搜档网
当前位置:搜档网 › 风机失速、喘振、抢风防范措施

风机失速、喘振、抢风防范措施

风机失速、喘振、抢风防范措施
风机失速、喘振、抢风防范措施

660MW机组风机失速、喘振、抢风

一、动调风机失速、喘振、抢风的定义与区别

失速:是动调风机固有的结构特性,在运行中行成的一种流体动力现象。失速时风机的全压、风量、振动、风机电流等参数突变后不发生波动,就地伴随着异常的闷声。单风机或并列运行时的风机均会出现失速,风机失速时不一定喘振。

喘振:是动调风机性能与管道阻力耦合后振荡特性的一种表现形式,喘振时风机的压力和流量周期性地反复变化,电流、动叶开度也摆来摆去,轴承振动明显增大并伴随着强烈的噪声,单风机或并列运行时的风均会出现喘振。风机喘振时肯定失速。

抢风:在动调风机并联运行时,风机本身未失速也未喘振,随着管路特性阻力的变化,会出现一台风机出力、电流特别大,另一台风机出力、电流特别小的现象,若稍加调节则情况刚好相反,原来出力大的反而减小。如此反复,使之不能正常并联运行。

一次风机,送风机、引风机失速的现象

1、风机电流减小且稳定,明显低于正常运行动叶开度。

2、风机全压(风机出口+进口)减小且稳定,轴承振动X向、Y向振幅呈增大趋势。

3、就地听风机运行声音,有异常的闷声。

4、一次风机失速时,两台风机电流明显偏差(10A以上),两台风机出口风压降低,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。

5、送风机失速时,两台风机电流明显偏差(20A以上),两台风机出口风压降低,总风量降低,两台风机动叶会自动开大,炉膛压力波动大。

6、引风机失速时,两台风机电流明显偏差(30A以上),两台风机出口风压降低,全压明显降低,两台风机动叶会自动开大,炉膛压力波动大。一次风机,送风机、引风机失速的处理

1、一次风机失速的处理

1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF方式运行。降低失速一次风机动叶开度至25%左右,或听到失速一次风机无闷声为止。注意未失速一次风机的电流不超额定值。

2)快速减负荷500MW,保留3-4台磨煤机运行。及时投入油枪。注意炉膛负压、除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至360~420MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,一次风母管压力控制在8.0KPa 左右,可开始并一次风机。

4)开启停用磨煤机的旁路风,调整其风量40~50吨左右,关闭一次风机联络门,适当增加给水流量,将失速一次风机动叶开至30~40%,降低未失速一次风机的动叶至40~30%左右,一次风机将并列运行。出口风压瞬间升高至10KPa左右,降低一次风机出口风压至8.5KPa左右,两侧电流平衡,投入一次风机自动,开启一次风联络门,恢复正常运行。并风机过程中,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水、降低各磨煤机的容量风门开度。

2、送风机失速的处理

1)立即将两台送风机动叶解除自动,CCS自动退出,机组TF方式运行。降低失速送风机动叶开度至25%左右,或听到失速送风机无闷声为止。注意未失速送风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、注意除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,

送风机出口风压在1.2~1.5KPa以下,可开始并送风机。

4)关闭送风机联络门,适当增加给水流量,降低过热度,将失速送风机动叶开至40~30%,降低未失速送风机的动叶至30~40%左右,送风机将并列运行。送风机出口风压瞬间升高至1.5KPa左右,降低送风机出口风压至1KPa左右,两侧电流平衡,投入送风机自动,开启送风联络门,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水。

3、引风机失速的处理

1)立即将两台引风机动叶解除自动,CCS自动退出,机组TF方式运行。降低失速引风机动叶开度至25%左右,或听到失速引风机无闷声为止。注意未失速引风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、必要时联系脱硫停运一台浆液循环泵,减小引风机出口烟道阻力。注意除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,引风机入口风压在-5.0~-5.6KPa以下,可开始并引风机。

4)适当增加给水流量,降低过热度,将失速引风机动叶开至40~30%,降低未失速引风机的动叶至30~40%左右,引风机将并列运行。引风机出口风压瞬间升高至-5.0KPa左右,降低引风机出口风压至-4.0KPa左右,炉压正常,两侧电流平衡,投入引风机自动,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水。

一次风机,送风机、引风机喘振现象

1、风机电流减小且波动,明显低于正常运行动叶开度。

2、风机全压(风机出口+进口)减小且波动,轴承振动X向、Y向振幅明显增大且程上升趋势。

3、就地听风机运行声音,有强烈的噪声。

4、一次风机喘振时,两台风机电流明显偏差(10A以上),两台风机出口风压降低且波动,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。

5、送风机喘振时,两台风机电流明显偏差(20A以上),两台风机出口风压降低且波动,总风量降低且波动,两台风机动叶会自动开大,炉膛压力波动大。

6、引风机喘振时,两台风机电流明显偏差(30A以上),两台风机出口风压降低且波动,全压明显降低且波动,两台风机动叶会自动开大,炉膛压力波动较大。

一次风机,送风机、引风机喘振的处理

1、一次风机喘振的处理

1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF方式运行。降低喘振一次风机动叶开度至25%左右,或听到喘振一次风机无噪声为止。注意未喘振一次风机的电流不超额定值。

2)快速减负荷500MW,保留3-4台磨煤机运行。及时投入油枪。注意炉膛负压、除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至360~420MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,一次风母管压力控制在8.0KPa 左右,可开始并一次风机。

4)开启停用磨煤机的旁路风,调整其风量40~50吨左右,关闭一次风机联络门,适当增加给水流量,将喘振一次风机动叶开至30~40%,降低未喘振一次风机的动叶至40~30%左右,一次风机将并列运行。出口风压瞬间升高至10KPa左右,降低一次风机出口风压至9KPa左右,

两侧电流平衡,投入一次风机自动,开启一次风联络门,恢复正常运行。并风机过程中,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水、降低各磨煤机的容量风门开度。

2、送风机喘振的处理

1)立即将两台送风机动叶解除自动,CCS自动退出,机组TF方式运行。降低喘振送风机动叶开度至25%左右,或听到喘振送风机无噪声为止。注意未喘振送风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、注意除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,送风机出口风压在1.2~1.5KPa以下,可开始并送风机。

4)关闭送风机联络门,适当增加给水流量,降低过热度,将喘振送风机动叶开至40~30%,降低未喘振送风机的动叶至30~40%左右,送风机将并列运行。送风机出口风压瞬间升高至1.5KPa左右,降低送风机出口风压至1KPa左右,两侧电流平衡,投入送风机自动,开启送风联络门,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水。

3、引风机喘振的处理

1)立即将两台引风机动叶解除自动,CCS自动退出,机组TF方式运行。降低喘振引风机动叶开度至25%左右,或听到喘振引风机无噪声为止。注意未喘振引风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、必要时联系脱硫停运一台浆液循环泵,减小引风机出口烟道阻力。注意除氧器水位,必要时手动干预。注意主

汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,引风机入口风压在-5.0~-5.6KPa以下,可开始并引风机。

4)适当增加给水流量,降低过热度,将喘振引风机动叶开至40~30%,降低未喘振引风机的动叶至30~40%左右,引风机将并列运行。引风机出口风压瞬间升高至-5.0KPa左右,降低引风机出口风压至-4.0KPa左右,炉压正常,两侧电流平衡,投入引风机自动,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水。

一次风机,送风机、引风机抢风的现象

1、一台风机电流大,另一台风机电流小;动叶开度也相应波动。

2、风机全压(风机出口+进口)也相应波动,轴承振动X向、Y向振动正常。

3、就地听风机运行声音,无闷声或噪声。

4、一次风机抢风时,抢风的风机经调整后电流会明显的增大会减小,两台风机电流明显偏差(15A以上)且一次风母管压力波动大,两台风机出口风压偏差大且一次风母管压力与炉膛压差波动大,两台风机动叶会自动开大或减小,炉膛压力波动大。

5、送风机抢风时,抢风的风机经调整后电流会明显的增大会减小,两台风机电流明显偏差(30A以上)且总风量波动大,两台风机出口风压偏差大且大风箱差压波动大,两台风机动叶会自动开大或减小,炉膛压力波动大。

6、引风机抢风时,抢风的风机经调整后电流会明显的增大会减小,两台风机电流明显偏差(50A以上)且炉压波动大,两台风机出口风压

偏差大且大风箱差压波动大,两台风机动叶会自动开大或减小,炉膛压力强烈波动。

一次风机,送风机、引风机抢风的处理

1、一次风机抢风的处理

1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF方式运行。降低抢风一次风机动叶开度至25%左右,注意调整未抢风一次风机的电流不超额定值。

2)快速减负荷500MW,保留3-4台磨煤机运行。及时投入油枪。注意炉膛负压、除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至360~420MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,一次风母管压力控制在8.0KPa 左右,可开始并一次风机。

4)开启停用磨煤机的旁路风,调整其风量40~50吨左右,关闭一次风机联络门,适当增加给水流量,将抢风一次风机动叶开至30~40%,降低未抢风一次风机的动叶至40~30%左右,一次风机将并列运行。出口风压瞬间升高至10KPa左右,降低一次风机出口风压至9KPa左右,两侧电流平衡,投入一次风机自动,开启一次风联络门,恢复正常运行。并风机过程中,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水、降低各磨煤机的容量风门开度。

2、送风机抢风的处理

1)立即将两台送风机动叶解除自动,CCS自动退出,机组TF方式运行。降低抢风送风机动叶开度至25%左右,注意调整未抢风一次风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、注意除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率

可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,送风机出口风压在1.2~1.5KPa以下,可开始并送风机。

4)关闭送风机联络门,适当增加给水流量,降低过热度,将抢风送风机动叶开至40~30%,降低未抢风送风机的动叶至30~40%左右,送风机将并列运行。送风机出口风压瞬间升高至1.5KPa左右,降低送风机出口风压至1KPa左右,两侧电流平衡,投入送风机自动,开启送风联络门,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的上升速度,必要时增加给水流量、增加减温水。

3、引风机抢风的处理

1)立即将两台引风机动叶解除自动,CCS自动退出,机组TF方式运行。降低抢风一次风机动叶开度至25%左右,注意调整未抢风一次风机的电流不超额定值。

2)快速减负荷500MW,保留4台磨煤机运行。及时投入油枪。注意调整炉膛负压在+300~-500Pa、必要时联系脱硫停运一台浆液循环泵,减小引风机出口烟道阻力。注意除氧器水位,必要时手动干预。注意主汽调门开度,必要时设主汽压力偏置-1.0~-2.5MPa,下降速率可设置为1.0MPa/min。

3)待机组负荷降至400~450MW之间,锅炉、汽机各部参数趋于正常,主、再热汽温降至580℃左右时,燃烧稳定,氧量在4.0%左右,引风机入口风压在-5.0~-5.6KPa以下,可开始并引风机。

4)适当增加给水流量,降低过热度,将抢风引风机动叶开至40~30%,降低未抢风引风机的动叶至30~40%左右,引风机将并列运行。引风机出口风压瞬间升高至-5.0KPa左右,降低引风机出口风压至-4.0KPa左右,炉压正常,两侧电流平衡,投入引风机自动,恢复正常运行。并风机过程中,及时调整炉膛负压,特别注意主、再热汽温度的

上升速度,必要时增加给水流量、增加减温水。

一次风机,送风机、引风机的失速、喘振、抢风的运行防范措施

1、校验一次风机,送风机、引风机的喘振报警信号,确保报警正常。喘振差压报警值:≥5kpa.公司一次风机,送风机、引风机设计无失速、抢风的检测及报警装置。

2、一次风机,送风机、引风机的电流平衡正常投入。

3、一次风机,送风机、引风机在电流平衡投入时,动叶开度偏差控制在5%以内,动叶开度偏差在10%以上填写缺陷处理。

4、一次风机,送风机联络门运行中保持全开。

5、一次风机失速、喘振、抢风运行防范措施

1)一次风母管压力设定最高值:660MW 5磨或4磨10.5KPa,550MW 4磨9.5KPa,450MW 4磨或3磨8.5KPa,350MW 3磨7.5-8.0KPa。母管压力设置偏置为正负2KPa(上、限2%)2)增大磨煤机的一次风量。正常运行磨煤机最低风量不小于50吨,最高风量不超过75吨,风煤比一般控制在1.5-1.6之间。风量50吨时对应一次风速18m/s,60吨时对应一次风速22m/s,75吨时对应一次风速26m/s。

3)停运磨煤机时操作幅度要小,速度要慢。停运磨煤机前将风量缓慢逐渐关至0,在风量调节过程中,注意观察一次风机动叶开度及出口风压变化情况。严禁大风量直接停磨煤机联关热冷风门。

4)3磨运行或启动一次风机时,及时开启备用磨煤机通道适当增加一次风量,确保一次风母管压力稳定。

6、送风机失速、喘振、抢风运行防范措施

1)送风量设定最高值:660MW 5磨或4磨送风量1950吨氧量3.5%,550MW 4磨送风量1620吨氧量3.62%,450MW 4磨或3磨送风量1310吨氧量3.92%,350MW 3磨送风量1035吨氧量4.52%。送风量设置偏置为正400吨,负200吨,氧量设置偏

置为正2.5%,负2.5%

7、引风机失速、喘振、抢风运行防范措施

1)引风机入口压力、电流最高值:660MW 5磨或4磨入口压力-5.6kpa 电流550A,550MW 4磨入口压力-4.2kpa 电流430A,450MW 4磨或3磨入口压力-3.3kpa 电流340A,350MW 3磨入口压力-2.9kpa 电流300A。炉膛压力设置偏置为正50Pa、负50Pa。

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

风机的喘振保护构成原理及具体措施

风机的喘振保护构成原理 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内; b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

失速与喘振

摘要:阐述了轴流通风机失速与喘振的形成机理,结合2×600MW机组一次风机的喘振问题,分析了失速与喘振的原因,同时还制定了检查及整改措施。 关键词:轴流式通风机失速喘振 中图分类号:TH432.1 文献标识码:B 文章编号:1006-8155(2007)03-0000-00 Analysis on Stall and Surge of Variax Blade Adjustable Axial Fl ow Fan and Improvement Measure Abstract: The formation principle of stall and surge for axial fl ow fan was elucidated, analyze the reason of stall and surge bonding the surge problem of 2*600MW primary fan, at one time, draw the measure of check and improvement. Key Words: Axial fl ow fan Stall Surge 0 引言 由于动叶可调轴流通风机具有体积小、质量轻、低负荷区域效率较高、调节范围宽广、反应速度快等优点,近十年来,国内大型火力发电厂已普遍采用动叶可调轴流通风机。因为轴流通风机具有驼峰形性能曲线这一特点,理论上决定了风机存在不稳定区。风机并不是在任何工作点都能稳定运行,当风机工作点移至不稳定区时就有可能引发风机失速及喘振等现象的发生。 笔者针对扬州第二发电有限责任公司二期扩建工程2×600MW 机组一次风机在安装、调试期间发生的失速问题,对失速与喘振的原理进行了分析,并提出了相应检查和整改措施,以及风机在正常运行过程中如何避免失速与喘振的发生。 1 轴流通风机失速与喘振的关系

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

火电厂风机喘振及失速分析

火电厂风机失速及喘振分析 【摘要】风机是电厂锅炉的主要辅助设备之一,是火力发电厂不可缺少的一部分,其所消耗的电量约占电厂总发电量的2~3%。随着用电量的不断增长和能源问题的出现,电厂风机运行的安全性越来越为人们所重视,其运行状况的好坏直接危及到整个机组的安全运行,严重影响火力发电厂的经济效益。本文重点针对电厂风机的喘振失速问题进行机理分析,并提出了运行处理及防范措施。 【关键词】风机失速喘振不稳定工作区运行处理预防 1.风机简述 1.1离心式风机和轴流式风机比较 风机主要有离心式和轴流式两种。离心式风机具有结构简单、运行可靠、效率较高、制造成本较低、噪音小等优点。但离心风机的容量受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大;而轴流式风机具有容量大,且结构紧凑、体积小、重量轻、耗电低、低负荷时效率高等优点,但轴流风机结构复杂,制造精度要求高。 鉴于轴流式风机的优点,大容量机组均选用轴流式风机。 1.2轴流式风机的运行调节 轴流式风机的运行调节有四种方式:动叶调节、节流调节、变速调节和入口静叶调节。动叶调节是通过改变风机叶片的角度,使风机的曲线发生改变,来实现改变风机的运行工作点和调节风量。这种调节经济性和安全性较好,每一个叶片角度对应一条曲线,且叶片角度的变化几乎和风量成线性关系。 节流调节的经济性很差,所以轴流式风机不采用这种调节方式。 变速调节是最经济的调节方式,但需要配置电机变频装置或液力偶和器。 进口静叶调节时系统阻力不变,风量随风机特性曲线的改变而改变,风机的工作点易进入不稳定工况区域。 2.风机失速与喘振机理 2.1失速机理 轴流式风机其工作原理是基于叶翼型理论(如图a):当气流以某一冲角α进入叶轮时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小;因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼背上产生一个升力,同时在翼腹上产生一个大小相等方向相反的作用力,使气体排出叶轮呈螺旋形沿轴向向前运动。与此同时,风机进口处由于压差的作用,使气体不断地被吸入。 a、风机正常工况时的气体流动状况 b、风机脱流工况时的气体流动状况 动叶可调轴流风机,冲角α越大,翼背的周界越大,则升力越大,风机的压差越大,风量越小。当叶片冲角α达到临界值时,气流会在叶背尾端产生涡流区,即所谓的脱流工况(失

喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。 失速是风机本身特性引起的 喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾 抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。 我的理解 轴流风机的喘振与失速是不同的情况可以简单概括如下: 喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时; 失速一般发生在动叶可调轴流风机的高负荷区。主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰 抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。 喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。 避免喘振主要采用合适的调节方式 抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反 避免抢风主要有: 1。不采用不稳定性能风机 2.同时在低负荷运行时可以单台运行 3.采取动叶调节 4.开启旁路风

一、风机失速 图1:风机失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。 由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。 与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量 二、风机喘振: 图1:风机喘振 图2:风机喘振报警线

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法 李保川 光大水务(德州)有限公司 摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。 关键词:污水处理厂;离心式鼓风机;喘振; 光大水务(德州)有限公司南运河污水处理厂处理规模15万m3/d,一期工程处理规模为7.5万m3/d,二期工程处理规模为7.5万m3/d,采用的污水处理工艺为A/A/O工艺。生物池为一座两池,设计流量:Q=0.868m3/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。配套驱动电机为西门子电机(中国)有限公司贝德牌电机。 多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m3/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害 “喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。轴承液体润滑条件会遭到破坏,轴瓦会烧坏,转子与定子会产生摩擦、碰撞,密封元件也将严重破坏,更甚至会发生轴扭断。同时,对A/A/O池中的DO量影响严重,关系到出水达标问题。 2.鼓风机产生喘振的原因 压力/Mpa Q/(m3/h) 图1 转速恒定状态下进口空气流量与出口压力的特性曲线图离心鼓风机在转速恒定的状态下,其进口空气流量Q与出口的压力的特性如图1所示。A点与B点是鼓风机正常稳定运行状态的两个临界点,也就是说只有在A点与B点这个稳定区间内鼓风机才是正常运行状态。当鼓风机的输出流量超过B点时则为不稳定区域,处于不

离心风机喘振现象及原因

关于风机喘振现象的原因和避免方法 1、喘振现象及原因 具有驼峰型特性的风机在运行过程中,当负荷减小,负载流量下降到某一定值时,出现工作不稳定现象。这时流量忽多忽少,一会儿向负载排气,一会儿又从负载吸气,发出如同哮喘病人“喘气”的噪声,同时伴随着强烈振动,这种现象称之为喘振。 发生喘振现象的根源是离心风机所具有的驼峰型特性。图一给出了具驼峰型特性的离心风机的工作特性曲线。 图中,曲线1是离心风机在某一转速下的特性曲线,代表出口绝压P2和入口绝压P1之比与风机流量之间的关系,是一个驼峰曲线,驼峰点M处的流量为Qm。曲线2是管路特性曲线,正常工作点为A。可以看出,在驼峰点右侧,工作是稳定的。因为任何偶然因素造成的工作点波动(例如流量增加),对于风机特性曲线1而言,压力会减小,而对于管路特性曲线2而言,压力会增加,这两个相互矛盾的结果最终会使工作点返回到原来的位置,在驼峰点M的左侧,这种情况正好相反,任何偶然因素造成的工作点波动将使沿风机特性曲线1上的压力变化趋势与沿管路特性曲线2上的压力变化趋势具有完全的一致性,其结果加剧了工作点的偏移,使之不能返回到原来的工作点上,风机的工作出现不稳定情况。 因此,驼峰点M右侧的区域为稳定工作区域,驼峰点M左侧的区域为不稳定工作区域。负荷下降使处于驼峰右侧的工作点向驼峰点靠近,工作点越靠近驼峰点M,越会出现工作不稳定的可能性,驼峰型特性是发生喘振现象的主要原因。 2、防喘振控制思路 图二给出了风机在不同转速下的特性曲线,可以看出。转速不同,相应的驼峰点和驼峰流量也不同。转速越低,驼峰点越向左移,驼峰流量越小。把不同转速下的驼峰点连接起来,就构成了一条曲线,曲线右侧为稳定工作区,曲线左侧为喘振区。我们称驼峰流量为极限流量,相应的驼峰点连接曲线被称为喘振极限线。 显然,只要在任何转速下,控制风机的流量,使其大于极限流量,则风机便不会发生喘振问题。这就是防喘振控制的基本思想。

风机喘振与失速

一,风机失速与喘振 1、失速是叶片结构特性造成的一种流体动力现象,如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。 2、喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。 3、喘振时风机的流量和压力周期性地反复变化,电流也摆来摆去,也就是说一台风机运行也可能发生喘振,而且是风机低负荷时。而失速通常发生在两台风机并列运行在大负荷时,失速发生时,失速风机风压、风量、振动、风机电机电流等参数突变后不发生波动,这是失速与喘振的最大区别。抢风是失速和喘振的一种通俗性的说法 二、喘振与失速的区别 当风机处于不稳定工作区运行时,可能会出现流量全压的大幅度波动,引起风机及管路系统周期性的剧烈振动,并伴随着强烈的噪声,这种现象叫作喘振。风机在下列条件下才会发生喘振: 1.风机在不稳定工作区运行,且风机工作点落在性能曲线的上升段。 2.风机的管路系统具有较大的容积,并与风机构成一个弹性的空气动力系统。 3.系统内气流周期性波动频率与风机工作整个循环的频率合拍,产生共振。 风机并联运行时,有时会出现一台风机流量特别大,而另一台风机流量特别小的现象,若稍加调节则情况可能刚好相反,原来流量大的反而减小。如此反复下去,使之不能正常并联运行,这种现象称为抢风现象。 从风机性能曲线分析:具有马鞍形性能曲线的风机并联运行时,可能出现“抢风”现象。 所谓抢风,是指并联运行的两台风机,突然一台风机电流(流量)上升,加一台风机电流(流量)下降。此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。 为避免风机出现抢风现象,在低负荷时可以单台运行,当单台风机运行满足不了需要时,再启动第二台参加并联运行。 当冲角增加到某一个临界值时,流体在叶片凸面的流动遭到了破坏,边界层严重分离,阻力大大增加,升力急剧减小。这种现象称为脱流或失速。 在叶轮叶栅上,流体对每个叶片的绕流情况不可能完全一致,因此脱流也不可能在每个叶片上同时产生。一旦某一个或某些叶片上首先产生了脱流,这个脱流就会在整个叶栅上逐个叶片地传播。这种现象称为旋转脱流。

风机喘振分析和防止风机喘振保护原理

轴流式吸风机喘振分析 轴流式吸风机在大型发电厂中应用比较普遍。轴流式风机在运行中调节不当会出现喘振现象。因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。 主题词:轴流吸风机喘振现象处理 轴流式吸风机由于其本身的特性决定了它在运行中存在着发生 喘振的可能性,这一点从理论和实践中都可以得到证明。 大唐盘山电厂应用两台轴流式吸风机并联运行的方式。运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。 下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析: 第一次喘振现象:当时AGC投入,负荷500MW升至550MW。A、B、 C、D、E磨运行。炉膛压力异常报警。 处理: 运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。液压油压力低,#1吸风机跳闸。通过追忆,确认风机跳闸前两台风机动叶全开,#1吸 风机流量"0",发生喘振。 第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。(风机额定电流260A)两台风机动叶全开。确认#1吸风机喘振。 处理:关小#2吸风机动叶。处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。 第三次现象:当时AGC投入,负荷500MW升至520MW。A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。两台风机动叶开度75%。确认#1吸风机喘振。 处理: 两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。 分析: 1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。由于在高负荷时,烟气量较大,烟气侧阻力较大。#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。 针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,

关于风机喘振原因与处理

关于风机喘振原因与处理 喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏,出现喘振的风机大致现象如下: 1 电流减小且频繁摆动、出口风压下降摆动。 2 风机声音异常噪声大、振动大、机壳温度升高、引送风机喘振动使炉膛负压波动燃烧不稳。 常见的原因: 1 烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。(我们有碰到过但不多) 2 两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差) 4 风机长期在低出力下运转。 一般的处理原则是调整负荷、关小高出力风机的导叶开度使风机出力相近,再根据上面所说的可能原因进行查找再作相应处理。 所谓喘振,就是当具有“驼峰”形Q-H性能曲线的风机在曲线临界点以左工作时,即在不稳定区工作时,风机的流量和能头在瞬间内发生不稳定的周期性反复变化的现象。风机产生的最大能头将小于管路中的阻耗,流体开始反方向倒流,由管路倒流入风机中(出现负流量),由于风机在继续运行,所以当管路中压力降低时,风机又重新开始输出流量,只要外界需要的流量保持小于临界点流量时,上述过程又重复出现,即发生喘振。 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量, 为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。 风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内; b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。 旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关 轴流风机的Q-H性能曲线 的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转

轴流风机的失速和喘振及预防

轴流风机的失速和喘振及预防 轴流式风机在运转时气流是沿着轴向进入风机室,空气在风机叶轮处受挤压,又沿着轴向流出的风机,空气在不断旋转的叶轮处获得能量。 轴流式风机负荷调节是根据控制系统发出指令,伺服机带动液压缸调节输入杆,液压缸缸体发生轴向位移,推力盘轴向位移,带动所有叶片同步转动角度,来调节风机的出力(一次风机主轴为中空轴,中间有一连接杆,连接前后两级推力盘,通过液压缸的带动,两级推力盘同步移动,从而两级叶片同步转动)。送风机叶片转动角度范围(-30~+10°),一次风机叶片转动角度范围(-30~+15°)。 液压缸调节原理:叶片需开大时,伺服机带动调节杆向开大的方向旋转一定角度,则伺服阀芯向后移动,液压油进入液压缸体后腔,前腔油通过回油管返回至油箱,液压缸体向后移动,叶片开大,此时和缸体连在一起的反馈杆也一同向后移动,而反馈杆带动伺服阀套向后移动相同的距离,从而堵住进油孔,停止进油,保持叶片在某一开度;若叶片需关小时,伺服机带动调节杆向关小的方向旋转一定角度,则伺服阀芯向前移动,液压油进入液压缸体前腔,后腔油通过回油管返回至油箱,液压缸体向前移动,叶片关小,此时和缸体连在一起的反馈杆也一同向前移动,而反馈杆带动伺服阀套向前移动相同的距离,从而堵住进油孔,停止进油,保持叶片在某一开度。液压缸调节头处各阀、轴封的微量泄漏油通过泄漏油管返回的油箱。 一、轴流风机的失速与喘振 1、轴流风机的失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(气流方向与叶片叶弦的夹角α即为冲角)为零或很小,气流则绕过机翼型叶片而保持流线平稳的状态,如图1a 所示;当气流与叶片进口形成正冲角且此正冲角超过某一临界值时,叶片背面流动工况则开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1b所示;冲角α大于临界值越多,失速现象就越严重,流体的流动阻力也就越大,严重时还会使叶道阻塞,同时风机风压也会随之迅速降低。

风机喘振、失速、抢风区别

附件:轴流风机“失速”、“喘振”、“抢风”区别 1)轴流风机失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。 由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。 与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量。

2)轴流风机喘振 风机的喘振,是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象。现以单台风机为例,配合上图加以说明。 当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K。但当风机负荷降到低于Qk时,进入不稳定区工作。此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功。此时,管路中的气体向两个方向输送,一方面供给负荷需要,一方面倒送给风机,故压力迅速降低。至C点时停止倒流,风机流量增加。但由于风机的流量仍小于管路流量,QC<QD,所以管路压力仍下降至E点,风同的工作点将瞬间由E点跳到F点(E、F点等压),此时风机输出流量为QF。由于QF大于管路的输出流量,此时管路风压转而升高,风机的工作点又移到K点。上述过程重复进行,就形成了风机的喘振。喘振时,风机的流量在QB-QF范围内变化,而管路的输出流量只在少得多的QE -QA间变动。 所以,只要运行中工作点不进入上述不稳定区,就可避免风机喘振。轴流风机当动叶安装角改变时,K点也相应变动。因此,不同的动叶安装角度下对应的不稳定区是不同的。大型机组一般设计了风机的喘振报警装置。其原理是,将动叶或静叶各角度对应的性能曲线峰值点平滑连接,形成该风机喘振边界线,(如下图所示),再将该喘振边界线向右下方移动一定距离,得到喘振报警线。为保证风机的可靠运行,其工作点必须在喘振边界线的右下方。一旦在某一角度下的

引风机喘振分析及处理

风机喘振分析及处理 一.风机喘振的形成 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。如下图图所示: 轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK 时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统

中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量, 为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。 风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。 旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在上图所示的风机Q-H性能曲线峰值以左的整个不稳定 区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。旋转对风机的正常运转影响不如喘振这样严重。

离心式鼓风机喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 摘要:针对武汉市龙王嘴污水处理厂离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 Reason Analysis and Countermeasures for Surge of Centrifugal Blower in WWTP Abstract:In order to solve the surge of the centrifugal blower in Wuhan Longwangzui WWTP,Wuhan City,the reasons and the main influence factors for the surge were analyzed,judging measures were proposed.Several solutions for avoiding the surge were summarized,including using frequency converter for starting,using vent pipe for releasing air,reducing MLSS in biological tank,ensuring piping to be unblocked,changing the state of fighting for air,enhancing personnel training,regular maintenance and so on. Key words:centrifugal blower;surge;countermeasures 武汉市龙王嘴污水处理厂处理能力为15×104m3/d,采用改良型A2O工艺,生物池采用微孔鼓风曝气,使用4台Spencer Power Mizer5000系列多级离心式鼓风机,2用2备。离心风机风量为10833m3/h,功率为250kW,配套电机功率为300kW。 在使用过程中,Spencer鼓风机可靠性高,集成度好,报警参数设置较全,保护措施完善,全部采用触摸自动控制,报警信号自动提示,操作维护较简单,但也存在运行噪音大和开机、倒机时发生喘振等缺点。尤其是喘振,给鼓风机的机械系统带来很大的损伤,加快了鼓风机的老化,降低了鼓风机的使用寿命,增加了修理、维护和管理成本。 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。

风机的失速和喘振

5.4 风机的失速和喘振 5.4.1 失速 由流体力学知,当速度为v 的直线平行流以某一冲角(翼弦与来流方向的夹角)绕流二元孤立翼 型(机翼)时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小。因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼型上形成一个向上的作用力。如果绕流体是理想流体,则这个力和来流方向垂直,称为升力,其大小由儒可夫斯基升力公式确定: FL=ρυ∞Γ Γ-速度环量ρ-绕流流体的密度 其方向是在来流速度方向沿速度环量的反方向转90°来确定。 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头、 和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。 轴流风机叶片前后的压差,在其它都不变的情况下,其压差的大小决定于动叶冲角的大小,在临 界冲角值以内,上述压差大致与叶片的冲角成比例,不同的叶片叶型有不同的临界冲角值。翼型的冲角不超过临界值,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”,如图5-15。

泵与风机进入不稳定工况区,其叶片上将产生旋转脱流,可能使叶片发生共振,造成叶片疲劳断 裂。现以轴流式风机为例说明旋转脱流及其引起的振动。当风机处于正常工况工作时,冲角等于零, 而绕翼型的气流保持其流线形状,如图示:当气流与叶片进口形成正冲角时,随着冲角的增大,在叶 片后缘点附近产生涡流,而且气流开始从上表面分离。当正冲角超过某一临界值时,气流在叶片背部 的流动遭到破坏,升力减小,阻力却急剧增加,这种现象称为“旋转脱流”或“失速”。如果脱流现象发生在风机的叶道内,则脱流将对叶道造成堵塞,使叶道内的阻力增大,同时风压也随之而迅速降低。风机的叶片由于加工及安装等原因不可能有完全相同的形状和安装角,同时流体的来流流向也不 完全均匀。因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同,如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生脱流,而不会所有叶片都同时发生 脱流。如下图示:假设在叶道2 首先由于脱流而出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是原来进入叶道2 的气流只能分流进入叶道1 和3。这两股分流来的气 流又与原来进入叶道1 和3 的气流汇合,从而改变了原来的气流方向,使流入叶道1 的气流冲角减小,而流入叶道3 的冲角增大,由此可知,分流的结果将使叶道1 内的绕流情况有所改善,脱流的可能性 减小,甚至消失,而叶道3 内部却因冲角增大而促使发生脱流,叶道3 内发生脱流后又形成堵塞,使 叶道3 前的气流发生分流,其结果又促使叶道4 内发生脱流和堵塞,这种现象继续下去,使脱流现象 所造成的堵塞区沿着与叶轮旋转相反的方向移动。试验表明,脱流的传播相对速度W1 远小于叶轮本 身旋转角速度W 因此,在绝对运动中,可以观察到脱流区以W-W1 的速度旋转,方向与叶轮转向相同,此种现象称为“旋转脱流”或“旋转失速”。 风机进入不稳定工况区运行,叶轮内将产生一个到数个旋转脱流区,叶片依次经过脱流区要受到 交变应力的作用,这种交变应力会使叶片产生疲劳。叶片每经过一次脱流区将受到一次激振力的作用,此激振力的作用频率与旋转脱流的速度成正比,当脱流区的数目2、3、、、、时,则作用于每个叶片的激振力频率也作2 倍、3 倍、、、、的变化。如果这一激振力的作用频率与叶片的固有频率成整数倍关系,

常见风机故障原因及处理方法

常见风机故障原因及处理方法 摘要:分析了风机运行中轴承振动、轴承温度高、动叶卡涩、保护装置误动作等故障的几种原因,提出了被实际证明行之有效的处理方法。 风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。 1风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。 1.1不停炉处理叶片非工作面积灰引起风机振动 这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。 1.2不停炉处理叶片磨损引起的振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。 1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200 mm多,人站在风机外面,用手可以进行内部操作。风机正常运行的情况下手孔门关闭。 2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加

相关主题