搜档网
当前位置:搜档网 › 土壤中氮的形态和转化

土壤中氮的形态和转化

土壤中氮的形态和转化
土壤中氮的形态和转化

土壤中氮的形态和转化

一、土壤中氮的形态

土壤中的氮素形态分无机态及有机态两大类,但以有机态为主,按其溶解度大小和水解难易分为3类:第一,水溶性有机氮;第二,水解性有机氮;第三,非水解性有机态氮;它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。

土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮。它们都是水溶性的,都能直接为植物吸收利用。铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。

1.有机态氮

按其溶解度大小和水解难易分为3类:

水溶性有机氮一般不超过全氮的5%。它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很容易水解,释放出离子,是植物速效性氮源。

水解性有机氮占全氮总量的50%-70%。主要是蛋白质多肽和氨基糖等化合物。用酸碱等处理时能水解成为较简单的易溶性化合物。

非水解性有机态氮占全氮的30%-50%。它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。

2.无机态氮

土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。它们都是水溶性的,都能直接为植物吸收利用。

第一,硝态氮土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。

第二,铵态氮土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。

第三,亚硝态氮土壤中的亚硝态氮是硝化作用的中间产物。

二、土壤中氮的转化

土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。

1.有机态氮的转化

土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。

①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。

②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如:

RCH2OH+NH3+CO2+能量—水解—→ RCHNH2 COOH+H2O

RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2

RCOOH+NH3+CO2+能量——还原—→RCHNH2 COOH+H2

由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以旺盛进行。

氨化作用产生的铵可被植物和微生物吸收利用,是农作物的优良氮素营养。未被作物吸收利用的铵,可被土壤胶体吸收保存。但在旱地通气良好的条件下,铵态氮可进一步为微生物转化。

③硝化过程指氨或铵盐在微生物作用下转化成硝酸态氮化合物的过程。它是由两组微生物分两步完成的。第一步铵转化成亚硝酸盐,紧接着亚硝酸盐又转化成硝酸盐,消化过程是一个氧化过程,只有在通气良好的情况下才能进行。所以水稻田在淹水期间主要为氨态氮,硝

态氮很少,旱地土壤一般硝化作用速率快于氨化作用,土壤中主要为硝态氮。

硝态氮也是为植物吸收利用的优良氮源,所以可以利用土壤硝化作用强度来了解旱地土壤的供氮性能。

④反硝化作用指土壤中硝态氮被还原为氧化氮和氮气,扩散至空气中损失的过程。反硝化作用主要由反硝化细菌引起。在通气不良的条件下,反硝化细菌可夺取硝态氮及其某些还原产物中的化合氧,使硝态氮变为氮气损失。

2.无机态氮的转化过程

无机态氮包括硫酸铵、硝酸铵、碳酸铵、碳酸氢铵、氢氧化铵等。由于这些都属于不稳定的化合物,易氨化释放出氨,同时也遵循硝化过程和反硝化作用,在这里不再详述。但应指出,施用时,尤其在保护地的密闭环境中施用,除应注意土壤适当湿度和通透性外,还应掌握少施、勤施和深施。如施用不当,极易熏坏叶片,甚至造成全株死亡。

尿素虽属有机氮肥,但因结构简单,其转化过程与无机氮肥基本相同,因此,以尿素为例简要说明:

尿素施入土壤后,以分子状态存在,还可以分子状态被作物吸收,但数量很少。尿素分子与土壤中黏粒矿物或腐殖质上的功能团以氢健的形式相结合,在很大程度上可以避免尿素在浇水后淋溶流失。另外,尿素在土壤中可以在脲酶的作用下转化为铵态氮,供作物吸收和土壤胶体吸附。土壤中大多数细菌、放线菌、真菌都能分泌脲酶,其转变如下:

CO(NH2)2+2H2O —脲酶—→(NH4)2CO3

碳酸铵可以进一步水解产生碳酸氢铵和氢氧化铵:

(NH4)2CO3+H2O———→ NH4HCO3+NH4OH

上述反应式说明,尿素同无机态氮中的碳酸铵、碳酸氢铵、氢氧化铵一样,易分解释放出铵。因此尿素施在表层易引起氮素流失(以氨气形式挥发),形成氨害,甚至全株死亡,这种由于施用不当所引起的损失在保护地密闭环境中并不少见。所以施用尿素一定要开沟、挖穴,施在10厘米以下,并封土踩实,防止氨气外逸。尿素转化的快慢取决于脲酶的活性,脲酶的活性又与土壤肥力的高低、水分含量、土壤温度等因素有关。土壤肥沃、水分、温度适宜,转化就快,反之就慢,其中尤以温度的影响更为明显。在一般用量和施肥深度下,土壤温度为10时,需7-10天;20时4-5天;30时2-3天就能完全转化为铵态氮,供根系吸收和土壤胶粒上离子之间吸附交换减少流失。尿素转化后在土壤中不残留其他物质,既不酸化土壤,也不碱化土壤。但施肥时间要较其他化学氮肥稍早几天。

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化 过程 This model paper was revised by the Standardization Office on December 10, 2020

土壤氮素的形态及其转化过程 摘要:氮是植物生长发育所必需的大量元素,对植物的产量和品质影响很大。土壤中氮素的形态及其转化过程和结果则直接决定了氮对植物生长的有效性的大小,了解土壤中氮素存在的形态和其转化过程,对于科学合理经济的肥料施用具有现实的启示作用。 关键词:氮素;形态;转化过程 土壤中氮素的含量受自然因素和人为因素的双重影响,较高的氮素含量表明土壤肥力也较高。自然条件下,土壤没有受到人为因素的影响,有机质日积月累,土壤中氮的含量也较高。耕地土壤氮素含量及转化过程则更强烈的受到人为耕作、施肥、不同作物等因素的影响,因而相对表现的复杂一些。 一、土壤中氮素的形态 1.无机态氮 无机态氮包括固定态NH4+、交换性NH4+、土壤溶液中的NH4+、硝态氮(NO3-)、亚硝态氮等,这其中以NH4+离子和NO3-离子最容易被植物吸收利用,农业生产中常常用到的碱解氮,也叫水解氮或速效氮,就属于无机态氮中的一部分。无机态氮并不是全部都能被植物所直接吸收利用,它们中的大部分是被粘土矿物晶层所固定了的固定态铵,不能作为速效氮存在。固定态铵只有在土壤中经过相

应的转化,转化为铵离子或硝酸离子、硝酸盐类的含氮物,才能为作物利用。 2.有机态氮 有机态氮构成了土壤全氮的绝大部分。它们与有机质或粘土矿物相结合,或与多价阳离子形成复合体。有机态氮大都难以分解,并不能为作物所直接吸收利用。但有机态氮的含量高低依然是衡量土壤肥力高低的重要指标,有机态氮的含量高,可被转化的氮素水平也相应的高,其作为植物氮素营养‘库’的存在是有很大的作用的。 二、土壤中氮素的转化过程 1.氮素的矿化与生物固持作用 氮素的矿化作用,简单的说就是有机态的、不易分解的氮素及含氮化合物在土壤中微生物的参与下分解转化为无机态氮的过程,是一个氮的速效化的过程,也是一个可利用氮素增加的过程。氮的固持作用,就是土壤中的无机态氮在土壤微生物的作用下转化为细胞体中有机态氮的过程,其对于农业生产上的实质就是可利用的速效氮的减少过程。 2.铵离子的固定与释放 铵离子的固定,其实质就是土壤溶液中的能自由移动的、可交换的铵离子被土壤胶体所吸附,变成不可交换的铵离子的过程,固定了的铵离子不能再被交换到土壤溶液

三种氮素形态

1.硝态氮和铵态氮 如,栽培在淹水环境中的水稻或水生植物,以吸收还原态的铵态氮为主要氮源;生长在旱地上的玉米、小麦等旱作物,则较多利用氧化态的硝态氮。又如,对北方大多数呈碱性反应的石灰性土壤,以及保护地表层土壤,由铵转化成硝态氮的硝化作用旺盛,硝态氮是其优势氮源;即使对其施用铵态氮肥(铵盐、尿素以及有机氮),也都很易在土壤中转化成硝态氮,因而种植在其上的旱作物、喜硝作物等生长良好,并可用硝态氮的含量作为评价其速效氮水平的指标。而对南方酸性土壤,尤其是pH值<5.0的土壤,硝化作用很弱,常态下能保持的硝态氮量较低,铵态氮是这类土壤的优势氮源,水稻等作物将生长较好;若种植喜硝态的旱作物,往往生育不理想,或需要在施用较多硝态氮源下才能更好生育,因而那些含有一定量硝态氮的复合肥的肥效常较好而更受欢迎,定价也较高。 2.硝态氮肥和铵态氮肥各有何优点? 酰铵、氨基酸等不经过进一步分解,不能成为营养氮源。硝态氮和铵态氮能够被植物直接吸收利用,他们施入土壤后的行为以及进入植物体内的代谢是不同的,因此作为植物氮源也各有利弊。 首先,硝酸根带负电荷,不易被带负电荷为主的土壤胶体吸附;铵离子带正电荷,容易被土壤吸附,不仅吸附在土壤表面,还可进入粘土矿物的晶体中,成为固定态铵离子,因此,硝态氮主要存在于土壤溶液中,移动性大,容易被植物吸收利用,也容易随雨水流失。而安泰但主要被吸附和固定在土壤胶体表面和胶体晶格中,移动性较小,比较容易被土壤“包存”。其次,不同形态的氮在土壤中会相互转化。在适宜的温度、水分和通气条件下,在土壤微生物和酶的作用下,尿素水解为铵态氮,铵态氮氧化为硝态氮。因此,早春低温季节尿素和铵态氮的转化比较慢,夏季高温季节转化快。在旱地土壤中硝态氮往往多于铵态氮,而在水田土壤中硝态氮很少。第三,在土壤湿度过大。通气不良和有新鲜有机物存在的情况下,硝态氮在微生物作用下可还原成氧化亚氮,氧化氮和氮气,这种反硝化作用是硝态氮损失的主要途径之一。硝态氮从土壤中损失的主要途径是氨挥发。因此,硝态氮肥适宜于气候较冷凉的地区和季节,在旱地分次施用,肥效快而明显,但不宜在高温、多雨的水田地区使用;铵态氮肥适宜于水田,也适宜于旱地使用,但适用于土壤表面或撒施于水田,氨挥发的损失较大。 3.胺态氮肥、硝态氮肥、酰胺态氮肥的共性是什么? 一、铵态氮肥

土壤中氮素转化过程及植物吸收方式(土壤部分初稿)说课材料

土壤中氮素转化过程及植物吸收方式(土壤 部分初稿)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为0.04~0.35%之间,且土壤有机质含量呈正相关。其氮素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: (一)土壤中氮素的主要形态 水溶性速效氮源 < 全氮的5% 包括游离氨基酸、胺盐及酰胺类化合物等有机氮水解性缓效氮源占50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类(>98%) 非水解性难利用占30~50% 包括杂环态氮、缩胺类 离子态土壤溶液中 无机氮吸附态土壤胶体吸附 (1~2%) 固定态 2:1型粘土矿物固定 注明:其中无机氮包括:铵态氮(NH4+ — N)、硝态氮(NO3-— N)、亚硝态氮(NO2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的90~98%。

(二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。

土壤中的氮素及其转化

土壤中的氮素及其转化 1.土壤中氮素的来源和含量 1.1 来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的NO3—N。 1.2 含量 我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。 2. 土壤中氮素的形态 3. 土壤中氮素的转化 3.1 有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮氨基酸NH4+-N+有机酸 结果:生成NH4+-N(使土壤中有机态的氮有效化)

3.2 土壤粘土矿物对NH4+的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 ②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH4+的供应程度(优点?缺点?) 3.3氨的挥发 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程 过程: 结果:造成氮素损失 3.4硝化作用 定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象 过程: 结果:形成NO3--N 利:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 3.5无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。 过程: 结果:减缓氮的供应,可减少氮素的损失 3.6反硝化作用

定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 3.7硝酸盐的淋洗损失 NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 结果:氮素损失,并污染水体 4. 小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时) 氮肥的种类、性质和施用 氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。 ①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。 1.铵态氮肥 共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。

4.1污染物在土壤中的迁移转化

第四章土壤环境化学——污染物在土壤中的迁移转化 本节内容要点:土壤污染源、主要污染物,氮和磷的污染及其迁移转化,土壤的重金属污染及其迁移转化,土壤的农药污染及其迁移转化,土壤中温室气体的释放、吸收及传输等。 人类活动产生的污染物进入土壤并积累到一定程度,引起土壤质量恶化的现象即为土壤污染。土壤与水体和大气环境有诸多不同,它在位置上较水体和大气相对稳定,污染物易于集聚,故有人认为土壤是污染物的“汇”。 污染物可通过各种途径进入土壤。若进入污染物的量在土壤自净能力范围内,仍可维持正常生态循环。土壤污染与净化是两个相互对立又同时存在的过程。如果人类活动产生的污染物进入土壤的数量与速度超过净化速度,造成污染物在土壤中持续累积,表现出不良的生态效应和环境效应,最终导致土壤正常功能的失调,土壤质量下降,影响作物的生长发育,作物的产量和质量下降,即发生了土壤污染。土壤污染可从以下两个方面来判别:(1)地下水是否受到污染;(2)作物生长是否受到影响。 土壤受到污染后,不仅会影响植物生长,同时会影响土壤内部生物群的变化与物质的转化,即产生不良的生态效应。土壤污染物会随地表径流而进入河、湖,当这种径流中的污染物浓度较高时,会污染地表水。例如,土壤中过多的N、P,一些有机磷农药和部分有机氯农药、酚和氰的淋溶迁移常造成地表水污染。因此,污染物进入土壤后有可能对地表水、地下水造成次生污染。土壤污染物还可通过土壤植物系统,经由食物链最终影响人类的健康。如日本的“痛痛病”就是土壤污染间接危害人类健康的一个典型例子。 1)土壤污染源 土壤污染源可分为人为污染源和自然污染源。 人为污染源:土壤污染物主要是工业和城市的废水和固体废物、农药和化肥、牲畜排泄物、生物残体及大气沉降物等。污水灌溉或污泥作为肥料使用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业及城市固体废弃物任意堆放,引起其中有害物的淋溶、释放,也可导致土壤及地下水的污染。现代农业大量使用农药和化肥,也可造成土壤污染。例如,六六六、DDT等有机氯杀虫剂能在土壤中长期残留,并在生物体内富集;氮、磷等化学肥料,凡未被植物吸收

土壤氮转化过程对环境的适应性

土壤氮转化过程对环境的适应性 蔡祖聪 土壤与农业可持续发展国家重点实验室;中国科学院南京土壤研究所;江苏南京市北京东路71 号;210008 施用氮肥是提高作物产量、保证粮食安全必不可少的措施。从1995年到2005年的十年间,世界化肥氮生产量从100百万吨增加到121百万吨(Galloway et al., 2008)。如同人类大量利用矿质能源、开垦土地等造成大气CO2浓度持续升高,引发全球变暖的环境问题那样,氮肥施用量的持续增加导致的环境问题也已经成为全球性的问题。 氮是植物的必需元素。对于非豆科植物,主要依靠吸收土壤中的氮作为维持生理活动、合成氨基酸和蛋白质。但是,可以被非豆科植物吸收利用的活性氮(Nr)并不是土壤的原始成分,它是在土壤发育过程逐渐积累起来的。有机氮是土壤积累的活性氮的最主要形态,一般占土壤氮的95%以上。土壤保持有机氮的能力远远于大保持无机氮的能力。由于植物一般只能吸收利用土壤中的无机氮,所以,有机氮只有通过矿化转化成为无机氮以后才能被植物吸收。土壤保持不同形态的无机氮(主要为铵态氮和硝态氮)的能力受环境条件,特别是水分条件的影响。为了将无机氮保持在土壤中,在不同的环境条件下,土壤通过调节氮在不同形态之间的转化速率,将无机氮保持在可被土壤保持的形态。但是,人类活动极大地干扰了土壤保持无机氮的策略,使土壤保持无机氮的能力下降,向环境扩散增加。所以,人类活动导致的环境氮污染,不仅是由于活性氮消耗量增加,而且也是由于人类活动对土壤保氮策略的干扰。前者已经受到高度的关注,但对后者的研究还极其有限。 Climate Change Adaptation for Conservation of Freshwater Ecosystems Jamie PITTOCK WWF Research Associate; Fenner School for Environment & Society, Australian National University; James Pittock Consulting Freshwater ecosystems are at the centre of the crisis in biodiversity loss, for reasons that mostly exclude climate change. For instance, the 2005 Millennium Ecosystem

氮在地下水中迁移转化规律

氮在地下水系统中的迁移转化挤数学模型 摘要:近年来,我国部分地区地下水硝酸盐污染态势十分严峻,特别是集约化种植区由于施用大量氮肥导致的硝酸盐污染更为严重。为控制污染,应掌握地下水硝酸盐污染的空间变异规律与分布特征。采用地统计学方法.结果表明,不同区域地下水硝态氮含量存在一定的差异,存在明显的趋势效应以及变异性,且含量随地下水深度增加而减少。通过相关性分析,获得与地下水硝态氮含量相关性最高的两个因子(土壤有机质含量和全氮含量),并作为协克里金(Cokriging)插值方法中的协同因子,地下水硝酸盐污染进行插值。经比较分析,协克里金法比普通克里金法(OrdinaryKriging)的精度高,减少了80%的平均误差。协克里金法空间插值结果表明,空间分布规律表现在从西南到东北逐渐升高的方向性效应,而地下水硝态氮含量较高的区域主要分布在潍坊、青岛、烟台种植区,如青岛的平度、莱西,潍坊的寿光等农业较发达的种植区。 关键词:地下水硝酸盐污染;空间变异;地统计;协克里金法 Abstract:In recent years, groundwater nitrate pollution in some regions of China is very serious. Especially,nitrate pollution in intensive cultivation areas is more serious for the application of a large number of nitrogen fertilizer. The objective of this preliminary research is to investigate the potential of application geo statistical method to explore spatial variability of groundwater nitrate pollution in Shandong intensive farming regions in China. Detailed sample data of groundwater nitrate nitrogen were collected in 175 farming sites representing the typical cropping systems in the study area. Semi-variole of the geo-statistical method was used to analyze the groundwater nitrate nitrogen spatial variability based on the 175 sample sites data. The results indicated that there was an obvious variability and trend effect that gradually increasing from the southwest to the northeast. Furthermore, the concentration decreased with the increase in the depth of groundwater. For obtaining the spatial variation of groundwater nitrate nitrogen in the whole study area, cokriging method was utilized to interpolate the groundwater nitrate nitrogen pollution with two synergy factors(e.g. soil organic matter content and total nitrogen content)which were the most obvious relevant with groundwater nitrate nitrogen concentration. Compared with ordinary cringing method, cokriging method achieved higher precision with a decrease of 80% of the average error. Cokriging spatial interpolation results showed that areas with higher nitrate nitrogen concentration in groundwater mainly distributed in Weifang, Qingdao, and Yantai intensive farming regions, due to the excessive use of nitrogen fertilizer in these regions. The result suggested that the cokriging spatial interpolation was an effective approach of obtaining the groundwater nitrate nitrogen spatial variability in intensive farming regions. The possible reasons for the

土壤全氮的测定凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

土壤中氮的形态和转化

土壤中氮的形态和转化 徐斌 一、土壤中氮的形态 土壤中的氮素形态分无机态及有机态两大类,但以有机态为主,按其溶解度大小和水解难易分为3类:第一,水溶性有机氮;第二,水解性有机氮;第三,非水解性有机态氮;它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮。它们都是水溶性的,都能直接为植物吸收利用。铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 1.有机态氮 按其溶解度大小和水解难易分为3类: 第一、水溶性有机氮一般不超过全氮的5%。它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很 容易水解,释放出离子,是植物速效性氮源。 第二、水解性有机氮占全氮总量的50%-70%。主要是蛋白质多肽和氨基糖等化合物。用酸碱等处理时能水解成为较简单 的易溶性化合物。 第三、非水解性有机态氮占全氮的30%-50%。它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 2.无机态氮

土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。它们都是水溶性的,都能直接为植物吸收利用。 第一,硝态氮土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。 第二,铵态氮土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 第三,亚硝态氮土壤中的亚硝态氮是硝化作用的中间产物。二、土壤中氮的转化 土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2 COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2 COOH+H2

土壤中氮素转化过程及植物吸收方式土壤部分初稿

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04?0.35 %之间,且土壤有机质含量呈正相关。其 氮素来源包括: 生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮 肥的主要来源。 绍: 下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介 (一) 土壤中氮素的主要形态 水溶性速效氮源 <全氮的5%包括游离氨基酸、胺盐及酰胺类化合物等 有机氮水解性缓效氮源占50?70%包括 蛋白质及肽类、核蛋白类、氨基糖类 (>98%)非水解性难利用占30?50%包括杂环态氮、缩胺类 注明:其中无机氮包括: 铵态氮(NH 4+ — N )、硝态氮(N6 — N )、亚硝态氮(NQ - — N )三种主要形 态。 般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98% 土壤中氮的形态 「水溶件 速效氮源 < 全氮的5% 右机氮{水解 性缓效氮源占40%-60% (>98%) I 非水斛性 难利用占40%-50% 土壤溶液中 土壤胶体吸附 2: 1型粘上矿物固定有机氮 矿化作用 1川尢什川 上无机氮 离子态 无机氮 吸 附 (1?2%)固定态 土壤溶液中 吸附态 土壤胶体吸附 :1型粘土矿物固定 「离子态 无机氮寸 吸附态 固建态

(二)土壤中氮素的转化过程 1. 有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过 程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速 率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程 是包括许多过程在内的复杂过程。 ① 水解过程 蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步 分解为各种氨基酸。 ② 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨 化过程。如: RCHOI+ NH 3 + CQ + 能量 一水解一-> RCHNH 2COOH- H 2O RCHOHCOOHN" + 能量 一氧化一-> RCHNHCOO + Q RCOO + NH3 + CQ + 能量—— 还原一-> RCHN 2COO + H 2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要 微生物活动旺盛,氨化作用都可以进行。 氨化 作用 产生 的铵 态氮能 被植 物和 微生 物 吸收 利用 ,是 农作 物的 优良 氮素 营 养 。未 被作物 吸收 利用 的铵 ,可被 土壤 胶体 吸收 保 存。但在 旱地 通气 良好 的条 件下,铵态 氮可 进一 步为微 生物 转化 。 r 钱态氮 风素在土塢中变化的示意图 ” NO, N :0 硝态氮上 吸附杰镀或 水体中的 固定态皴 硝态氮 有 机 态 氮

2020年(生物科技行业)生物脱氮过程中氮的转化途径的初探

(生物科技行业)生物脱氮过程中氮的转化途径的初 探

生物脱氮过程中氮的转化途径的初探 摘要近些年来,出现了壹些新的脱氮的工艺,对生物脱氮的原理的研究也进壹步深入,这使脱氮的理论不断地得到发展和完善。本文结合实验室小型SBR试验的结果,围绕脱氮过程中N2O的产生中对脱氮途径进行了介绍,其目的在于使人们对这些不同的途径有更深的认识。其中很有必要的壹项工作便是对这些脱氮途径作出了明确的定义,且将它们进行了区分。最后对壹些尚未能解释的问题以及壹些假设作了讨论。 1.简介 对氮元素转化途径的研究起源于农业中对氮肥在土壤中的转化的探讨。土壤系统中氮元素总的输入和输出的不平衡使科学家们困惑了50多年(e.g.Allison,1995),同样的情况也出当下许多水处理的脱氮工艺中,这使得人们对氮元素其它转化途径的研究产生了兴趣。最初人们对生物脱氮的认识是NH3或NH4+在微生物的作用下转化为NO2-以及NO3-,后俩者再转化为N2而达到氮的去除,当下见来这种认识是比较粗略的。 对脱氮其它途径的研究实际上能够归结为对脱氮过程中间产物以及他们产生的环境条件和微生物机理的研究。这些中间产物包括NO、N2O以及N2。N2O是壹种对环境影响极大的温室气体,它的主要去向是在大气的同温层中原子态的氧反应生成NO,NO对臭氧层会造成破坏(Bliefert,1994)。这就使得许多水处理工艺虽然实现了水体中脱氮但却有可能对大气造成影响。 2.实验结果的分析 实验室中SBR反应器是壹个有效容积为4L的有机玻璃柱,每个周期10.5小时,实验工序为:进水→厌氧搅拌3hr→曝气8hr→厌氧搅拌1.5hr→沉淀1hr→排水,每个周期排水2L进水2L,曝气阶段溶解氧控制在2.5~3.0mg/L。在通过对照试验基本排除了游离氨被吹脱的可能之后,采用试验进水CODcr为720mg/L,NH4+-N为110mg/L,在系统稳定运行之后对壹周期各阶段内水相中各种氮化合物的浓度进行跟踪试验。实验期间每间隔1hr测定

土壤中的氮素及其转化

土壤中的氮素及其转化 1?土壤中氮素的来源和含量 1.1来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的N03—N。 1.2含量 我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关 2.土壤中氮素的形态 3.土壤中氮素的转化

3.1有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮'氨基酸k NH4J N +有机酸 结果:生成NH4+-N (使土壤中有机态的氮有效化) 3.2 土壤粘土矿物对NH4+的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4 +的吸附作用 ②晶格固定(粘土矿物固定):NH4 +进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH4+的供应程度(优点?缺点? 3.3氨的挥发 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程

过程: 结果:造成氮素损失 3.4硝化作用 定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象 过程: 结果:形成NO-N 禾I」:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 3.5无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。

过程: 结果:减缓氮的供应,可减少氮素的损失

3.6反硝化作用 定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土 壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 3.7硝酸盐的淋洗损失 NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 结果:氮素损失,并污染水体 4.小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物力④ 生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物弱④ 反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)

土壤中氮素转化过程及植物吸收方式(土壤部分)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04~0.35%之间,且土壤有机质含量呈正相关。其氮 素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥 的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: 一) 土壤中氮素的主要形态 注明:其中无机氮包括:铵态氮(NH 4+ — N)、硝态氮(NO 3- — N)、亚硝态氮(NO 2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98%。 水溶性 速效氮源 < 全氮的 5% 包括游离氨基酸、胺盐及酰胺类化合物等 有机氮 水解性 缓效氮源 占 50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类 (>98%) 非水解性 难利用 占 30~ 50% 包括杂环态氮、缩胺类 土壤溶液中 土壤胶体吸附 (1~2%) 固定态 2:1 型粘土矿物固定 离子态 无机氮 吸附态

二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如:

RCH2OH+ NH3+ CO2+能量—水解—→ RCHNH2COOH+ H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+ O2 RCOOH+ NH3 + CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。 氨化作用产生的铵态氮能被植物和微生物吸收利用,是农作物的优良氮素营养。未被作物吸收利用的铵,可被土壤胶体吸收保存。但在旱地通气良好的条件下,铵态氮可进一步为微生物转化。 ③硝化过程指氨或铵盐在微生物作用下转化成硝酸态氮化合物的过程。它是由两组微生物分两步完成的。第一步铵先转化成亚硝酸盐,紧接着亚硝酸盐又转化成硝酸盐,消化过程是一个氧化需氧过程,只有在通气良好的情况下才能进行。所以水稻田在淹水期间主要为铵态氮,硝态氮很少,旱地土壤一般硝化作用速率快于氨化作用,土壤中主要为硝态氮。硝态氮也是为植物吸收利用的优良氮源,所以可以利用土壤硝化作用强度来了解旱地土壤的供氮性能。 ④反硝化作用指土壤中硝态氮被还原为氧化氮和氮气,扩散至空气中损失的过程。反硝化作用主要由反硝化细菌引起。在通气不良的条件下,反硝化细菌可夺取硝态氮及其某些还原产物中的化合氧,使硝态氮变为氮气损失。 2.无机态氮的转化过程 无机态氮包括硫酸铵、硝酸铵、碳酸铵、碳酸氢铵、氢氧化铵等。由于这些都属于不稳定的化合物,易氨化释放出氨,同时也遵循硝化过程和反硝化作用;但应指出,施用时需在保护地的密闭环境中施用,除应注意土壤适当湿度和通透性外,还应掌握少施、勤施和深施。如施用不当,极易熏坏叶片,甚至造成全株死亡。 尿素虽属有机氮肥,但因结构简单,其转化过程与无机氮肥基本相同,以尿素为例

土壤中氮的转化过程

硝态氮(NO3-) 与铵态氮(NH4+) 土壤中氮的转化过程 农业中氮的3个主要来源是尿素、铵态氮和硝态氮。铵转化成硝态氮的生物氧化过程一般称为硝化作用。此过程由自养型好气性细菌引起,如图中所示。在淹水土壤中,铵的氧化会受到抑制。尿素在尿酶的作用下或化学水解成氨和二氧化碳。在氨化过程中,氨被铵氧化菌转化成铵,接下来,铵被硝化菌转化成硝酸盐(硝化作用)。 氮的转化率取决于一些条件---当前土壤中存在的硝化细菌。在以下条件下,NH4+ 向NO3的转换才能顺利进行: - 有硝化菌存在。 - 土壤温度> 20 °C - 土壤的pH 值在5,5 - 7,5之间 - 土壤中有足够的水分和氧气 若土壤出现以下一个或多个情况时,氮的转化受限制或完全停止,可能会造成铵在土壤中的积累( Mengel and Kirkby, 1987): - 低pH值大大的抑制了微生物对铵离子的氧化。 - 缺氧(比如,淹水土壤) - 缺少有机质(它是细菌的碳来源) - 土壤干燥 - 土壤温度低引起土壤的微生物的活性降低,从而抑制硝化。 - 在26 °C是硝化作用最佳温度,而铵化的最佳温度高达50 °C。所以,在热带的土壤中,即使在中性pH的条件下,由于硝化率低,也会导致铵的聚积。

[imagesizer path="images/pna/pna4_4" images="4_4_ch.gif" mode="0" bgcolor="#ffffff" width="480" height="250" alt="土壤中氮转化的过程" title="土壤中氮转化的过程"] 图 1. 土壤中氮转化的过程 ( 点击图放大, 点击这里打开和打印图表) 含硝态氮的肥料较之含铵肥料的优点 硝态氮是作物最佳氮源: - 不挥发性:与铵不同,硝态氮不挥发,所以不要求必需土施,还可以用作追肥和叶面施肥,便于操作。 - 在土壤中可移动-直接被植物吸收,效率最高。 - 硝态氮协同促进阳离子的吸收,如钾、钙、镁。而铵与这些离子竞争吸收位点。 - 硝态氮可以被植物立即吸收,而不需要任何的转化,而尿素和铵在被植物吸收之前都要经过转化。 - 施用硝态-氮肥,不会导致土壤酸化。 - 硝态氮限制对有害物的大量吸收,比如氯化物。 - 硝态氮转化成氨基酸的过程在叶片上发生,以太阳能为能源,是个节能过程。铵必须在根部被转化成有机氮化合物。这一过程需要消耗碳水化合物,会影响植物的其它生理过程,如植株生长和果实充实。

土壤氮素知识

土壤氮素知识 Scarsbrook(1965)把有效氮定义为:在根区内易被植物根系所吸收的化学形态的氮。这种氮有多种来源,在农业生产中,它主要来自肥料,生物固氮以及由垃圾、作物残渣和土壤有机质中有机氮的矿化作用。在大部分土壤和气候条件下,有相当数量的土壤有机氮在作物生长期间被矿化。土壤表层的全氮量通常在0.08~0.4%之间,但几乎全部呈有机氮。如果在一个生长季内,这种氮有1~3%被矿化,那么每公顷有8~120公斤的氮,能有效地被作物吸收利用。 作物能吸收、利用的氮有铵态氮(NH4-N)、硝态氮(NO3-N)、亚硝态氮(NO2-N)、分子态氮(N2)以及某些可溶性的含氮有机化合物,如各种氨基酸、酰胺和尿素等。但在自然生态系统和农业生态系统中,高等植物主要是吸收NH4-N和NO3-N。氮被吸收之后在作物体内主要进行如下的转化: 无机氮(NH4-N、NO3-N)→低分子有机氮(氨基酸、酰胺、胺类)?高分子有机氮组分(蛋白质、核酸)。

植物吸收NH4-N的机理是根吸收一个NH4+产生一个H+,而NH3进入体内后与呼吸基质氮化时产生的酮酸化合,形成氨基酸和酰胺,同时释放出H+于土壤溶液中。这就是铵盐使土壤变酸的原因。铵离子的同化主要在根部进行,但它也可以随苹果酸盐转移到地上部分而被同化。 NO3-N由植物主动吸收进入根部细胞后,或者就在根部还原,或者一部分以NO3-N形态通过木质部迅速转移至径或叶片中被还原。NO3-N的还原作用分两步进行,第一步是NO3-N在细胞质中经硝酸还原酶催化还原为NO2-N,第二步是NO2-N在叶片的叶绿体或根部的其它细胞中经亚硝酸还原酶催化还原为NH3。简式为:NO3- + 8H+ + 8e-→NH3 + 2H2O + OH- 尿素能被作物的根和叶所吸收,但同化机理尚不清楚。有两种见解:一种见解认为,尿素在作物体内脲酶的作用下被分解为氨,氨再进一步形成氨基酸。由于氨对脲酶有抑制作用,如果尿素水解时所形成的氨不进一步转化,脲酶活性达到最高值后就会逐渐减小,尿素的水解速率也会随之降低。另一种见解认为,尿素是直接被同化的。因为有些作物如麦类、黄瓜、莴苣等体内不含脲酶仍能很好的吸收尿素。尿素被吸收后,可直接转化为氨甲酰磷酸,后者再与鸟氨酸缩合而形成瓜氨酸,最后形成精氨酸。作物对尿素的吸收与NH4-N和NO3-N不同,它对呼吸作用的依赖程度不大,而主要受环境中尿素浓度的影响。 氮素循环:由两个重叠循环构成,一是大气层的气态N循环,氮的最大贮库是大气,整个N循环的通道多与大气直接相连。另一

土壤中的氮素及其转化

1.土壤中氮素的来源和含量 来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的NO 3 —N。 含量 我国耕地土壤全氮含量为%~%之间,与土壤有机质含量呈正相关。 2. 土壤中氮素的形态 3. 土壤中氮素的转化 有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮氨基酸 NH 4 +-N+有机酸 结果:生成NH 4 +-N(使土壤中有机态的氮有效化) 土壤粘土矿物对NH 4 +的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 ②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH 4 +的供应程度(优点?缺点?) 氨的挥发 定义:在中性或碱性条件下,土壤中的NH 4+转化为NH 3 而挥发的过程 过程: 结果:造成氮素损失 硝化作用 定义:通气良好条件下,土壤中的NH 4 +在微生物的作用下氧化成硝酸盐的现象

过程: --N 结果:形成NO 3 利:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。 过程: 结果:减缓氮的供应,可减少氮素的损失 反硝化作用 定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 硝酸盐的淋洗损失 -不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 NO 3 结果:氮素损失,并污染水体 4. 小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物); ④生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时) 氮肥的种类、性质和施用 氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。 ①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸

相关主题