搜档网
当前位置:搜档网 › 高效硅太阳能电池减反射膜系折射率分布

高效硅太阳能电池减反射膜系折射率分布

高效硅太阳能电池减反射膜系折射率分布
高效硅太阳能电池减反射膜系折射率分布

GaAs太阳电池减反射膜的设计

2010年第1期漳州师范学院学报(自然科学版)No. 1. 2010年(总第67期) Journal of Zhangzhou Normal University(Nat. Sci.)General No. 67 文章编号:1008-7826(2010)01-0070-04 GaAs太阳电池减反射膜的设计 黄生荣1,2 (1. 厦门大学物理系, 福建厦门361005; 2. 厦门三安电子有限公司, 福建厦门 361005) 摘要: 利用实际测量的光谱响应结果来对GaAs单结太阳电池减反射膜进行设计优化. 先初步设计单结GaAs太阳电池SiN减反射膜厚度,然后太阳电池片样品进行光谱响应测量. 利用实际测量的光谱响应结果推算电池样品在AM1.5条件下的无反射时光谱响应,根据计算的结果来对GaAs单结太阳电池减反射膜厚度进行设计优化. 优化结果表明83nm为GaAs单结太阳电池单层减反射膜厚度的最优值. 关键词: GaAs ; 太阳电池;减反射膜;光谱响应 中图分类号: O472+.8文献标识码: A Design of Anti-reflection Coating for GaAs Solar Cells HUANG Sheng-rong1,2 (1.Department of Physics, Xiamen University, Xiamen, Fujian 361005, China; 2.Xiamen San'an Electronics Co. Ltd, Xiamen, Fujian 361005, China) Abstract:According to the measurement results of spectral response, the anti-reflection coating for GaAs single-junction solar cells is designed. Firstly, the anti-reflection coating of SiN was fabricated but the thickness of anti-reflection coating was not optimized. Then the spectral response of the solar cell sample was measured. The no-reflection spectral response of AM 1.5 condition was calculated using the measurement results of spectral response. According to the calculation results, the optimized thickness of anti-reflection coating was designed. The optimized thickness of anti-reflection coating for GaAs single-junction solar cells is 83nm. Key words: GaAs ; Solar Cell ; anti-reflection ; spectral response 1 引言 传统的燃料能源正在一天天减少,对环境造成的危害日益突出,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展. 在这之中太阳能以其独有的优势而成为人们重视的焦点. 丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源,而其中太阳能发电是目前利用太阳能的热点研究领域. 太阳电池是把光能转换为电能的光电子器件. 相对于硅太阳电池,GaAs太阳电池具有更高的光电转换效率、更强的抗辐射能力、更好的耐高温性能,是国际公认的新一代高性能长寿命空间主电源和极具潜力的民间新能源. 为了减少GaAs 太阳电池表面反射损失以提高太阳电池的转换效率,在太阳电池表面窗口层上制备减反射膜是经常采用的方法. 国内外有许多研究机构对太阳电池单层、双层甚至三层减反射膜进行了理论计算和实际的设计应用,明显的提高了太阳电池的转换效率[1-6]. 本文利用实际测量的相对光谱响应结果来对GaAs单结太阳电池减反射膜进行设计优化,用于指导实际的太阳电池制备工艺. 虽然单层减反射膜很难实现宽谱域上理想的减反射效果,但是相对双层甚至更多层减反射膜的设计和制备工艺来说,单层减反射膜设计简单、制备工艺稳定;而且通过实际测量单结GaAs太阳电池的相对光 收稿日期: 2009-05-20 作者简介: 黄生荣(1978-), 男, 江西省上高县人, 博士后, 高级工程师.

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

太阳能电池用光伏玻璃减反射膜性能研究

太阳能电池用光伏玻璃减反射膜性能研究通过模拟车间组件制作环境,对不同类型的镀膜玻璃的透光率衰减进行了研究分析。采用X涉嫌光电子能谱(XPS)和椭偏仪等手段对 多孔SiO2减反射膜层进行了表征。结果表明,镀膜玻璃初期表面预 衰减主要和膜层的微观折射率和孔隙率有关,折射率越小,孔隙率越大,则越容易吸附微小颗粒,从而导致膜层表面孔口堵塞,折射率增加,减反效果降低,透光率下降。 关键词:镀膜玻璃;SiO2;折射率;孔隙率;透光率 随着全球人口增长和经济的快速发展,能源紧张和环境污染日益严重。而太阳能是取之不尽用之不竭的清洁可再生能源。因此研究太阳能对解决能源危机和环境保护,对人类的可持续发展具有重要意义。 目前90%的以上的太阳能电池都是晶硅太阳能电池,其封装制作组件的效率在15%-17%。而晶体硅太阳能电池的极限理论效率为34%,在现有工艺水平的基础上进一步提高太阳能电池效率的成本较高。如果能够提高封装组件对太阳光的利用率,则可以以较低的成本获得组件系统较高的发电量。在光伏盖板玻璃表面镀制减反射膜就是一种成本低廉,有效利用光能的途径。 在纳米多孔SiO2膜膜层设计过程中,通过增加孔隙率,以得到 接近1.23[1]理论折射率的膜层,从而获得最佳的减反射效果。但是

孔隙率过高,膜层容易在短期内吸附外界环境中的微小颗粒物质,从而造成孔口堵塞,折射率反而增加,透光率衰减严重。本文旨在研究镀膜层不同光学参数对镀膜玻璃透光率衰减的影响,从而筛选出具有高效减反,低衰减的镀膜玻璃。 1 实验部分 1.1 实验材料 镀膜玻璃防霉隔离纸硅胶 1.2 镀膜玻璃实验样品制备 层压实验:在镀膜玻璃表面垫上一层防霉纸,在层压机上进行层压。约15min后取出镀膜玻璃样品。并用去离子水擦拭玻璃表面。 固化实验:将镀膜玻璃置于正在硅胶固化中的组件之间。6小时后取出样品。并用去离子水擦拭玻璃表面。 1.3 镀膜玻璃表征 采用奥博泰GST-3,在380-1100nm波段上,对实验前后的镀膜玻璃进行透光率测试。 采用X射线光电子能谱仪(XPS)对实验前后的玻璃进行表征,分析实验前后元素含量的变化。

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究讲解

毕业论文 题目晶体硅太阳能电池表面PECVD淀积SiN 减反射膜工艺研究 目录

摘要 (1) 绪论 (3) 第一章 PECVD淀积氮化硅薄膜的基本原理 (6) 1.1化学气相淀积技术 (6) 1.2 PECVD原理和结构 (6) 1.3 PECVD薄膜淀积的微观过程 (8) 1.4 PECVD淀积氮化硅的性质 (9) 1.5表面钝化与体钝化 (9) 第二章实验 (11) 2.1 PECVD设备简介 (11) 2.2 PECVD设备操作流程 (13) 2.3 SiN 减反射膜PECVD淀积工艺流程 (13) 2.4最佳薄膜厚度和折射率的理论计算 (13) 2.5 理论实验总结 (15) 结束语 (16) 参考文献 (17)

晶体硅太阳能电池表面PECVD淀积SiN减反射膜工艺研究 摘要 等离子增强化学气相淀积氮化硅减反射薄膜已经普遍应用于光伏工业中,其目的是在晶体硅太阳能电池表面形成减反射薄膜,同时达到了良好的钝化作用。氮化硅膜的厚度和折射率对电池性能都有重要的影响。探索最佳的工艺条件来制备最佳的薄膜具有重要意义。本课题是利用Roth&Rau的SiNA设备进行淀积氮化硅薄膜的实验,介绍了几种工艺参数对薄膜生长的影响,获得了生长氮化硅薄膜的最佳工艺条件,制作出了高质量的氮化硅薄膜。实验中使用了椭偏仪对样品进行膜厚以及折射率的测量。 关键词:等离子增强化学气相淀积,氮化硅薄膜,太阳能电池,光伏效应,钝化

ABSTRACT SiN Film plasma-enhanced chemical vapor deposition (PECVD) is widely used in P-V industry as an antireflection thinfilm on the surface of crystal silicon solar cell. In addition this process takes advantage of an exellent passivation effect. Both the thickness and refractive index of the SiN film make important influences to the performance of solar cells. So it is very important to find the best process parameters to deposit the best film. In this paper, the experiment of SiN film deposition was completed with the equipment named SiNA produced by Roth&Rau. The influence of the parameters to the gowth of the film was introduced based on the experiment, and the best parameters to produce the top-quality SiN film were obtainted. The Spectroscopic ellipsometry was used to test the thickness and refractive index of the samples during the experiment. Key words:PECVD, SiN film, solar cell, photovoltaic effect, passivation

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

太阳电池减反射膜系统的研究

文章编号:025420096(2001)0320317205 太阳电池减反射膜系统的研究 ① 王永东,崔容强,徐秀琴 (上海交通大学应用物理系太阳能研究所,上海200240) 摘 要:减反射膜系的制备对于高效空间太阳电池来说非常重要,对其进行优化设计可以大幅度地提高太阳电池的短路电流,从而提高太阳电池的光电转换效率。从波动光学的基本原理出发,用加权平均反射率作为评价膜系设计质量的参数,编制出了进行减反射膜系优化设计的计算机程序,理论上可以使太阳电池表面的加权平均反射率降到1%以下,提高了电池的短路电流。关键词:太阳电池,减反射膜,加权平均反射率中图分类号:TM615 文献标识码:A 0 引 言 投射到太阳电池阵正面的太阳能辐射通量(阳光)中,部分被该表面反射掉了,部分透射到电池内部(通过太阳电池盖片进入太阳电池),被转换为电能。通常情况下,裸硅表面的反射率相当大,可将入射太阳光的30%以上反射掉,为了最大限度地减小正面的反射损失,目前主要有两种方法,一是将电池表面腐蚀成绒面,增加光与半导体表面作用的次数,二是镀上一层或多层光学性质匹配良好的减反射膜。对空间太阳电池来说,由于其工作环境的特殊要求,为降低工作温度提高效率,应尽可能减少太阳电池对太阳光谱中红外成分的吸收,而绒面对各波段的减反射效果都很好,这样就升高了太阳电池的工作温度,不利于提高其效率。因此对空间太阳电池来说,主要是通过减反射膜系的制备来提高太阳电池的转换效率。一般来说,这类涂层极薄,其光学厚度为波长的四分之一或二分之一。单层减反射膜由于仅对单一波长具有较好的减反射效果,在空间高效太阳电池中常用的是多层减反射膜系,它可对宽谱范围内的太阳辐照产生有效的减反射效果。国内已有一些专家对其进行了理论和实践上研究[1,9]。但是在已有的膜系设计研究中,需要先选定一个中心波长λ0,然后针对此波长点进行减反射膜的优化设计,这个中心波长的选取对设计结果有很大的影响,目前都是根据经验来选取的。本文从 相干光学的基本原理出发,选取了恰当的膜系评价 函数,通过理论分析和计算机优化计算,设计出了实用的软件,可对太阳电池进行单层或多层减反射膜系进行优化设计,从理论上得到减反射膜系各层膜的最佳参数。对硅太阳电池来说,理论上在最佳参 数情况下,在0.35~1.2μm 的波长范围内,该膜系的加权平均反射率可达0.48%。 1 理论计算 1.1 反射定律 光波是一种电磁波,在分层介质中的传播是电 磁波的传播,满足麦克斯韦电磁理论。太阳电池表面的减反射膜由于其光学厚度小于相干光程,在薄膜的上下界面将产生光的干涉现象,减反射作用就是利用光的干涉效应来实现的。 在进行减反射膜的设计时,为简化计算,我们通常要作如下假定: 1)薄膜在光学上是各向同性介质对于电介质,其特性可用折射率n 表征,且为实数;对于金属和半导体,其特性可用复折射率N =n -ik 来表征,k 为消光系数。 2)两个邻接的介质用一个数学界面分开,在这 个数学分界面两边折射率发生不连续的跃变。 3)膜层的横向尺寸假定为无限大,而膜层的厚度是光的波长数量级。 当光束从折射率为N 1的介质入射到折射率为   第22卷 第3期 2001年7月 太 阳 能 学 报ACT A E NERGIAE S O LARIS SINICA V ol 122, N o 13 Jaln ,2001 ①收稿日期:2000206221

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.sodocs.net/doc/c47457292.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

几种商业化的高效晶体硅太阳能电池技术

高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

氮化硅

氮化硅 氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。 【氮化硅的应用】 氮化硅用做高级耐火材料,如与sic结合作SI3N4-SIC耐火材料用于高炉炉身等部位; 如与BN结合作SI3N4-BN材料,用于水平连铸分离环。SI3N4-BN系水平连铸分离环是一种细结构陶瓷材料,结构均匀,具有高的机械强度。耐热冲击性好,又不会被钢液湿润,符合连珠的工艺要求。见下表 性能AL2O 3 ZrO 2 熔融石英 (SiO2) ZrO2 -MO金 属陶瓷 反应结合 Si3N4 热压 Si3N4 热压 BN 反应结合 SiN4-BN 抗热震性差差好好中好好好 抗热应力差差好好中好好好 尺寸加工精度与易 加工性能 差差好差好差好好 耐磨性好好中好好好好好 耐侵蚀性好好差好好好好 相对分子质量140.28。灰色、白色或灰白色。六方晶系。晶体呈六面体。密度3.44。 硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。熔点1900℃(加压下)。通常在常压下1900℃分解。比热容为0.71J/(g·K)。生成热为-751.57kJ/mol。热导率为 16.7W/(m·K)。线膨胀系数为2.75×10-6/℃(20~1000℃)。不溶于水。溶于氢氟酸。在空 气中开始氧化的温度1300~1400℃。比体积电阻,20℃时为1.4×105 ·m,500℃时为4×108 ·m。弹性模量为28420~46060MPa。耐压强度为490MPa(反应烧结的)。1285摄式度时与二氮化二钙反应生成二氮硅化钙,600度时使过渡金属还原,放出氮氧化物。 抗弯强度为147MPa。可由硅粉在氮气中加热或卤化硅与氨反应而制得。可用作高温陶瓷原料。 氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性

晶体硅太阳能电池依然是主流

未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高,制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。 目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。但是,专家认为,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;而薄膜电池如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,会有巨大的发展空间。晶体硅太阳能电池依然是主力 在太阳能光伏领域,晶体硅太阳能电池的转换效率较高,原材料来源简单,因此虽然薄膜太阳能电池迅速崛起,但晶体硅太阳能电池目前仍是太阳能电池行业的主力。在2007年全球前十大太阳能电池生产商中,有9家是以生产晶体硅太阳能电池为主的。 据应用材料公司提供的PV(光伏)产业预测,尽管多晶硅太阳能电池技术相对市场占有率有下降趋势(即2007年45%,2010年40%,2015年37%),但总体上多晶硅太阳能电池年增长率在以40%—50%的速度发展,未来市场相当可观。 硅是自然界存量最多的元素之一,硅材料来源广泛、价格低廉且容易获得,大生产制造技术成熟,电池制造成本持续下降,业内专家预计,未来10年晶体硅太阳能电池所占份额尽管会因薄膜电池的发展等原因而下降,但主导地位仍不会根本改变。而随着太阳能电池尺寸的加大,多晶硅太阳能电池制造技术的成熟,其转换效率和单晶硅电池的差距越来越小,制造成本优势逐渐显现,所占份额也会不断提高。以高纯多晶硅为原料而制备的晶硅电池占据现有太阳能电池80%以上的市场,由于其原料易于制备,电池制备工艺最为成熟,在硅系太阳能电池中转换效率最高,无论其原料还是产品都对人类无毒无害等优点而获得了广泛的开发和应用。预计在未来的20年~30年里还不可能有其他材料和技术能取代晶硅电池位居第一的地位。 多晶硅产能扩大成本降低 多晶硅太阳能电池之所以占据主流,除取决于此类电池的优异性能外,还在于其充足、廉价、无毒、无污染的硅原料来源,而近年来多晶硅成本的降低更将使多晶硅太阳能电池大行其道。 随着硅太阳能商业化电池效率不断提高、商业化电池硅片厚度持续降低和规模效应等影响,硅太阳能成本仍在降低,规模每扩大1倍,成本降低约20%。

几种商业化的高效晶体硅太阳能电池技术

几种商业化的高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池板 太阳能电池的的性能主要取决于它的光电转换效率和输出功率. 1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳能电池板可以节省安装面积, 但是价格更贵. 2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得这块太阳能电池板的输出功率. 太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。 太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一。 太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相 同光照条件下的输出功率也越大。 2.太阳能电池板的种类 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (2)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 :

薄膜晶体硅太阳能电池分析比较

薄膜晶体硅太阳能电池分析比较 《中国组件行业投资前景及策略咨询报告》分析:目前在工业上,硅的成本大约占硅太阳能电池生产成本的一半。为减少硅的消耗量,光伏(PV)产业正期待着一些处于研究开发中的选择方案。其中最显然的一种就是转向更薄的硅衬底。现在,用于太阳能电池生产的硅衬底厚度略大于200mm,而衬底厚度略小于100mm的技术正在开发中。为使硅有源层薄至5-20 mm,可以在成本较低的硅衬底上淀积硅有源层,这样制得的电池被称为薄膜。为使其具有工业可行性,主要的挑战是在适于大规模生产的工艺中,怎样找到提高效率和降低成本之间的理想平衡。已经存在几种制造硅有源层的技术1,本文将讨论其中的三种。 薄膜PV基础 第一种技术是制作外延(epitaxial)(图1),从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。 第二种是基于层转移(layer transfer)的技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。 最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷(图2)或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm 的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。

相关主题