 主梁两端各悬挑长度(mm) 150,150 结构表面的要求结构表面隐蔽 模板及支架计算依据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 设计简图如下:

压型钢板混凝土组合楼承板计算实例

压型钢板混凝土楼承组合板计算书 工程资料: 该工程楼层平台采用压型钢板组合楼板,计算跨度m l 4=,剖面构造如图1所示。压型钢板的型号为YX76-305-915,钢号Q345,板厚度mm t 5.1=,每米宽度的截面面积m mm A S /20492=(重量0.152/m kN ),截面惯性矩m mm I S /1045.20044?=。顺肋两跨连续板,压型钢板上浇筑mm 89厚C35混凝土。 图1 组合楼板剖面

1 施工阶段压型钢板混凝土组合板计算 1.1 荷载计算 取m b 0.1=作为计算单元 (1)施工荷载 施工荷载标准值m kN p k /0.10.10.1=?= 施工荷载设计值m kN p /4.10.14.1=?= (2)混凝土和压型钢板自重 混凝土取平均厚度为mm 127 混凝土和压型钢板自重标准值 m kN m m kN m kN m k /325.30.1)/15.0/25127.0(g 23=?+?= 混凝土和压型钢板自重设计值 m kN m kN g /0.4/325.32.1=?= (3)施工阶段总荷载 m kN m kN m kN g p q k k k /325.4/325.3/0.1=+=+= 1.2 内力计算 跨中最大正弯矩为 m kN m kN l g p M ?=??+?=+=+05.60.4)0.44.1(07.0)(07.022max 支座处最大负弯矩为 m kN m kN l g p M ?=??+?=+=-8.100.4)0.44.1(125.0)(125.022max 故m kN M M ?==- 8.10max max 支座处最大剪力 kN kN l g p V 5.130.4)0.44.1(625.0)(625.0max =?+?=+= 1.3 压型钢板承载力计算 压型钢板受压翼缘的计算宽度et b

钢板桩计算

深基坑拉森钢板桩计算 计算依据为《建筑施工计算手册》 。挡土钢板桩根据基坑挖土深度、土质情况、地质条件和邻近建筑管线情况,选用多锚(支撑)板桩形式,对坑壁支护,以便基坑开挖。根据现场实际情况,基坑深度 1.29~4.5米,现按开挖深度5.0米计算,宽 2.5米, 钢板桩施工深度按9m 计算,单层支撑,撑杆每隔3m 一道。从剖面可知,沟槽施工关系到素填层、 粉质粘土及淤泥质中砂层。求得其加权平均值为:坑内、外土的天然容重加全平均值1γ,2γ均为:20KN/m3;内摩擦角加全平均值Φ:20°;粘聚力加全平均值c=10。 多支撑式板桩计算,钢板桩选用拉森Ⅲ型钢板桩,每延长米截面矩W=1600cm 3/m ,[f]=200Mpa 。支撑图附在后页。 一、内力计算 (1)作用于板桩上的土压力强度及压力分布见下图 土压力分布图 3248.8KN/m

2222tan (45/2)tan (4520.0/2)0.49 tan (45/2)tan (4520.0/2) 2.04a pi K K =-Φ=-==+Φ=+=。。。。 板桩外侧均布荷载换算填土高度h0, h0=q/r=20.0/20=1.0m 。 (2)计算反弯点位置。 假定钢板桩上土压力为零的点为反弯点,设其位于开挖面以下y 处,则有: 122()2pi a k y K H y γγ+=+- 整理得: 21212a pi a pi a k H y K k γγγ=-式中, 1γ,2γ——坑内外土层的容重加权平均值; H ——基坑开挖深度; Ka ——主动土压力系数; Kpi ——放大后的被动土压力系数。 2a 1pi 2a 200.49(1.0 5.0)210 1.4282100.720.0 2.0420.00.4920.0 2.0420.00.490.53m K H y K K γγγ??+??+??==--?-??-?= (3)按简支梁计算等值梁的最大弯矩和支点反力,其受力简图如下图所示。 2 钢板桩受力简图

屋面C型檩计算Microsoft Word 文档

屋面C型主檩条计算主要遵循《冷弯薄壁型钢结构技术规范》 GB50018-2002 及《建筑结构静力计算手册》中相关规定。屋面主檩条承受次檩条传来的集中力作用,且集中力间距相同,取最不利排列求最大弯矩。 檩条宜优先采用实腹式构件,也可采用空腹式构件;跨度大于9m时宜采用格构式构件,并应验算受压翼缘的稳定性。 实腹式檩条宜采用卷边槽型和斜卷边Z形冷弯薄壁型钢,也可采用直卷边的Z形冷弯薄壁型钢。 檩条一般设计成单跨简支构件,实腹式檩条也可设计成连续构件。本软件计算的檩条采用简支结构。 主檩条在设计过程中,可以考虑次檩条对主檩条提供的侧向支承作用。 当次檩条直接支承压型钢板屋面时,其挠度限值为L/150;当尚有吊顶时,其挠度限值为L/240;当仅支承的屋面材料为水泥制品瓦材屋面时,其挠度限值为L/200。因此主檩条挠度限值应在此基础上适当提高。 C型檩条截面特性计算: 根据《冷弯薄壁型钢结构技术规范》 GB50018-2002附录B.2.6向内卷边槽钢: 图中A点为弯心,O点为重心。 毛截面面积:

重心位置: 对X轴毛截面惯性矩: 对Y轴毛截面惯性矩: 毛截面抗扭惯性矩: 毛截面扇性惯性矩: 弯心位置: 弯心在坐标轴上位置: 一般情况下,截面验算时,对C型和Z型檩条应考虑弯扭双力矩的影响,但实际工程中,由于屋面板等的影响,此部分计算数值相对较小,可以利用来包络,并经工程实践检验,一般是偏于安全的,同时也简化了计算。 冷弯效应的强度设计值: 计算全截面有效的受拉、受压或受弯构件的强度,可采用考虑冷弯效应的强度设计值。对经退火、焊接和热镀锌等热处理的冷弯薄壁型钢构件不得采用考虑冷弯效应的强度设计值。

压型钢板专项施工方案

压型钢板专项施工方案 目录 一、编制依据 (1) 二、工程概况 (1) 三、楼板压型钢板计算 (1) 四、支撑架搭设 (5) 五、楼板混凝土浇筑 (5) 六、质量保证措施 (7) 七、成品保护 (7) 八、安全环保措施 (8)

一、编制依据 1.《建筑工程施工质量验收统一标准》(GB50300-2001); 2.《钢结构工程施工质量及验收规范》(GB50205-2001); 3.《混凝土工程施工质量及验收规范》(GB50204-2002); 4.北京杰西卡制衣有限公司综合楼施工图纸; 5.北京杰西卡制衣有限公司综合楼工程施工组织设计。 二、工程概况 本工程位于北京市大兴亦庄开发区,北京杰西卡制衣厂院内。东临规划道路,南侧为现有厂房,西侧为拟建工程,北侧为规划市政主干道。本工程主体结构地下一层,地上五层,局部七层。建筑物檐高29.700米,首层面积3371.6 m2,总建筑面积20130m2。地下部分基础为筏板基础,主体结构为钢结构。 本工程楼板为压型钢板与现浇钢筋混凝土叠合层组合而成,压型钢板采用YX75-200-600型(7520),板厚0.8mm,混凝土强度等级为C25,内掺10%HEA膨胀剂。膨胀带内掺15%HEA膨胀剂,首层楼板厚180mm,二层及二层以上楼板厚为125mm。 三、楼板压型钢板计算 1、压型钢板底部支撑布置 因结构梁是由钢梁通过剪力栓与混凝土楼面结合而成的组合梁,在浇

捣混凝土并达到一定强度前抗剪强度和刚度较差,为解决钢梁和永久模板的抗剪强度不足,以支撑施工期间楼面混凝土的自重,通常需设置简单排架支撑(见附图) 2、计算依据: (1)《混凝土结构工程施工及验收规范》〈GB50204-92〉 (2)在进行压型钢板计算时,考虑以下几项荷载: ①压型钢板自重; ②新浇混凝土自重; ③钢筋自重; ④施工人员及施工设备荷载; ⑤压型钢板的荷载设计值采用标准值乘以相应的荷载分项系数,荷载 分项系数按下表取用: 3、楼板压型钢板计算: 楼板混凝土浇筑过程中,由压型钢板与碗扣式脚手架共同组成支撑体系。在压型钢板跨中设一道支撑,支架采用碗扣式脚手架,立杆间距为1.2m,上设可调顶托,顶托上设龙骨,龙骨用100mm×100mm方木。 (1)荷载计算

压型钢楼板的计算

压型钢板组合楼板 1.定义 组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。 2.组合楼板的优点 1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑; 2)压型钢板非常轻便,堆放、运输及安装都非常方便; 3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。 4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重; 5)有利于各种管线的布置、装修方便; 6)与木模板相比,施工时减小了火灾发生的可能性; 7)压型钢板也可以起到支撑钢梁侧向稳定的作用。 3.组合楼板的发展 二十世纪30-50年代 早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。 二十世纪60年代-70年代 六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。 二十世纪80年代-现在 组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。 我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在我国已较为成熟。 4 常用的压型钢板的截面形式 给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。

压型钢板屋面板计算

屋面板的验算 屋面材料采用压型钢板,檩条间距为0.9M, 设计活荷载0.75KN/M2, 恒载0.2KN/M2, 基本风压2.59 KN/M2, 选用830型PU发泡板,板厚0.426mm, 截面形状及尺寸见: W x=4.02Cm3=4020mm3 I x=7.98Cm4=79800mm4 分析: (1)内力计算: 压型钢板采用单波线荷载 q x1=0.75KN/m2 x1mx1.5=1.125KN/m q x2=2.59KN/m2 x1mx1.5=3.885KN/m q x=0.2KN/m2x1m x1.35=0.27KN/m q=1.125KN/m+3.885KN/m+0.27KN/m=5.28KN/m 按简支梁计算压型钢板跨中最大弯距 M max=1/8qL2 =1/8 x 5.28KN/M x( 0.9m)2=0.594KN.M (2)截面几何特性 由830型PU发泡板,板厚0.426mm得知: W x=4.02Cm3=4020mm3 δ=M max/W x =0.594kN.M/4020mm3 =0.594x103x1x103mm/4020 mm3

=147.76N/mm2<[w]=215N/mm2 满足要求 (3)强度验算 (a)正应力验算 δ= M max/W x =0.594KN.M/79800mm3=74.436N/mm2<[w]=215N/mm2 满足要求 (b)剪应力验算 V max=1/2qL =1/2 x 5.28KN/m x 0.9m=2.376KN (c)腹板最大剪应力: δ=V/∑ht = 2.376KN x 103/( 2 x25mm x 0.5mm) =2.376 x 103 / (2 x 25 x 0.5) =95.04N/mm2 < [ f ]=120N/mm2 满足要求 (4)钢度验算 按单跨简支板计算跨中最大挠度 W max=5q x L4 / 384EI x =5 x 0.27KN/N /1.4 x 0.9M x 1012 / (384 x 2.06 x 105 x79800 mm4) =0.13mm < [w] = L/300 = 3.4mm 满足要求 通过以上计算,可知满足设计要求.

彩钢板强度计算.doc

彩钢板强度计算 中中间间区区屋屋面面板板计计算算程程式式板材强度Q345A输入荷载屋面风载体型系数US=1.3中中间间区区高度变化系数UZ=1.14基本风压ω0=0.75KN/M2阵风系数βgz=1.72βgzUSUZω0=ωk=1.912KN/M2B输入几何条件有效覆盖宽度L=0.9M檩距S=1.5M截面型式YX28-300-900-0.6惯性矩Ief=95800MM4截面抵抗矩Wef=4820MM3C荷载组合条件恒载qkx=0.047KN/M风载qky=1.721KN/M设计值1.2qkxqx=0.056KN/M1.4qkyqy=2.409KN/M1.0恒载+1.4风载(吸力)组合D内力计算(按简支梁)计算跨中弯矩M1/8qyL2=Mx=0.933KN?M2.抗弯强度验算弯曲应力计算sMx/1.05xWnx=s=184.28N/mm2f=310N/mm2满足 3.挠度验算5/384xqkxL4/EI=Vx=5.590mm[V/L]xL=[1/200]xL=7.5mm满足边边角角区区屋屋面面板板计计算算程程式式板材强度Q345A输入荷载屋面风载体型系数US=2.9边边角角区区高度变化系数UZ=1.14基本风压ω0=0.75KN/M2阵风系数βgz=1.72βgzUSUZω0=ωk=4.265KN/M2B输入几何条件有效覆盖宽度L=0.9M檩距S=0.75M截面型式YX28-300-900-0.6惯性矩Ief=95800MM4截面抵抗矩Wef=4820MM3C荷载组合条件恒载qkx=0.047KN/M风载qky=3.838KN/M设计值1.2qkxqx=0.056KN/M1.4qkyqy=5.374KN/M1.0恒载+1.4风载(吸力)组合D内力计算(按简支梁)计算跨中弯矩

压型钢板计算手册

本软件针对压型钢板、铝合金板进行截面承载力、挠度、施工荷载及排水能力进行验算。在计算过程中,压型板按受弯构件考虑,主要遵循GB50018-2002《冷弯薄壁型钢结构技术规范》中关于压型钢板计算的条文规定、GB 50429-2007 《铝合金结构设计规范》中关于铝合金压型板相关的计算条文规定及《冷弯薄壁型钢结构设计手册》中关于屋面排水计算的相关条文。压型板截面计算过程中,考虑到其实际的受力情况,所以选择了在一个波距范围内进行验算。因为无论是屋面板、墙面板或者是楼承板其实际作用过程中,均是多块板横向搭接成为整体,所以选择其中一个波距来进行计算更贴近于压型板实际工作状态下的受力情况。压型板根据《建筑结构静力计算手册》计算各验算点的弯矩及剪力情况。 压型板的计算过程主要包含以下几个方面:毛截面惯性矩的计算、加劲肋是否有效的判别、腹板剪应力承载能力计算、支座处腹板局部受压承载力验算、跨中位置最大正负弯矩和剪力作用下截面承载力验算、支座位置最大负正弯矩和支座反力下截面承载力验算、最大正负挠度验算、屋面板排水能力验算。上述承载力验算过程中均包含该种情况下该位置的有效截面宽度的验算。 计算采用的组合情况如下: 1.2恒+1.4活; 1.0恒-1.4负风吸; 1.2恒+1.4正风压; 1.2恒+1.4活+0.84正风压; 1.0恒+1.4活-0.84负风吸; 1.2恒+0.98活+1.4正风压; 1.0恒+0.98活-1.4负风吸; 1.2恒+1.0施工(屋面板); 1.2恒+1.4活载(楼面均布施工荷载)(楼承板); 1.2恒+1.4施工(楼面集中施工荷载)(楼承板)。 一:压型钢板 一)板材力学参数的确定 对于规范中已给出抗拉、抗剪强度设计值的材料牌号,我们按规范中数值采用,如Q235、Q345等。对现今压型板常用的冷轧板牌号如G300、G550等,规范没有给出明确的抗拉、抗剪强度设计值,厂家在供货的时候仅提供材料的屈服强度为300 N/mm2、550 N/mm2,所以我们根据《冷弯薄壁型钢结构技 术规范》4.1.4条规定,取抗力分项系数,计算其抗拉强度设计值,抗剪强度设计值按抗拉强度设计值除以计。 二)截面惯性矩的计算 软件根据截面几何形状,通过线积分的方法求得截面的惯性矩。在计算过程中忽略了腹板上的一些加劲措施,但上下翼缘的加劲肋是考虑在其中的,其计算结果经过测试满足实际计算要求。用户也可以通过AutoCAD对需计算的板型直接查询面域特性得到截面惯性矩,并可与软件计算所得相比较。 三)上下翼缘加劲肋是否有效的判别 《冷弯薄壁型钢结构技术规范》7.1.4条,受压翼缘纵向加劲肋的规定: 因我们计算过程中取中间一个有效波距进行计算,所以无需考虑边加劲肋的作用效果,仅考虑中间加劲肋的判别。 针对中间加劲肋:

100板模板(盘扣式)计算书

100板模板(盘扣式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工承插盘扣式钢管支架安全技术规范》JGJ 231-2010 3、《混凝土结构设计规范》GB 50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 二、荷载设计

三、模板体系设计 设计简图如下:

模板设计平面图

纵向剖面图

横向剖面图 四、面板验算 按简支梁,取1m单位宽度计算。 W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4 承载能力极限状态 q1=[1.2×(G1k

+(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.1+(24+1.1)×0.1)+1.4×3]×1=7.332kN/m 正常使用极限状态 q=(γG(G1k +(G2k+G3k)×h)+γQ×Q1k)×b =(1×(0.1+(24+1.1)×0.1)+1×3)×1=5.61kN/m 计算简图如下: 1、强度验算 M max=q1l2/8=7.332×0.22/8=0.037kN·m σ=M max/W=0.037×106/37500=0.978N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 νmax=5ql4/(384EI)=5×5.61×2004/(384×10000×281250)=0.042mm νmax=0.042mm≤min{200/150,10}=1.333mm 满足要求! 五、小梁验算 q1=[1.2×(G1k +(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.3+(24+1.1)×0.1)+1.4×3]×0.2=1.514kN/m 因此,q1静=1.2×(G1k +(G2k+G3k)×h)×b=1.2×(0.3+(24+1.1)×0.1)×0.2=0.674kN/m q1活=1.4×Q1k×b=1.4×3×0.2=0.84kN/m 计算简图如下:

钢板桩支护计算手册

钢板桩支护计算手册文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

支护计算书 一.设计资料 该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m ;在等于开挖深度的水平距离内无临近建筑物。故可以认为该坑的安全等级为二级。重要性系数取γ0=1.0。 地面标高:-0.5m 基础底面标高:-10.2m 开挖深度:9.7m 地下水位:-1.5m 地面均布荷载:20kN/m 2 土层:地表层有1m 厚的杂填土,其下为均质粉质粘土 基坑外侧的粘土都看做饱和粘土;基坑内侧因为排水,看做有1.8m 深含水量16%的粘土,其下为饱和粘土。 二.选择支护形式 由于土质较好,水位较高,开挖深度一般,故选择钢板桩加单层土层锚杆支护。 三.土压力计算 1.竖向土压力的计算 公式:j mj rk z γσ= 基坑外侧:

基坑内侧: 2.主动土压力的计算 取0'2 a e 主动土压力零点: 主动土压力示意图 3.被动土压力的计算 4.土压力总和 开挖面以上只有主动土压力。 开挖面以下: 再往下,每米增加29.45kpa 的负向土压力。 1m 条带中,土压力分块的合力 压力区块 压力合力(kN ) 距上端距离(m ) 距下端距离(m ) 119.73k

四.嵌固深度计算 1.反弯点 解得h=0.569m 2.支点力T c1 设支点位于地面以下4m,即支点处标高为-4,5m 对反弯点处弯矩为0 3.嵌固深度h d 用软件解如下方程 求最小h d, 161.66*(x+5.7)+(29.45*x+41.04)*(x-1.8)*(x-1.8)/6+19.296*(x-1.39)- 1.2*(15.19+275.74+4.125)*x-1.2*845.57=0 =7.500m 解得h d 五.弯矩计算 根据《建筑基坑支护技术规程》(JGJ120-99)的规定按下列规定计算其设计值:截面弯矩设计值M M=1.25γ0M c 式中γ ——重要性系数,取1.0 1.锚固点弯矩设计值 2.剪力为0处弯矩设计值(开挖面上方) 设地面到该点距离为 h 2 3.剪力为0处弯矩设计值(开挖面下方) 设开挖面到该点距离为 h 3

八、九、十、十一压型钢板和檩条计算

八、刚架位移核算

风载作用下的弯距图与荷载计算中图形相同,仅须将数值除以1.4,作为荷载标准值计算。 对AF 柱 32.21.408212.23.929.3813.93212.2323.939.51214.11m KN y =????????? ? ??????+????? ????=Ω∑ 对FG 梁 ()()()()∑? ????? ??????-?+????????-?++??= Ω331.012.2231.003.913.1139.5121231.012.203.913.114.11y 3.14.284m KN = 对GH 梁 ∑=?? ???????? ????+???? ?????= Ω3.72.6245.019.1032.421195.013.1171.4214.11m KN y 对BH 柱 ∑=Ω 0y 对HI 梁 ∑=?? ????????? ?????=Ω3.51.1135.032 55.1319.10214.11m KN y 对CJ 柱 ()()()()∑??? ?? ????-?+????????-?++???= Ω381.094.1281.0125.272.3533.5421294.181.0125.235714.11y ()3 2.84.303294.181.0125.262.281125.23294.132175.83 3.5421m KN =???+???? ??????+????? ????+对JK 柱 ()()()()∑? ????? ??????-?+????????-?++??= Ω 320.081.0220.008.2489.272.3521220.081.008.2489.24.11y 3.39.196m KN = 对DK 柱 ∑=????? ?????= Ω 3.79.73259.23 2 3.1261.9621 4.11m KN y 对KL 梁 ∑=?? ???????? ????+???? ?????= Ω3.83.45503.073.1066.2321164.031.189.2214.11m KN y

墙面压型钢板计算

十、墙面压型钢板设计与计算 墙面材料采用压型钢板,墙檩条间距1.6m ,选用YX35-125-750型压型钢板,板厚t=0.6㎜,截面形状及尺寸如图 (1)、内力计算 设计荷载: 压型钢板单波线荷载: m KN q x /074.04.18.0125.053.0=???=(0.53为风荷载的面荷载) 《风载 基本风压ω0=0.50KN/㎡ 地面粗糙程度为B 类 下面各高度为 准风压高度的变化系数为: H μZ w 1(KN/㎡) 9.30 0.97 0.47 10.05 1.00 0.50 10.30 1.01 0.51 max 8x 8 (2)、截面几何特性 采用“线性法”计算 D=35㎜ b 1=29㎜ b 2=29㎜ h=48.45㎜ mm h b b L 9.15445.4822929221=?++=++= mm L b h D y 5.179 .154)2945.48(35)(21=+?=+= mm y D y 5.175.173512=-=-= )32(2212h hL b b L tD I x -+=

mm 6.16592)45.489.15445.483 22929(9.154356.022=-??+???= 311.9485 .176.16592mm y I W x cx === 321.9485.176.16592mm y I W x tx === (3)、有效截面计算 ① 上翼缘:为一均匀受压两边支承板,其应力为: 26max /0.391 .94810037.0mm N W M cx cx =?==σ 上翼缘的宽厚比3.486 .029==t b ,查《钢结构设计与计算》均匀受压板件的有效宽厚比表1-62知:上翼缘截面全部有效。 ② 腹板:系非均匀受压的两边支承板,其腹板上、下两端分别受压应力与拉 应力作用 2max max /39mm N W M cx ==σ (压) 2max min /0.39mm N W M tx -== σ (拉) 腹板宽厚比 8.806 .045.48==t h 20 .39)0.39(0.39max min max =--=-=σσσα 查《钢结构设计与计算》非均匀受压板件的有效宽厚比表1-63知:知板件截面全部有效。 ③ 下翼缘:下翼缘板件为均匀受拉,故下翼缘截面全部有效。 (4)、强度验算 ① 正应力验算: 226'max min max /205/0.391.94810037.0mm N mm N W M cx <=?===σσ ② 剪应力验算 : KN l q V x 037.00.2037.02 121max =??== 腹板最大剪应力

钢板桩支护计算手册

精心整理 支护计算书 一.设计资料 该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m;在等于开挖深度的水平距离内无临近建筑物。故可以认为该坑的安全等级为二级。重要性系数取γ0=1.0。 地面标高:-0.5m 基础底面标高:-10.2m 开挖深度:9.7m

2.支点力T c1 设支点位于地面以下4m ,即支点处标高为-4,5m 对反弯点处弯矩为0 3.嵌固深度h d 求最小h d ,用软件解如下方程 161.66*(x+5.7)+(29.45*x+41.04)*(x-1.8)*(x-1.8)/6+19.296*(x-1.39)-1.2*(15.19+275.74+4.125)*x-1.2*845.57=0 解得h d =7.500m 五.弯矩计算 119.73kP a

根据《建筑基坑支护技术规程》(JGJ120-99)的规定按下列规定计算其设计值: 截面弯矩设计值M M =1.25γ0M c 式中γ0——重要性系数,取1.0 1. 锚固点弯矩设计值 2. 剪力为0处弯矩设计值(开挖面上方) 设地面到该点距离为2h 3. 剪力为0处弯矩设计值(开挖面下方) 1231231.2.设锚杆锚固长度为10m ,其中点到地面距离为8.31m ,直径为14cm 。 水平分力kN T T c d 49.2425.115.1=?= 若取K=1.50,则 修正为12m 最后确定的锚固段长度为12m 。 3.钢拉杆截面选择 取361φ,则其抗拉强度设计值: 满足要求。 七.围檩受力计算 围檩受到拉锚和钢板桩传来作用力,可按简支梁计算。

选用两排[18的槽钢,333104.2411027.120mm W ?=??= 满足要求。 共需要376m 的[18热轧轻型槽钢。 七.抗倾覆验算 满足要求。

压型钢板和檩条计算例题

4646 九、屋面压型钢板设计与计算 屋面材料采用压型钢板,檩条间距1.5m ,选用YX 型压型钢板,板厚t=㎜,截面形状及尺寸如图 (1)、内力计算 设计荷载: ×+×=㎡ 压型钢板单波线荷载: q x =×=m 中最大弯矩: 2max 81 l q M x = 25.1294.08 1 ??= m KN ?=083.0 (2)、截面几何特性 采用“线性法”计算 D=130㎜ b 1=55㎜ b 2=70㎜ h=㎜ mm h b b L 5.4387.156********=?++=++= mm L b h D y 2.674 .438) 707.156(130)(21=+?=+= mm y D y 8.622.6713012=-=-= )3 2 (2212h hL b b L tD I x -+= mm 773863)7.1564.4387.15632 7055(4.4381308.022=-??+???= 31115162 .67773863mm y I W x cx ===

4747 32123238 .62773863mm y I W x tx === (3)、有效截面计算 ① 上翼缘:为一均匀受压两边支承板,其应力为: 26 max /2.711516 10083.0mm N W M cx cx =?==σ 上翼缘的宽厚比 75.688 .055 ==t b ,查《钢结构设计与计算》板件的有效宽厚比表1-62得:mm b 498.0611=?= ② 腹板:系非均匀受压的两边支承板,其腹板上、下两端分别受压应力与拉应力作用 2max max /2.7mm N W M cx == σ (压) 2max min /7.6mm N W M tx -== σ (拉) 93.12 .7) 7.6(2.7max min max =--=-= σσσα 腹板宽厚比 1968 .07.156==t h 查《钢结构设计与计算》表1-63知板件截面全部有效。 ③ 下翼缘:下翼缘板件为均匀受拉,故下翼缘截面全部有效。 ④ 有效截面特性计算:由以下计算分析,上翼缘的计算宽度应按有效宽度b e 考虑,因此整个截面的几何特性需要重新计算 D=130㎜ mm b b e 49'1== b 2=70㎜ h=㎜ mm h b b L 4.4327.1562704922'1'=?++=++= mm L b h D y 16.684.432) 707.156(130)(' 2'1=+?=+= mm y D y 84.6116.68130'1' 2 =-=-=

建筑工程计算手册

建筑工程主要工程量计算规则及公式一、平整场地:建筑物场地厚度在±30cm 以内的挖、填、运、找平。1、平整场地计算规则(1)清单规则:按设计图示尺寸以建筑物首层面积计算。(2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加 2 米以平方米面积计算。2、平整场地计算公式S=(A+4)S=(A+4)×(B+4)=S 底+2L 外+16 B+4)式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S 底———建筑物底层建筑面积;L 外———建筑物外墙外边线周长。该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。二、基础土方开挖计算开挖土方计算规则(1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。(2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。2、开挖土方计算公式:(1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。(2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———V=(A+2C+K×H)H×L V= 工作面宽度;H———基槽深度;L———基槽长度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予扣除。基坑开挖:V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b] 1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上1/6H[A×B+a×b+(A+a)×(B+b)+a×b] 口长度;B———基坑上口宽度;a ———基坑底面长度;b———基坑底面宽度。三、回填土工程量计算规则及公式1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部分的体积。式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物 等所占体积2、室内回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积主墙间净面积=S 底-(L 中×墙厚+L 内×墙厚)S 墙厚+L 墙厚)式中:底———底层建筑面积;L 中———外墙中心线长度;L 内———内墙净长线长度。回填土厚度指室内外高差减去地面垫层、找平层、面层的总厚度,如右图:四、运土方计算规则及公式:运土是指把开挖后的多余土运至指定地点,或是在回填土不足时从指定地点取土回填。土方运输应按不同的运输方式和运距分别以立方米计算。运土工程量=挖土总体积-回填土总体积式中计算结果为正值时表示余土外运,为负值时表示取土回填。五、打、压预制钢筋混凝土方桩1、打预制钢筋混凝土桩的体积,按设计桩长以体积计算,长度按包括桩尖的全长计算,桩尖虚体积不扣除。计量单位:m3,体积计算公式如下:V=桩截面积×设计桩长V=桩截面积×设计桩长(包括桩尖长度)桩截面积2、送钢筋混凝土方桩(送桩):当设计要求把钢筋砼桩顶打入地面以下时,打桩机必须借助工具桩才能完成,这个借助工具桩(一般2~3m 长,由硬木或金属制成)完成打桩的过程叫“送桩”。计算方法按定额规定以送桩长度即桩顶面至自然地坪另加0.5 米乘以横截面积以立方米计算,计量单位:m3,公式如下:V=桩截面积×送桩长度+0.5m) V=桩截面积×(送桩长度+0.5m) 桩截面积送桩长度——设计桩顶标高至自然地坪。3、接桩:接桩是指按设计要求,按桩的总厂分节预制,运至现场先将第一根桩打入,将第二根桩垂直吊起和第一根桩相连后再继续打桩硫磺胶泥按桩——计量单位:m2;按桩截面积电焊接桩——计量单位:t ;按包角钢或包钢板的重量。六、打、压预应力钢筋砼管桩按设计桩

相关主题