搜档网
当前位置:搜档网 › 表面等离激元基本原理

表面等离激元基本原理

超材料和变换光学

由「超材料」到「变换光学」的发展简史与基本原理 「超材料」(Metamaterial) 并不是一个定义得很清楚的术语,其中的字根"meta" 意指「超越」,相当於英文的"beyond".一般而言,此一术语意指一些特别设计的人工结构,能像均匀材料那样对电磁场(波)或声波,弹性波反应(response),但却具有天然材料所没有的反应特性[1].这些特性包括:高频人工磁性(artificial magnetism) [2], 负磁导率(negative permeability) [3], 负折射指数(negative index of refraction) [4], 以及双曲型色散关系(hyperbolic dispersion) [5,6] 等.这些有趣的特性导致一些迷人的现象,例如负折射(negative refraction) [7], 次波长成像(subwavelength imaging) [8], 电磁场增益(field enhancement) [9], 以及近场—远场转换(near-to-far field conversion) [5,6] 等.根据这些现象,在过去数年已有许多新颖的元件被设计与制作出来,并已被测试.例如超透镜(superlens) [8,10], 双曲透镜(hyperlens) [6], 工作频率在微波频段的隐形斗篷(invisibility cloak) [11], 以及电浆子波导(plasmonic waveguide) [12] 等.这些工作显示了超材料研究在微波与光波研究方面都有很好的理论与应用前景. 研究超材料的最初目的主要是为了创造一种具有很强的高频磁响应(strong magnetic response at high frequency) 特性的人工材料或结构[2].当这个目的实现后,研究人员又成功的设计并制作了能同时具有等效负磁导率与负介电常数(negative permittivity) [13] 的周期性金属结构.此种「双负」(double negative, or DNG) 材料会具有等效的负折射率[3,4],因而可以具体实现V. G. Veselago 在40 年前[7] 就预测过的「把光折

(完整word版)表面等离激元

表面等离子体共振波长 1.共振波长的基本求解思路 表面等离激元(SP)是指在金属和电介质界面处电磁波与金属中的自由电子藕合产生的振动效应。它以振动电磁波的形式沿金属和电介质的界面传播,并且在垂直离开界面的方向,其振幅呈现指数衰减。表面等离激元的频率与波矢可以通过色散关系联系起来。其垂至于金属和电解介质界面方向电磁场 可表达为: 式中表示离开界面的垂直距离,当时取+,时取一。式中为虚数,引起电场的指数衰减。波矢平行于方向,,其中为表面等离子体的共振波长。由表达式可见,当时,电磁场完全消失,并在时为最大值。 函数,以及电介质的介电常数来求解表面等离激元的的色散关系,由公式: ,可得到等离激元色散关系式为: ,如果假设和都为实数,且 ,则可获得一个较为复 杂的色散关系式 其中, (从实部可以计算SPPs 的波长 '2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=

2. 金属表面等离体子频率的求解 当波矢较大或者时,的值趋向于21P SP ωωε=+ 对于自由电子气,,是金属体电子密度,是电子有效质 量,是电子电荷。因此,随增大而减小。 (1) 具有理想平面的半无限金属 全空间内电势分布满足拉普拉斯方程:由于在方向上介质和金属都是均匀的,所以可令解的形式为得拉普拉斯方程的解 由以及边界条件: 可以得到介质与金属相对电容率之间的关系: ,假设介质的相对电容率为与

频率无关的常数,由金属相对电容率的表示式可知因此金属表面等离体子频率为当介质为真空时,得到金属表面等离体子频率为 (2)金属中存在着大量的价电子,它们可以在金属中自由地运动.由于价电子的自由移动性及电子间存在着库仑相互作用,所以在金属内部微观尺度上必然存在着电子密度的起伏.由于库仑作用的长程性,导致电子系统既存在集体激发(即等离体子振荡),也存在个别激发(即准电子).而在小波矢近似下只存在集体激发,故可以将电子密度的傅里叶分量作为集体坐标来描述这种关联,在k 一0的极限下,有式中为单位体积内的电子数.由此方程可以得到金属内等离体子振荡频率 从以上讨论及推导可以看出,金属等离体子振荡实际上是在库仑作用参与下的高粒子数密度系统中电子的集体运动,等离体子就是电子集体振荡的能量量子.由于库仑势场是纵场,因此等离体子是纵振动的量子.以上所讨论的情况没有考虑到金属边界的影响,即认为金属是无限大的,计算得到的频率为块状金属中的体相等离体子频率. 3.金属介电常数的求解 (1)另外,根据Drude 自由电子气模型,理想金属的介电方程可写为: 22()1p i ωεωωτω =-- ,p ω是等离子体振荡频率,,τ是散射速率描述电子运动遭遇散射而引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。 (2)球状金属的SP 介电常数可由以下公式给出: 式中为金属周围环境的介电常数。从公式可以得到无限多的模式,在 时得到最低阶介电模式。由于光子通过这些介电模式藕合进入SP ,

求实系数一元三次方程根的实用公式

求实系数一元三次方程根的实用公式 在数学书籍或数学手册中,对一元三次方程求根公式的叙述都是沿用“卡丹公式”,即:对于一元三次方程: 设, 则它的三个根的表达式如下: 其中, 我们先用该公式解一个一元三次方程:。 解: p=- 9,q=6,∴T=- 3,D=- 18, ?? ∴原方程的三个根为

这样求出的三个根的表达式有两个不妥之处: 其一、当时,方程有三个实根(下文给出证明),但这里的、 、表达式不明确。 其二、当时,以及(如此例中的)违背了现行中等数学的表示规范,也不能具体地求出其值。 因此,用“卡丹公式”解出的一元三次方程的根,往往是不实用、不直观、不严密的。 下面我们推导一个实用的改进型求根公式。 实系数一元三次方程可写为(1) 令,代入(1)得(2) 其中, 不失一般性,我们只要讨论实系数一元三次方程的求根公式即可。 不妨设p、q均不为零,令y=u+v(3) 代入(2)得,(4) 选择u、v,使得,即(5) 代入(4)得,(6)

将(5)式两边立方得,(7) 联立(6)、(7)两式,得关于的方程组: ,且 问题归结于上述方程组的求解。 即求关于t的一元二次方程的两根、, 设,,, 又记的一个立方根为,则另两个立方根为,, 其中,为1的两个立方虚根。 以下分三种情形讨论: 1)若,即D>0,则、均为实数, 可求得,, 取,, 在,组成的九个数中, 有且只有下面三组满足,

即、;、;、, 也就是满足, ∴方程(2)的根为,,,这是方程(2)有一个实根,两个共轭虚根,, 其表达式就是前面给出的“卡丹公式”的形式, 这里的根式及都是在实数意义下的。 2)若,即时, 可求得,取 同理,可求得 ∴方程(2)有三个实根,其中至少有两个相等的实根。3)若,即D<0时, ,∴p<0,, 则、均为虚数,求出、并用三角式表示, 就有,,

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

【CN110165346A】一种基于开环人工局域表面等离激元的可重构滤波器【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910354043.2 (22)申请日 2019.04.29 (71)申请人 东南大学 地址 211100 江苏省无锡市江宁区东南大 学路2号 (72)发明人 陈娜 沈一竹 胡三明  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 向文 (51)Int.Cl. H01P 1/203(2006.01) (54)发明名称 一种基于开环人工局域表面等离激元的可 重构滤波器 (57)摘要 本发明公开了一种基于开环人工局域表面 等离激元的可重构滤波器,包括三层结构,其中 顶层包括谐振器和微带馈电结构,中间层为介质 层,底层为金属地,所述微带馈电结构对称分布 在谐振器两端,所述谐振器由末端连接在金属圆 环上的周期性齿状阵列形成,所述周期性齿状阵 列由若干齿状金属条带组成,所述金属圆环上开 设有一个开口,所述开口设置在金属圆环上位于 齿状金属条带的相互间隔区域部分上,所述开口 用以改变原有的驻波谐振模式。本发明通过在金 属圆环上增加开口结构,通过改变开口位置,可 以激励或抑制特定的谐振模式,实现不同的驻波 谐振效果和带通滤波特性,从而提升了滤波器的 使用效果。权利要求书1页 说明书6页 附图8页CN 110165346 A 2019.08.23 C N 110165346 A

权 利 要 求 书1/1页CN 110165346 A 1.一种基于开环人工局域表面等离激元的可重构滤波器,包括三层结构,其中顶层包括谐振器和微带馈电结构,中间层为介质层,底层为金属地,所述微带馈电结构对称分布在谐振器两端,所述谐振器由末端连接在金属圆环上的周期性齿状阵列形成,所述周期性齿状阵列由若干齿状金属条带组成,其特征在于:所述金属圆环上开设有一个开口,所述开口设置在金属圆环上位于齿状金属条带的相互间隔区域部分上,所述开口用以改变原有的驻波谐振模式。 2.根据权利要求1所述的一种基于开环人工局域表面等离激元的可重构滤波器,其特征在于:所述周期性齿状阵列中齿状金属条带的间隔宽度沿圆周切向保持不变,沿径向均匀减小,并且向内逐渐延伸,齿状金属条带末端聚拢靠近在谐振器中心形成一个内圆凹槽。 3.根据权利要求1所述的一种基于开环人工局域表面等离激元的可重构滤波器,其特征在于:所述微带馈电结构具有第一微带传输线和第二微带传输线,所述第一微带传输线和第二微带传输线分别为微带馈电结构的输入端和输出端,所述第一微带传输线和第二微带传输线相对于谐振器圆心成中心对称,且与金属圆环的外边缘相连接。 4.根据权利要求1所述的一种基于开环人工局域表面等离激元的可重构滤波器,其特征在于:所述开口的切向宽度与齿状金属条带之间的凹槽的最外围宽度相等。 2

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

表面等离激元

表面等离激元介绍 定义及原理: 当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。 性质: 表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs 。在平坦的金属/介质界面,SPPs 沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。只有当结构尺寸可以与SPPs 传播距离相比拟时,SPPs 特性和效应才会显露出来。随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。 表面等离激元主要具有如下的的基本性质: 1. 在垂直于界面的方向场强呈指数衰减; 2. 能够突破衍射极限; 3. 具有很强的局域场增强效应; 4. 只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。 表面等离激元的激发: 由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:2/12 1210)(εεεε+=k k spp ,其中spp k 是表面等离激元波矢,0k 是光波波矢。一般来说,对于介质01>ε;而对于金属,212;0εεε<<且。相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。目前主要通过全反射和散射波矢补偿两种方法。

一元三次方程及解法简介

一元三次方程 一元三次方程的标准型为02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于卡尔丹公式解题存在复杂性,对比之下,盛金公式解题更为直观,效率更高。 在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程。 【盛金公式】 一元三次方程02 3=+++d cx bx ax )0,,,(≠∈a R d c b a 且 重根判别式:bd c C ad bc B ac b A 3:9;322-=-=-=,总判别式:Δ=AC B 22 -。 当A=B=0时,盛金公式①: c d b c a b x x x 33321-=-=- ===,当Δ=AC B 22 ->0时,盛金公式②:a y y b x 33 123 111---= ; i a y y a y y b x 63623 12 3 113 223 1 13,2-±++-= ;其中2 )4(322 ,1AC B B a Ab y -±-+ =,12-=i .当Δ=AC B 22 -=0时,盛金公式③:K a b x +- =1;232K x x -==,其中)0(≠=A A B K .当Δ= AC B 22-<0时,盛金公式④:a Cos a b x 3321θ --= ,a Sin Cos A b x 3) 333(3 ,2θ θ±+-= ; 其中arcCosT =θ,)11,0(),232( <<->-=T A A aB Ab T . 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=AC B 22 ->0时,方程有一个实根和一对共轭虚根; ③:当Δ=AC B 22 -=0时,方程有三个实根,其中有一个两重根; ④:当Δ=AC B 22 -<0时,方程有三个不相等的实根。 【盛金定理】 当0,0==c b 时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A ≤0时,盛金公式④无意义;当T <-1或T >1时,盛金公式④无意义。当0,0==c b 时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A ≤0的值?盛金公式④是否存在T <-1或T >1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b ≠0,则必定有c ≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。

超材料技术发展

[转载]西苑沙龙第一次会议——超材料技术发展战略研讨会召开 2013年5月8日,第一次西苑沙龙会议在北京西苑饭店召开。此次会议的主题为“超材料技术发展战略”。超材料是新材料技术发展的热点方向,备受科技界和产业界的关注。来自863计划新材料技术领域主题专家、科技界和工业部门等的14位专家参加了会议。 会议邀请了863计划新材料领域新型功能与智能材料专家组召集人周少雄教授,做了题为“超材料技术发展战略思考”的主题报告,并邀请深圳光启研究院刘若鹏院长等4位专家就工业级超材料技术的创建与发展、超材料在微波光波等领域应用、超材料与自然材料的融合等方面问题做了专题报告。与会专家就超材料概念、应用前景、面临的挑战、技术路线、发展重点等展开了热烈的讨论和争论,各抒己见,并就我国超材料技术发展战略与对策提出宝贵的意见和建议。 附: “西苑沙龙”是科技部高技术研究发展中心为了推动国家科技计划相关领域发展战略研究,举办的以西苑饭店为场地的系列科技发展战略和学术研讨沙龙活动。沙龙重点围绕高技术、基础研究及其学科交叉领域的发展前沿与趋势、重大应用和产业发展需求方面的重大问题,探讨科技前沿、讨论最新突破性进展,展望未来发展趋势。沙龙鼓励与会者本着“客观、求实,融合、创新”的原则,以客观求实的态度,发表自己的学术观点;鼓励和引导多学科交叉融合,激励创新思想。 德国研制出“隐热”衣让热“弯曲”传导 利用特殊的超介质材料让光线、声音绕过物体传播,能达到隐形、隐身的效果。据物理学家组织网5月9日(北京时间)报道,最近,德国卡尔斯鲁厄理工学院(KIT)研究人员成功演示了超材料同样也能影响热的传导。他们的“隐热”衣能让热力“弯曲”似的、绕过中央的隐藏区而传导。相关论文发表在最近的《物理评论快报》上。 这种“隐热”衣是用铜和硅制造的一个盘子,盘子虽能导热但其中心的圆形区域却不会受热力影响。“这两种材料必须排列得十分巧妙。”论文第一作者、KIT的罗伯特·斯奇特尼解释说,铜是热的良导体,而所用的硅材料叫做PDMS,是一种不良导体。“我们给一个薄铜盘制作了多重环形花纹的硅结构,使它能从多个方向,以不同的速度来传导热量,这样绕过一个隐藏目标所需的时间就能互相弥补。” 如果给一个简单的金属盘的左边加热,热量会一致地向右传导,盘子的温度从左到右会呈下降趋势。如果用这种铜硅超介质材料来做这个实验,也会表现出类似现象,但却只在盘子外圈呈现温度从左到右的下降,没有热量能穿透到内部,在内圈没有任何被加热的迹象。

超材料

超材料——过去十年中人类最重大的十项科技突破之一 狭义上超材料即指电磁超材料,电磁超材料具有超越自然界材料电磁响应极限的特性,能够实现对电磁波传播的人为设计、任意控制。目前该材料被应用在定向辐射高性能天线、电磁隐身、空间通信、探测技术和新型太赫兹波段功能器件等方面。 看好电磁超材料在军工、通信和智能结构等方面的应用前景 电磁超材料在军工领域的应用比较广泛,目前已应用的超材料产品包括超材料智能蒙皮、超材料雷达天线、吸波材料、电子对抗雷达、超材料通讯天线、无人机雷达、声学隐身技术等。 通信领域电磁超材料最具应用前景的就是无线Wi-fi网络,目前光启已进入该领域。 电磁超材料在智能结构中的应用主要有两类:地面行进装备用智能结构和可穿戴式超材料智能结构。智能结构用电磁超材料的市场前景非常广阔 A股超材料主题相关上市公司主要包括:国民技术(300077)、龙生股份(002625)、鹏博士(600804)和鹏欣资源(600490)等,建议重点关注国民技术、鹏博士和鹏欣资源。 超材料 “Metamaterial”是21世纪物理学领域出现的一个新的学术词汇,近年来经常出现在各类科学文献。拉丁语“meta-”,可以表达“超出…、亚…、另类”等含义。对于 metamaterial一词,目前尚未有一个严格的、权威的定义,各种不同的文献上给出的定义也各不相同。但一般文献中都认为metamaterial是“具有天然材料所不具备的超常物理性质的人工复合结构或复合材料”。 迄今发展出的“超材料”包括:“左手材料”、光子晶体、“超磁性材料”等。“左手材料”是一类在一定的频段下同时具有负的磁导率和负的介电常数的材料系统(对电磁波的传播形成负的折射率)。近一两年来“左手材料”引起了学术界的广泛关注,曾被美国《科学》杂志评为2003年的"年度十大科学突破"之一。 1原理 超材料的应用与原有的材料制备有很大的区别,以往是自然界有什么材料,就能制造出什么物品,而超材料完全是逆向设计,根据针对电磁波的具体应用需求,制造出具有相应功能的材料。 2特征 metamaterial重要的三个重要特征: (1)metamaterial通常是具有新奇人工结构的复合材料; (2)metamaterial具有超常的物理性质(往往是自然界的材料中所不具备的); (3)metamaterial性质往往不主要决定与构成材料的本征性质,而决定于其中的人工结构。 3隐形功能 具有讽刺意味的是,超材料曾被认为是不可能存在的,因为它违反了光学定律。然而,2006年,北卡罗来纳州的杜克大学(Duke University)和伦敦帝国理工学院(Imperial College)的研究者成功挑战传统概念,使用超材料让一个物体在微波射线下隐形。尽管仍有许多难关需要克服,但我们有史以来头一次拥有了能使普通物体隐形的方案(五角大楼的国防高级研究计划署[The Pentagon’s Defense Advanced Research Project Agency,DARPA]资助了这一研究)。

一元三次方程的卡尔丹公式与盛金公式(精华版)

一元三次方程的卡尔丹公式与盛金公式 (使用MathType5.2软件公式编辑器编辑的精华版) 一元三次方程的解法的历史 人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢。古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了。 在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺。那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样。 数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana)。冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一。由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思。后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳。 经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法。这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲。但是冯塔纳不愿意将他的这个重要发现公之于世。 当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣。他几次诚恳地登门请教,希望获得冯塔纳的求根公式。可是冯塔纳始终守口如瓶,滴水不漏。虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”。后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺。冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密。 卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字。随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法。由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”。 卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页。这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的。但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度。 ——资料来源:https://www.sodocs.net/doc/c111264492.html,/forum/dispbbs.asp?BoardID=10&id=4262

论文翻译——柔性超表面、超材料教材

柔性超表面和超材料:微、纳材料及其制备工艺Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales Sumeet Walia,Charan M. Shah,Philipp Gutruf,Hussein Nili, Dibakar Roy Chowdhury,Withawat Withayachumnankul,Madhu Bhaskaran, and Sharath Sriram 三碗译 摘要:使用柔性基板的超材料具备可弯曲、拉伸、旋转的特性,这为电磁波的控制提供了 新的方向,并且为新功能和设计的研发提供了依据。本文综述了基于柔性可塑基板的THz、可见光频段的超材料及其加工技术,并且提及了设备的调谐方法。在论述加工工艺及处理技术之后,文章中给读者总结出了适合柔性超材料基板的电磁和机械特性,并提到了用于实现超材料可调谐性的新方法。把超材料变成可实际应用的设备已是大势所趋。 引言:超材料是一种亚波长工程结构的电磁材料,通过特殊设计,它可以展示出入射电磁 波电磁的耦合。这让超材料具备了一些特性,比如异常反射及折射、完美吸波和亚波长聚焦等。但是,由于缺少稳定可靠的调谐技术,超材料广泛应用的脚步被长期的制约着。可协调性可以通过操作控制材料和入射波的交互作用来得到,以此来达到所需的波的传播、反射及吸收。尽管超材料设计的几何可测性给了超材料过去几十年的辉煌,如果所使用的材料是柔性的,对于t Hz方面的应用,如隐身、传感、超透镜(一种拥有在衍射极限下分辨率的透镜)、芯片上光子及光电子器件、完美吸波器和能量收集可以得到很好的改善。柔性器件依赖于较低的表面能量复合材料而实现,如聚二甲基硅氧烷橡胶,它可以粘附在一些等角的表面以便组合到弯曲的表面、表皮或者包装材料上面,而不仅仅是用在坚硬平整的面上。超材料的柔性表现可以使它来做有轻量透明要求的物体的包装。同样的,超材料的应用打开了一个新的篇章,如遥感技术、可调光学频率谐振器等。柔性也可以用来获得可调的超材料,这与材料基片特性紧密相关。另外,功能超材料与合适基片的结合,有望把t Hz阶超材料从二维设计带到三维结构上去。拥有柔性、可塑形基片的超材料也可以用在不平整的表面上。 如何有效拓展超材料这一优势,基片介电常数是关键。同时,超材料的这种结构可以调谐及加强波的传输或反射响应。同样地,将传统的微纳技术应用在这种柔性可塑形基片上也展现出很大的突破:造出了可以轻松放进人体的传感器、覆盖不平整表面的隐身层、负指数材料、生物分子传感器、等离子设备和吸波器。 关于这个主题的近期综述突出了超材料重要意义的发展潜力和合成技术的发展态势。刘等研究人员所发表的一篇关于亚波长超材料综述了亚波长可调谐超材料,它的可调谐性由机械形变和晶格位移而产生。同时,另外的文章也综述了基于近场耦合和非线性原理的应用的可调谐性。另外还有很好的文章包含了别的方面,如:设计、激励、超材料的机械形变以及可调谐能力的存在。然而,据我们所知,并没有一篇全面综述了柔性超材料基片特性、加工及调谐科技的文章。 本文论述了使用柔性可塑形基片来调谐超材料的谐振频率,批判地比较了各种应用了柔性基片和复合材料材料的电磁及机械特性,评估了包含近期3D方法在内的柔性超材料的精确制造技术。最后,展望未来,引出基于弹性材料的应用:调谐的可逆性。 超材料中的柔性基片 柔性基片给探索由机械形变引起的超材料特性提供了理想的平台。柔性材料在超材料中的应用所展示出的新功能引起了世界范围的关注。这种弹性基片之所以引起人们特别的兴趣在于它的可以通过机械形变而得到很大范围的频率调谐的特性,因此可以摒弃传统上为达到

一元三次方程求根问题

一元三次方程求根问题 一元三次方程求根问题是一个曾经困扰了人们许多年的问题,后来数学家们在经过非常多的计算后,用巧妙的方法将其解决了。目前,我还不知道一元三次方程求根公式和其推导过程,下面,我就尝试将这个问题解决。 显然,所有的一元三次方程都可以转化为 x 3+bx 2+cx +d =0的形式, 先从一些三次多项式的公式入手,其中有这样一个公式 ()()()B A AB B A AB B A B A B A +-+=--+=+3333 22333 在这里令x =A+B ,m =-3AB ,n =-(A 3+B 3),则上述公式转为 x 3+mx+n=0 这便是一个特殊的一元三次方程。 而 ?????-=+-=n B A m B A 333 3327 所以由一元二次方程的韦达定理得A 3与B 3是方程 0273 2 =-+m ny y 的两根, 不考虑A 与B 之间的顺序,得 ???? ?????+--=++-=22742274223223m n n B m n n A

故3323 3 227422742m n n m n n B A x +--+++-=+= 在解二次方程时,可以通过配方的方法 将 ax 2+bx +c =0 转化为 04422=-+??? ??+a b ac 2a b x a 再将a b x 2+换元,以达到消去一次项的目的。 那么,在解x 3+bx 2+cx +d =0的过程中,是否也有类似的方法呢? 我们可以尝试对其进行“配立方”来消去二次项, 得???? ??-+???? ??-+??? ??+=+++2733323 23b d x b c b x d cx bx x ???? ??+-+??? ??+???? ??-+??? ??+=2723333323 b b c d b x b c b x 这就转为x 3+mx+n=0的形式,带入刚才得到的其求根公式,得 3 2233b t n t n x ---++-= 其中108 441827274,3,27233 32223223c d b bcd c b d m n t b c m b bc d n ++--=+=-=+-= 以上只得出了一元三次方程一个根的求根公式,还不一定是实根,而一元三次方程一般有一或三个实根,原因可能是在上述求解过程中只在实数的范围内运算,并没有考虑到虚数。如果考虑虚数,在复数的范围内运算,一元三次方程应当有三个根。在上述方法中,另两个根可能要应用到虚数的一些概念和性质,若只考虑实数,无法将其解出。 接下来尝试一下在复数范围内,能否将另两个根解出。 设刚才求出的根为x 1=A +B,先考虑x 3+mx+n=0形式的方程,

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。 有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。因此,只需研究此类方的特殊形式即公式化为均可经过移轴三次方程由于任一个一般的一元0 )()(0)1281(81 1 )()(0 )()(0)1281(81 1)()(0 )()(0)1281(81 1 )()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(0323 23221''33332332 32323=?<+=?=?=+=?=?>+=?--==- = ==<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 23323232 33 232332313 223213232 32 33333 33333 3333333333333233233232321281121086 1 128112108610)1281(81 1)27(412811210861 12811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 1 0)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ?? ?+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以 ,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根, ,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有, 若判别式的两根。 为一元二次方程,易知,。,即可令, 对比。即有,故, 由于。,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导:有三个实数根。时,方程有两个实数根。时,方程有唯一实数根。时,方程,则有以下结论: 。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

相关主题