搜档网
当前位置:搜档网 › 相似三角形压轴题专题说课材料

相似三角形压轴题专题说课材料

相似三角形压轴题专题说课材料
相似三角形压轴题专题说课材料

中考全国试卷分类汇编

相似三角形

1. 如图,Rt A ABC 中,/ ACB=90°, / ABC=60°, BC=2cm, D 为BC的中点,若动点E 以1cm/s 的速度从A

点出发,沿着A T B-A的方向运动,设E点的运动时间为t秒(O WH 6),连接。巳当厶BDE是直角三角形时,t的值为()

1

A. 2

B. 2.5或3.5

C. 3.5或4.5

D. 2或3.5 或4.5

点评:此题考查了含30°角的直角三角形的性质?此题属于动点问题,难度适中,注意掌握

分类讨论思想与数形结合思想的应用.

2. 如图所示,在平行四边形ABCD中,AC与BD相交于点O, E为0D的中点,连接AE并延长交DC于

点F,则DF: FC=()

3. 如图,在△ ABC中/ A=60° BM丄AC于点M , CN丄AB于点N, P为BC边的中点,连接PM , PN,贝U 下列结论:①PM=PN ;②;③△ PMN为等边三角形;④ 当/ ABC=45时,BN=二PC.其中正确的

个数是(

点评:本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析

图形并熟练掌握性质是解题的关键.

4. 如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x, y轴的正半轴

上.点Q在对角线0B上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为___________________________

点评:本题考查了相似三角形的判定与性质,正方形的对角线等于边长的

及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出

题的关键.

5 . 如图,/ BACK DAF=90°, AB=AC, AD=AF,点D、E 为BC边上的两点,且 / DAE=45°,连接EF、BF,则下列结论:

AB AC

B. C. D.

二倍的性质,以

BP的长是解

①△ AED^A AEF;②△ ABE^ △ ACD;③ BE+DC> DE;④ BE2+D C2=D E2,

其中正确的有()个.

E X)C

A. 1

B. 23D. 4

点评:本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.

6. 已知在△ ABC中,/ ABC=90°, AB=3, BC=4.点Q是线段AC上的一个动点,过点

段AB (如图1)或线段AB的延长线(如图2)于点P.

(1)当点P在线段AB上时,求证:△ AP2A ABC;

考点:相似三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;

点评:本题考查相似三角形及分类讨论的数学思想,难度不大?第(2)问中, 等腰三角形时,有两种情况,需要分类讨论,避免漏解.

Q作AC的垂线交线

勾股定理.

当△ PQB为

7. 如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.

(1)求证:△ APB^A APD;

(2)已知DF: FA=1: 2,设线段DP的长为x,线段PF的长为y.

①求y与x的函数关系式;

② 当x=6时,求线段FG的长.

点评:此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,根据平行关系得出卫E),鱼丄是解题关键.

Afi 2 A3 3

8. 如图,四边形ABCD中,AC平分/ DAB, / ADC=/ ACB=90°, E为AB的中点,

(1)求证:AC2=AB?AD;

(2)求证:CE// AD;

点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质?此题难度适中, 注意掌握数形结合思想的应用.

27相似三角形的判定说课稿

相似三角形的判定说课稿 一、教材分析: 本节内容隶属于初中数学三大板块中空间与图形一部分,是相似一章的重点内容。既是全等三角形研究的继续,也为后面测量和研究三角函数做铺垫。因此必须熟练掌握三角形相似的判定,学会灵活运用相似三角形的判定.。是中考必考的知识点。 二、学情分析 学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。相似作为图形变换的一种,学生对它的学习应该是比较轻松的。另外学生在上两节也已了解了三角形相似的概念,掌握了相似三角形判定的预备定理,这为探究三角形相似的条件做好了知识上的准备,使学生能主动参与本节课的操作、探究。 .三、教学目标: 根据学生已有的认知基础和教材所处的地位和作用,我将本节课的教学目标定位为: 1、知识技能掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 2、情感态度通过画图、观察猜想、度量验证等活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。从思维上培养学生用类比的方法展开探索; 3、数学能力经历发现两个三角形相似的判定方法的过程;体验画图操作、观察猜想、分析归纳结论的乐趣;会运用“两个角对应相等的两个三角形相似”的方法进行简单推理。 四、教学重难点: 1.教学重点: 两个三角形相似的判定方法1及应用。 2.教学难点: 探究三角形相似的条件;运用三角形相似的判定解决问题。 五、说教法、学法: 〈一〉教法: 教学中不仅要教知识,更重要的是教给学生方法。多样的教法必带来多样的学法。一节课不能是单一的教法,因此,本节课我将采用以下方法进行教学: (1)类比教学法:类比全等三角形的判定方法——进行探究。 (2)转化教学法:推导相似三角形的判定时,把新问题转化为我们已经解决的问题,从而把问题从未知转化为已知,从复杂转化为简单。 (3)情景教学法:创设问题情境,激发学生兴趣,让学生带着好奇进入新课的学习。(4)启发性教学法:在教师的启发下,让学生成为课堂上真正的主人。 〈二〉学法: 本节课采用小组合作的学习方式,让学生遵循“观察——猜想——验证——归纳——运用——提高”的主线进行学习,充分调动学生的手口脑,引起兴趣,主动学习。 六、说教学过程

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

中考数学(相似提高练习题)压轴题训练附详细答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I. (1)求证:AF⊥BE; (2)求证:AD=3DI. 【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点, ∴AD=BD=CD,∠ACB=45°, ∵在△ADC中,AD=DC,DE⊥AC, ∴AE=CE, ∵△CDE沿直线BC翻折到△CDF, ∴△CDE≌△CDF, ∴CF=CE,∠DCF=∠ACB=45°, ∴CF=AE,∠ACF=∠DCF+∠ACB=90°, 在△ABE与△ACF中,, ∴△ABE≌△ACF(SAS), ∴∠ABE=∠FAC, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE (2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形, ∴EC∥DF,EC=DF, ∴∠EAH=∠HFD,AE=DF, 在△AEH与△FDH中, ∴△AEH≌△FDH(AAS), ∴EH=DH, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE, ∵M是IC的中点,E是AC的中点, ∴EM∥AI, ∴, ∴DI=IM, ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。 (2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.

(完整版)相似三角形说课稿

相似三角形说课稿 一、说教材 (一)、教材所处的地位和作用: 本节内容在全书及章节的地位是:《相似三角形》是义务教育课程标准实验教科书北师大版八年级下册第四章第5节内容。在此之前,学生已学习了线段的比,形状相同的图形及相似多边形 ,这为本节的学习起着铺垫作用。本节内容在本章中占有非常重要的地位,相似三角形的概念既是性质又是判定为本章的学习奠定了基础,在整个初中数学的学习中,也占据了十分重要的地位。本节课是为学习探索三角形相似的条件做准备的,因此学好本节课内容对今后的学习至关重要。 (二)、教学目标 1、知识目标:理解相似三角形的定义,并通过一些具体的情境和应用深化对相似三角形的理解和认识; 2、能力目标:通过渗透类比的思想方法,培养生探究新知识,提高分析问题和解决问题的能力,借助练习对相似三角形的定义进行应用; 3、情感目标:进一步体会数学内容之间的内在系,进一步认识特殊之间的辩证关系,提高学生学习数学的兴趣和自信心。 (三)教学重点和难点 根据本节课在本章及初中数学中的地位,新课标及大纲的要求,学生认知规律,心理特征把本节课的重难点定为: 教学重点:相似三角形定义的理解 教学难点:相似三角形定义的正确运用 (四)教材处理《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求根据从实物让学生经历探索相似三角形的概念的过程,让学生先学,总结

概念,同时关注学生学习兴趣及积极性,通过适当的交流合作,加深对概念的理解以突破重点,通过大量的练习应用让学生由对概念的理解变为运用,使学生共同进步。 二、说教法: 本节课,在教法上采用让学生先学,借助“读(看)—议—讲”结合法,完成概念的教学,通过让学生合作探讨或独立完成练习加深对概念的理解。再采用学生参与程度高的学导式讨论教学法,在学生看书、讨论,练习的基础上,在教师启发引导下,运用问题解决式教学法等方法解决概念的应用。为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识相似三角形的本质并应用它来解决问题。借助练习,通过合作探究,独立思考来完成本课的目标。 三、说教学过程: (一)创设问题情境,导入新课: (课前将学生以前后排4人为一小组,分成若干学习小组,安排学生准备好两幅大小不等的中国地图。) (课件演示:两幅大小不等的中国地图) 教师T:这两幅地图之间有何关系?(让学生从大小、形状上观察。) 学生:(同桌交流,某代表发言)这两幅地图大小不等,形状相同。 教师T:哪位同学能在这两幅地图上分别找到三个城市的位置(如:昆明、上海、西安)? 学生1:(上台用鼠标点出所选位置)顺次连接三个城市,得到两个三角形。 T:这两个三角形有何关系? S:(同桌交流)是相似三角形(也有学生回答不一定相似)。 T:今天我们来学习相似三角形(板书:相似三角形)。 (创设问题情景,从学生熟悉的两幅中国地图入手,激发了学生学习知识的积极性和好奇心。)

2017年中考数学相似三角形压轴题(20200706220513)

相似三角形中考压轴试题 、选择题 1. (2014 年江苏宿迁 3 分)如图,在直角梯形 ABCD 中,AD // BC , / ABC=90 °, AB=8 , AD=3 , BC=4 , 、填空题 1. (2015贺州)如图,在△ ABC 中,AB =AC =15,点D 是BC 边上的一动点(不与 B 、C 重合),/ ADE = / B = Za, DE 交 AB 于点 E ,且 tan Za = 3 ?有以下的结论:①△ ADEACD ;②当CD =9时,△ ACD 4 与厶DBE 全等;③厶BDE 为直角三角形时, 21 24 BD 为12或 :④0 v BE < ,其中正确的结论是 (填 4 5 入正确结论的序号) 三、解答题 1. (2014年福建三明14分)如图,在平面直角坐标系中, 抛物线y=ax 2+bx+4与x 轴的一个交点为 A ( 2 , 0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B . (1) 求抛物线的函数表达式; (2) 经过B , C 的直线I 平移后与抛物线交于点 M ,与x 轴交于点 N ,当以B , C , M , N 为顶点的四边形 是平行四边形时,求出点 M 的坐标; (3) 若点D 在x 轴上,在抛物线上是否存在点 P ,使得△ PBD ◎△ PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由. 点P 为AB 边上一动点,若△ PA ^ PBC 是相似三角形,则满足条件的点 P 的个数是【 A. 1个 B. 2个 D. 4个 C. 3个 C

2 2. (2014年湖北十堰12分)已知抛物线C i: y=a(x+1)—2的顶点为A,且经过点B (- 2 , - 1). (1 )求A点的坐标和抛物线C i的解析式; (2)如图1,将抛物线 6向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C , D两点,求S A OAC : S A OAD 的值; (3)如图2,若过P (-4 , 0), Q (0 , 2 )的直线为I,点E在(2)中抛物线C?对称轴右侧部分(含顶 点)运动,直线m过点C和点E.问:是否存在直线m,使直线I, m与x轴围成的三角形和直线I, m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 3. (2014 年湖南郴州10 分)如图,在Rt △ ABC中,/ BAC=90。,/ B=60 °C=16cm , AD 是斜边 BC上的高,垂足为D, BE=1cm .点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH .点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t (s). (1 )当t为何值时,点G刚好落在线段AD 上? (2)设 正方形MNGH与Rt △ ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD等腰

《相似三角形的性质》说课稿

《相似三角形的性质》说课稿 《相似三角形的性质》说课稿范文 各位领导老师大家好:今天我说课的课题是华师版初中三年级数学“相似三角形的性质”。 一、教材分析。 教材的地位及作用:对于相似三角形的研究,实际上是对平面几何中两个封闭图形关系研究的进一步,相似三角形的性质”是初中数学“相似形”中的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,这些性质是解决有关实际问题的重要依据,因此必须熟练掌握三角形相似的性质,学会灵活运用相似三角形的性质,在学习数学中起着承上启下的作用。 二、学生的认知起点分析: 学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的这为探究三角形相似的性质,做好了知识上的准备。另外,学生也具备了识别三角形全等的知识,通过类比,使学生能主动参与本节课的操作、探究。 三、教学目标: 根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为: (1)知识目标:使学生掌握相似三角形的性质定理及其证明方

法,能运用相似三角形性质定理解决问题。 (2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践能力。 (3)德育目标:通过全等三角形和相似三角形的类比学习,树立学生从特殊到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。 四、教学重、难点: 因为相似三角形的性质是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,根据教学目标我设置了本节的 1、重点:相似三角形的性质及其应用。 2、难点:相似三角形性质的探索过程。 五、教学方法与教学手段的选择。 为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使课堂教学生动、有趣、高效,本节课我将采用自主探索、启发引导、。合作交流、反馈测试展开教学,并采用计算机辅助课堂教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维,这样一方面可以激发学生学习的兴趣,提高学生学习的效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学习体会。 六、学法指导。 在学法指导上,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决

相似三角形判定说课稿

相似三角形的判定说课稿 各位评委大家好,我是xxx,我说课的题目是:华东师大版初中数学九年级上册第二课时的内容:《相似三角形的判定1》 下面我将从教材分析,学情分析,教法与学法分析,以及教学过程四个方面来谈一下我对本节课的理解。 (一).教材分析: 本节课的地位和作用: 在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见一相似三角形的判定占据着重要的地位。 依据现代教学理念,综合教材内容,本节课,我制定如下教学目标:知识与技能目标: 能够熟练地找出相似三角形的对应角和对应边,会用相似条件“两个角分别相等的两个三角形相似”证明两个三角形相似; 强化数形结合重要思想,及观察、比较、抽象、归纳、概括等数学思维方法。 过程与方法目标:

通过引导学生探究判定定理的证明过程,培养学生抽象概括能力,语言表达能力,独立获取数学知识能力; 通过引导学生对一些简单图形的证明,培养学生推理论证能力。 情感、态度和价值观目标: 在探索活动中,增强学生发现问题,解决问题的意识和养成合作交流的习惯。 通过我对教材的认真分析,我认为本节课的教学重点及教学难点分别为: 教学重点:相似三角形的概念及相似三角形的判定定理1 教学难点:相似三角形的判定的应用 (二).学情分析: 我教的是初三年级的学生,他们的思维已处于理论型逻辑思维阶段,具备一定的抽象思维能力和演绎推理能力,他们的思维极为活跃,他们乐于探索、勇于探究。这为我选择有效的教学方法提供了依据和保证。 (三).教法与学法分析: 数学教学是数学活动的教学,是师生之间,学生之间交往互动,共同发展的过程。本着这一原则,再结合初三年级的思维特点和心理特征,为了更好的实现事先确定的教学目标,本节课我采用情境----问题教学法。具体做法是:设置情境----教师提出问题----师生共同解决问题----数学应用。 运用这种教学方法可以大大激发学生的求知欲,调动学生的学习积极

九年级相似三角形压轴题

初三相似三角形压轴题 一.选择题(共1小题) 1.(2013?江干区一模)如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离都相等,如果直角梯形ABCD的三个顶点A、B、D分别在平行直线l1、l5、l2上,∠ABC=90°且AB=3AD,则tanα=() A.B.C.D. 二.填空题(共3小题) 2.(2013?宁波模拟)如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x 轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E, F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x 的函数关系式为. 3.(2012?南岗区一模)在平行四边形ABCD中,对角线AC、BD相交于点0,点E在边AD上,且AE:DE=1:3,连接BE,BE与AC相交于点M,若AC=6,则M0的长是. 4.(2004?深圳)在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BC,垂 足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,则的值是.

三.解答题(共12小题) 5.(2012?重庆模拟)如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG. (1)试求△ABC的面积; (2)当边FG与BC重合时,求正方形DEFG的边长; (3)设AD=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,并写出定义域; (4)当△BDG是等腰三角形时,请直接写出AD的长. 6.(2012?亭湖区一模)如图,在△ABC中,∠ACB=90°,AC=BC=2,M是边AC的中点,CH⊥BM于H. (1)试求sin∠MCH的值; (2)求证:∠ABM=∠CAH; (3)若D是边AB上的点,且使△AHD为等腰三角形,请直接写出AD的长为. 7.(2011?莆田)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F. (1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心; (2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P. ①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

中考数学压轴题常见辅助线

一、添辅助线有二种情况: 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

相似三角形说课稿

相似三角形说课稿 各位评委,各位老师: 大家好,我是赵勇连。今天我讲的内容是义务教育课程标准实验教科书北师大版八年级下册第四章第5节《相似三角形》。我将从五个方面进行我的说课。 一、教材分析 (一)、教材所处的地位和作用: 《相似三角形》是义务教育课程标准实验教科书北师大版八年级下册第四章第5节内容。在此之前,学生已学习了线段的比,形状相同的图形及相似多边形基础上,这为过渡到本节的学习起着铺垫作用。本节内容在本章中占有非常重要的地位,相似三角形的概念既是性质又是判定为本章的学习奠定了基础,在整个初中数学的学习中,也占据了十分重要的地位。本节课是为学习探索三角形相似的条件做准备的,因此学好本节课内容对今后的学习至关重要。 (二)、教学重点和难点 教学重点:相似三角形定义的理解,判定定理的预备定理。 教学难点:相似三角形定义的正确运用,及其相似三角形的对应关系 (三)教材处理 通过多媒体教学,演示相似三角形演变的过程,获得感性认识,从而上升为理性认识,最后掌握技能。 二、教学目标 1、认知目标:(了解)证明预备定理的一致性问题的思维方法(理解)相似三角形相似比的概念(掌握)预备定理,灵活运用它解决有关问题 2、能力目标:通养学生观察分析,探索概括、表达、论证的数学能力和创新意识,以及分类讨论的数学思想。 3、情感目标:通过观察,了解教学与实际生活的紧密联系,体会教学的科学意义和文化内涵,欣赏教学的美学价值,熟悉学好数学的信心 三、教学过程: 为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识

相似三角形选择压轴题精选

2014年1月发哥的初中数学组卷.选择题(共30小题) 1. (2013?南通)如图.Rt△ ABC内接于O O BC为直径,AB=4, AC=3 D是忑的中点,CD与AB的交点为E,贝偿等 DE 2. (2013?黑龙江)如图,在直角梯形ABCD中, AD// BC / BCD=90,/ ABC=45 , AD=CD CE平分/ ACB交AB于点E,在BC上截取BF=AE连接AF交CE于点G 连接DG交AC于点H,过点A作AN L BC垂足为N, AN交CE于点 M则下列结论;①CM=AF②CELAF;3A ABF^A DAH④GD 平分/ AGC其中正确的个数是() J k\ C X F A. 1 B. 2 C. 3 D. 4 3. (2013?海南)直线I1//I2//I,且l 1与l 2的距离为1, 12与l 3的距离为3,把一块含有45°角的直角三角形如图 4. (2013?德阳)如图,在OO 上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q, 已知:OO半径为-,tan / ABC』,则CQ的最大值是() 2 4 B. C. 3 D. AC与直线丨2交于点D,则线段BD的长度为() C.- D.- rr4 于() A. 4

OD=AD=3寸,这两个二次函数的最大值之和等于( ) 5. (2012?宁德)如图,在矩形 ABCD 中, AB=2 BC=3 点 E 、F 、G H 分别在矩形 ABCD 的各边上,EF// AC// HQ EH// BD// FQ A . (1) ( 2) (3) B. ( 1) (3) C. (1) (2) D. (2) (3) A (4, 0), O 为坐标原点,P 是线段OA 上任意一点(不含端点 O, A ),过P 、O 两点 的二次函数y 1和过P 、A 两点的二次函数 y 的图象开口均向下,它们的顶点分别为 BC,射线OB 与 AC 相交于点D.当B.丄 D. 20 T C. 2 ii D. 2. | ; 6. (2012?泸州)如图,矩形 ABCD 中, E 是BC 的中点,连接 AE ,过点E 作EF 丄AE 交DC 于点F ,连接AF.设一^ =k , F 列结论:(ABE^A ECF (2) AE 平分/ BAF ( 3)当 k=1时,△ ABE^A ADF 其中结论正确的是( 7. (2012?湖州)如图,已知点 A . 5 A. . I

人教版九年级数学下册 相似三角形的判定教案

《相似三角形的判定》教案 课标要求 1.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例; 2.了解相似三角形的判定定理:两角分别相等的两个三角形相似、两边成比例且夹角相等的两个三角形相似、三边成比例的两个三角形相似; 3.了解相似三角形判定定理的证明. 教学目标 知识与技能: 1.了解相似三角形及相似比的概念; 2.掌握平行线分线段成比例的基本事实及推论; 3.掌握相似三角形判定方法:平行线法、三边法、两边夹一角法、两角法; 4.进一步熟悉运用相似三角形的判定方法解决相关问题. 过程与方法: 类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法. 情感、态度与价值观: 发展学生的探究能力,渗透类比思想,体会特殊与一般的关系. 教学重点 掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似. 教学难点 探究三角形相似的条件,并运用相似三角形的判定定理解决问题. 教学流程 一、知识迁移 类比相似多边形的相关知识回答下面的问题: 1.对应角相等,对应边成比例的两个三角形,叫做相似三角形. 2.相似三角形的对应角相等,对应边成比例. 师介绍:“相似”用符号“∽”来表示,读作“相似于”,2题可以用符号表示为 ∵△ABC∽△DEF,

∴A=∠D,∠B=∠E,∠C=∠F;AB AC BC DE DF EF ==. 如何判断两个三角形相似呢?反过来 ∵A=∠D,∠B=∠E,∠C=∠F;AB AC BC DE DF k EF === ∴△ABC∽△DEF. 师介绍:△ABC与△DEF的相似比为k,△DEF与△ABC的相似比为1 k . 追问:当k=1,这两个三角形有怎样的关系? 引出课题:如何判断两个三角形相似呢?有没有更简单的方法?回顾学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢? 二、探究归纳 (一)平行线分线段成比例 探究1:如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB ,BC和在l2上截得的两条线段DE,EF的长度, AB BC 与 DE EF 相等吗?任意平移l5. AB BC 与 DE EF 还相等吗? 当l3//l4//l5时, 有 AB DE BC EF =, BC EF AB DE =, AB DE AC DF =, BC EF AC DF =等. 基本事实:两条直线被一组平行线所截,所得的对应线段成比例.迁移:将基本事实应用到三角形中, 当DE//BC时,有

中考压轴题之相似(含非常详细的解答)

因动点产生的相似三角形 例1:如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ. (1)若△BPQ与△ABC相似,求t的值; (2)如图2,连接AQ、CP,若AQ⊥CP,求t的值; (3)试证明:PQ的中点在△ABC的一条中位线上. 图1 图2 思路点拨 1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ. 3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然. 满分解答 (1)Rt△ABC中,AC=6,BC=8,所以AB=10. △BPQ与△ABC相似,存在两种情况: ①如果BP BA BQ BC =,那么 510 848 t t = - .解得t=1. ②如果BP BC BQ BA =,那么 58 8410 t t = - .解得 32 41 t=. 图3 图4 (2)作PD⊥BC,垂足为D. 在Rt△BPD中,BP=5t,cos B=4 5 ,所以BD=BP cos B=4t,PD=3t. 当AQ⊥CP时,△ACQ∽△CDP. 所以AC CD QC PD =,即 684 43 t t t - =.解得 7 8 t=.

图5 图6 (3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是BC 的中点,E 是AB 的中点. 所以PQ 的中点H 在△ABC 的中位线EF 上. 例2:如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. 图1 思路点拨 1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答 (1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-. 因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得3 3 a = .

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案 一、相似 1.如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s 的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出 发,用t(s)表示移动时间(0≤t≤9),求: (1)当t为何值时,∠ANM=45°? (2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论; (3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似? 【答案】(1)解:对于任何时刻t,AM=2t,DN=t,NA=9-t,当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t, 解得:t=3(s), 所以,当t=3s时,△MAN为等腰直角三角形 (2)解:在△NAC中,NA=9-t,NA边上的高DC=12,∴S△NAC= NA?DC= (9-t)?18=81-9t. 在△AMC中,AM=2t,BC=9, ∴S△AMC= AM?BC= ?2t?9=9t. ∴S四边形NAMC=S△NAC+S△AMC=81(cm2). 由计算结果发现: 在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变) (3)解:根据题意,可分为两种情况来研究,在矩形ABCD中:①当NA:AB=AM:BC 时,△NAP∽△ABC,那么有: ( 9-t):18=2t:9,解得t=1.8(s), 即当t=1.8s时,△NAP∽△ABC; ②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有: ( 9-t):9=2t:18,解得t=4.5(s), 即当t=4.5s时,△MAN∽△ABC; 所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似

相似三角形的说课稿

相似三角形的说课稿 相似三角形的说课稿范文 各位领导老师,大家好,今天我说课的课题是华师版初中三年级数学“相似三角形的性质”。 一、教材分析。 教材的地位及作用:对于相似三角形的研究,实际上是对平面几何中两个封闭图形关系研究的进一步,相似三角形的性质”是初中数学“相似形”中的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,这些性质是解决有关实际问题的重要依据,因此必须熟练掌握三角形相似的性质,学会灵活运用相似三角形的性质,在学习数学中起着承上启下的作用。 二、学生的认知起点分析: 学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的这为探究三角形相似的性质,做好了知识上的准备。另外,学生也具备了识别三角形全等的知识,通过类比,使学生能主动参与本节课的操作、探究。 三、教学目标: 根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为: (1)知识目标:使学生掌握相似三角形的性质定理及其证明方

法,能运用相似三角形性质定理解决问题。 (2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践能力。 (3)德育目标:通过全等三角形和相似三角形的类比学习,树立学生从特殊到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。 四、教学重、难点: 因为相似三角形的性质是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,根据教学目标我设置了本节的重难点: 1、重点:相似三角形的性质及其应用。 2、难点:相似三角形性质的探索过程。 五、教学方法与教学手段的选择。 为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使课堂教学生动、有趣、高效,本节课我将采用自主探索、启发引导、。合作交流、反馈测试展开教学,并采用计算机辅助课堂教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维,这样一方面可以激发学生学习的兴趣,提高学生学习的效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学习体会。 六、学法指导。 在学法指导上,充分引导学生积极思维,鼓励学生进行合作学习,

《相似三角形的判定》 (第1课时)说课稿

《相似三角形的判定》 (第1课时)说课稿 尊敬的各位专家、评委:大家好 今天我说课的题目是《相似三角形的判定定理1》,下面我将从教材分析,学情分析,教学目标,教学重难点,教学过程六个方面加以说课。 一、教材分析 本节课是华东师大版九年级数学上册第二十三章第三节《相似三角形的判定》第1课时,在这之前,学生学习了全等三角形的相关知识,它是全等三角形的拓广和发展,进一步对相似三角形的本质和定义的全面研究,也是以后学习相似三角形性质、圆中比例线段和三角函教的重要工具,可见相似三角形的判定占据很重要的地位,具有承上启下的作用。 二、学情分析 九年级的学生,他们的思维已处于理论型逻辑思维阶段,具备一定的抽象思维能力和演绎推理能力,他们的思维比较活跃,能乐于探索,勇于探究。另外学生在上两节课学习了三角形相似的概念,掌握了相似三角形判定的预备定理,已有一定的知识基础,为探究三角形相似的条件做好了知识上的准备,学生能主动参与本节课的操作、探究。 三、教学目标 根据学生已有的认知,教材所处的地位和学情分析,我将本节课的教学目标定位为: 知识与技能目示:理解并掌握“两个角对应相等的两个三角形相似”的判定方法,能运用其方法进行简单推理。 过程与方法目标:通过引导学生探究相似三角形判定定理的证明过程,

培养学生抽象概括能力,语言表达能力和逻辑思维能力。 情感态度和价值观目标:通过画图、观察猜想、度量验证等活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,培养学生合作意识。 四、教学重难点 教学重点:两个三角形相似的判定方法1及应用。 教学难点:相似三角形判定定理1的证明过程 五、说教法、学法 <一>教法:学生是学习的主体,教师是学习的组织者,引导者,合作者,给予这一新课标理念,以及以上四部分内容,我在课堂中将会使用一下教法:情境教学法,探究教学法,启发式教学法,充分调动学生的积极性。 <二> 学法:这节课我将引导学生使用动手实践,自主探究,合作交流,分组讨论的学习方式,让学生遵循“观察、猜想、验证、归纳、应用、提高”的主线进行学习,充分调动学生的手、口、脑,使学生积极参与教学过程,自主获取数学知识。 接下来我将展示说课中最重要的环节。 六、说教学过程 为了有序有效的进行教学,我设计了以下几个环节: (一)创设情境,引入新课 让学生观察自己与老师拿的含有30°、60°的三角尺,思考它们相似吗?

2017年中考数学相似三角形压轴题

相似三角形中考压轴试题 一、选择题 1.(2014年江苏宿迁3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=8,AD=3,BC=4, 点P 为AB 边上一动点,若△P 与A △DPBC 是相似三角形,则满足条件的点P 的个数是【】 A.1个 B.2个 C.3个 D.4个 二、填空题 1.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE= ∠B=∠α,DE 交AB 于点E ,且tan ∠α= 3 4 .有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或 21 4 ;④0<BE ≤ 24 5 ,其中正确的结论是(填 入正确结论的序号). 三、解答题 1.(2014年福建三明14分)如图,在平面直角坐标系中,抛物线y=ax 2 +bx+4与x 轴的一个交点为A (﹣ 2,0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B . (1)求抛物线的函数表达式; (2)经过B ,C 的直线l 平移后与抛物线交于点M ,与x 轴交于点N ,当以B ,C ,M ,N 为顶点的四边形 是平行四边形时,求出点M 的坐标; (3)若点D 在x 轴上,在抛物线上是否存在点P ,使得△PBD ≌△PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由.

2.(2014年湖北十堰12分)已知抛物线C1: 2 yax12的顶点为A,且经过点B(﹣2,﹣1). (1)求A点的坐标和抛物线C1的解析式; (2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点, 求S△OAC:S△OAD的值; (3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与 y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 3.(2014年湖南郴州10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°BC,=16cm,AD是斜边 BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发, 与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止 运动,点N到达点C时停止运动.设运动时间为t(s). (1)当t为何值时,点G刚好落在线段AD上? (2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关 于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CP是D等腰 三角形?

2017年挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2.1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3.1 代数计算及通过代数计算进行说理问题 §3.2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 §4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两 边表示出来,按照对应边成比例,分AB DE AC DF =和 AB DF AC DE =两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢? 我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减. 图1 图1 图2 例 1 湖南省衡阳市中考第28题 二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示); (2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值; (3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?

相关主题