搜档网
当前位置:搜档网 › 主风机防喘振控制系统研究

主风机防喘振控制系统研究

主风机防喘振控制系统研究
主风机防喘振控制系统研究

主风机防喘振控制系统研究

1.喘振的概述

1.1喘振概念

每一台压缩机都有自己的喘振区。

正常情况下压缩机出口排出压缩气体供至系统管网,但当压缩机入口流量小于此工况下喘振点的入口流量时(即压缩机工作在喘振区域内)将会在压缩机叶片上产生气体脱离,使出口流量很不稳定,机子便会发生喘振,若喘振不及时扼制的话,还很容易产生逆流现象(一般喘振是逆流的前奏),这时对主风机的破坏将会十分严重。

1.2喘振的危害

(1)喘振对主风机的轴封损坏较大,由于密封的损坏,使润滑油窜入流道,影响冷却器的效率。严重的喘振很容易造成转子轴向窜动,烧坏止推轴瓦,叶轮有可能被打碎。严重时可使风机遭到破坏,此外,还会损坏齿轮箱、电动机以及连接压缩机的管线和设备。

(2)喘振给生产操作带来很大的混乱,如处理不当,会造成各种严重的恶性事故,如催化剂倒流等。

(3)对于大型轴流式风机来说,喘振的危害性更大。

1.3压缩机喘振的预防

压缩机防喘振的措施很多,但催化裂化装置中最简便的防喘方法是主风机出口放空。变速运行的离心式主风机和大型轴流式主风机采用随动(自动)防喘振流量控制系统,因为它们的特性曲线较复杂,且工作中存在一定的客观因素(例如:操作工因出去挂牌或未注意操作等情况下,喘振发生时再等人来给定,就已经迟了)所以不能人为给定,必须根据主风机的不同工况(压缩比、出口压力、转速)沿防喘振线自动改变防喘振流量调节器的给定值,在压缩机还未达到喘振点以前,提前打开出口放空阀,达到及时防止机组出现喘振的目的,防喘振线一般设置在喘振线以下,留有5%~10%防喘振余量。变速运行的离心式主风机和恒速运行的可调静叶轴流式主风机的防喘振线是一条近似的直线。变速运行的可调静叶轴流式主风机的防喘振线是一个面,处理比较复杂。但在一般转速不大的情况下,仍可简化为一条直线或折线。

2.轴流式压缩机的概述

2.1轴流式压缩机的定义

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

防喘振控制原理及方法

4.2 离心压缩机防喘振控制 4.2.1 离心压缩机的喘振 1.离心压缩机喘振现象及原因 离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。此时可看到气体出口压力表、流量表的指示大幅波动。随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。如不及时 采取措施,将使压缩机遭到严重破坏。例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。 下面以图 4.2-1 所示为离心压缩机的特性曲线 来说明喘振现象的原因。离心压缩机的特性曲线显 示压缩机压缩比与进口容积流量间的关系。当转速 n 一定时,曲线上点c 有最大压缩比,对应流量设 为P Q ,该点称为喘振点。如果工作点为B 点,要 求压缩机流量继续下降,则压缩机吸入流量 P Q Q < ,工作点从C 点突跳到D 点,压缩机出口 压力C P 从突然下降到D P ,而出口管网压力仍为 C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到 D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重 复上述过程,出现工作点从B A D C B →→→→的反复循环, 由于这种循环过程极迅速,因此也称为“飞动”。由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。 2.喘振线方程 喘振是离心压缩机的固有特性。离心压缩机的喘振点与被压缩机介质的特性、转速等有关。将不同转速下的喘振点连接,组成该压缩机的喘振线。实际应用时,需要考虑安全余量。 喘振线方程可近似用抛物线方程描述为: θ 2 121Q b a p p += (4.2-1) 式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流 量和温度;b a 、是压缩机系数,由压缩机厂商提供。喘振线可用图4.2-2 表示。当一台离心压缩机用于压缩不同介质 气体时,压缩机系数会不同。管网容量大时,喘振频率低,喘 振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅 小。 图4.2-2 离心压缩机的喘振线

防喘振

1. 压缩机的防喘振控制方案 以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。TS3000 系统的成功应用, 就较好地解决了此问题。 2. 喘振线作图的基本方法 压缩机防喘振控制系统的基本原理,如图2 所示。 图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332); SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。 其关系式如下: h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa 3. 工艺控制方案 (1)压缩机防喘振调节画面组成

(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。 (b)动态数据,将实际工作点数据在ESD 画面相应处显示。 (c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。 (2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下, 可设定手动调节或强制调节。 (3)报警 利用声光报警及画面报警提示。 (4)控制要点 (a)开压缩机前,应先将防喘振阀强制打开至100%。 (b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机 转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。 (c)当压缩机进入喘振区,ESD 声光报警时,应立即打开防喘振阀,并相应降低装置生产 负荷,消除喘振,使压缩机回到正常工作区运转,避免压缩机损坏或故障。 (5)机组喘振线及防喘振线示意图 见图3。

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

防喘振阀简介

FISHER防喘振阀简介防喘振阀技术的关键在于其可靠性和最佳性能。 其重要特点: 一、保护压缩机 1、阀门必须快开与完全可靠; 2、阀门流量充分以防止起浪点; 3、避免噪音和振动所产生的压缩机和管道损害。 二、起动和停车时的敏感控制 1、阀门应随阶跃响应而活动,超调应限制在最小; 2、阀门备有正反馈位置; 3、阀门仪表附件调整简单。 典型气路图如下:

概述:整个气路的功能在正常情况下实现精确的阀位控制,快开慢关;在紧急情况(失气、失电)下快速打开阀门以保护压缩机。 正常情况(即调节控制)下,两个电磁阀带电,对三通电磁阀,3和2通;两通电磁阀,1和2断开。这时经过过滤减压后的空气分成三路,一路经单向阀到四通,然后到2625、储气罐、377的F口;一路经三通电磁阀后,到377的SUP口,来自SUP口的气体压缩377内部弹簧,这样在377内部气路中,A口和B口通,D口和E口通;另一路到DVC6020的SUP口,作为DVC的气源。当控制信号(控制系统DCS/PLC输出到DVC6020的4-20MA 信号)增大时,定位器A口输出增大,B口输出减小;增大的A口气压经377A-B口、快排阀后作用在汽缸(1061执行机构)上腔;B口的气压经377D-E口作为气路放大器2625的输入信号,控制2625输出到汽缸(1061执行机构)下腔的压力;这时,汽缸活塞上部的压力》下部的压力+管道

风压作用在碟板上的力+机构摩擦力,活塞往下运动,由铭牌上ACTION:PDTC(PUSH DOWN TO CLOSE,意思就是活塞往下运动时,阀门关闭)可知,阀门开口度减小。反之,控制信号减小,定位器A口输出减小,B口增大,这时由于有快排阀和气路放大器2625的作用,活塞快速往上运动,阀门实现快开。 当电磁阀失电,对三通电磁阀,1和2通,两通电磁阀1和2通; 这时,377SUP口的压力经三通电磁阀1口卸掉,377在其内部弹簧的作 用下,气路发生转换,B口和C口通,E口和F口通;储气罐的气加上 气源的气经377F-E口后作为气路放大器2625的控制信号,由于这时储 气罐的气压很高(等于减压阀出口压力),使2625主阀口开得很大,储 气罐里的气和气源的气以最大流量经2625进入汽缸下腔,汽缸上腔的 气经快排阀、两通电磁阀快速排向大气,阀门快速打开。 当失气时,由于有单向阀的存在,使得储气罐的压缩空气不致倒流。 整个原理同失电一样,只是使阀门快速打开的只有储气罐里的压缩空气。 储气罐里的压缩空气除了在气源失气时使阀门快速打开外,正常情 况下起稳定气路压力的作用。 各个主要附件的功能简介: 一、过滤器262K 主要功能:除去气源中污垢、水垢和一些固体杂质。

火电厂风机喘振及失速分析

火电厂风机失速及喘振分析 【摘要】风机是电厂锅炉的主要辅助设备之一,是火力发电厂不可缺少的一部分,其所消耗的电量约占电厂总发电量的2~3%。随着用电量的不断增长和能源问题的出现,电厂风机运行的安全性越来越为人们所重视,其运行状况的好坏直接危及到整个机组的安全运行,严重影响火力发电厂的经济效益。本文重点针对电厂风机的喘振失速问题进行机理分析,并提出了运行处理及防范措施。 【关键词】风机失速喘振不稳定工作区运行处理预防 1.风机简述 1.1离心式风机和轴流式风机比较 风机主要有离心式和轴流式两种。离心式风机具有结构简单、运行可靠、效率较高、制造成本较低、噪音小等优点。但离心风机的容量受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大;而轴流式风机具有容量大,且结构紧凑、体积小、重量轻、耗电低、低负荷时效率高等优点,但轴流风机结构复杂,制造精度要求高。 鉴于轴流式风机的优点,大容量机组均选用轴流式风机。 1.2轴流式风机的运行调节 轴流式风机的运行调节有四种方式:动叶调节、节流调节、变速调节和入口静叶调节。动叶调节是通过改变风机叶片的角度,使风机的曲线发生改变,来实现改变风机的运行工作点和调节风量。这种调节经济性和安全性较好,每一个叶片角度对应一条曲线,且叶片角度的变化几乎和风量成线性关系。 节流调节的经济性很差,所以轴流式风机不采用这种调节方式。 变速调节是最经济的调节方式,但需要配置电机变频装置或液力偶和器。 进口静叶调节时系统阻力不变,风量随风机特性曲线的改变而改变,风机的工作点易进入不稳定工况区域。 2.风机失速与喘振机理 2.1失速机理 轴流式风机其工作原理是基于叶翼型理论(如图a):当气流以某一冲角α进入叶轮时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小;因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼背上产生一个升力,同时在翼腹上产生一个大小相等方向相反的作用力,使气体排出叶轮呈螺旋形沿轴向向前运动。与此同时,风机进口处由于压差的作用,使气体不断地被吸入。 a、风机正常工况时的气体流动状况 b、风机脱流工况时的气体流动状况 动叶可调轴流风机,冲角α越大,翼背的周界越大,则升力越大,风机的压差越大,风量越小。当叶片冲角α达到临界值时,气流会在叶背尾端产生涡流区,即所谓的脱流工况(失

预旋技术防喘振原理

预旋技术防喘振原理 旋转进口导流叶片和静叶片的防喘机理:通过旋转进口导流叶片,使其出气角改变,控制导流叶片出气角的大小和方向可以使流入第一级动叶的气流攻角处于正常位置,调节旋转前面级的静叶片出气角可以使这些静叶片后的动叶处于满意的工况下工作,因而可以避免喘振,并使压气机偏 离设计工况下仍能保持正常工作。 从速度三角形分析,用旋转静叶片防止喘振的方法,就是在非设计工况时改变压气机速度三 角形上的预旋(改变C1u)来改变冲角i,使气流速度W1的方向,保持在设计值附近,部分地消除喘振。在图2中给出了如果进口导流叶片不能转动,当工作轮转速不变,气流轴向速度C1a发生变化(即来流流量发生变化)时叶型上气流的冲角所发生的改变。从图中可以看出在流量大于或小于设计流量时,转子叶片的来流攻角将小于或等于0,此时叶片压、吸力面就会发生不同程度的分离, 严重时可能导致压气机喘振。 图3表示借助于适当的转动导流叶片安装角可以使气流流入工作轮叶片通道内的相对速度方向在流量变化时保持不变,这就保证了转子叶片在非设计工况下都可以工作在设计状态附近,从而消除了喘振[4]。 可调进口导流叶片和静叶叶片,作为多级轴流压气机的防喘措施之一,其优点突出,不仅达到防喘措施,而其非设计工况下效率高,同时还可以改善燃机的加速性,又适用于高增压比压气机,所以这种防喘调节机构广泛地应于80年代新发展的压气机设计中,同时在大型风机中也得到很好的应用,如陕西鼓风机厂在这种理论指导下已成功研制出全静叶可调的大型鼓风机。 鉴于该方法广泛的工程应用前景,国内外许多学者、专家都在这方面开展了大量的探索研究,并取得许多卓有成效的理论和试验成果。我国张健等[4]应用试验的方法,在设计转速下,通过试验调节一台三级轴流压气机各级组合,找到了压气机的一组最佳角度匹配。试验结果分析表明,静叶角度的改变对压气机性能有着极为明显的影响,采用最佳角度匹配,最高绝热效率提高了7.4个百分点,稳定工作裕度也有显著的增加。对于如何改善低速状态下的压气机性能,夏联等[5]进行了一台七级轴流高压压气机的静叶调节试验研究。试验结果分析表明:在低速状态下,通过静叶角度优化调节能有效地改善压气机性能,拓宽稳定工作范围;并且,压气机低速性能受静叶可调角度的配比影响很大。静叶角度调节技术与其他技术相结合,能更有效地改善压气机性能。楚武利等[6]通过试验研究了带导叶的单级轴流压气机在进口导叶无预旋、全叶高预旋2度和叶顶端部预旋2度时,压气机总性能、基元性能及失速边界的变化情况。对比分析了三种导叶在不同转速下的性能曲线,结果表明导叶预旋对压气机在非设计转速下有很好的扩稳效果;进一步研究发现:利用端弯技术可以推迟轴流压气机不稳定流动的发生,扩大压气机稳定工作范围。另外西北工业大学的范非达等也在这方面开展了大量工作并取得良好的效果[7~8]。 但这种防喘措施结构比较复杂,特别是对多级静叶调节实现起来更加困难。此外从气动方面来看,这种方法只能着重改善气流沿叶高某一半径上的流动情况,对整个叶片的三维流动不能很好的兼顾,例如照顾了平均半径就不能很好地照顾叶尖和叶根。

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法 李保川 光大水务(德州)有限公司 摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。 关键词:污水处理厂;离心式鼓风机;喘振; 光大水务(德州)有限公司南运河污水处理厂处理规模15万m3/d,一期工程处理规模为7.5万m3/d,二期工程处理规模为7.5万m3/d,采用的污水处理工艺为A/A/O工艺。生物池为一座两池,设计流量:Q=0.868m3/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。配套驱动电机为西门子电机(中国)有限公司贝德牌电机。 多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m3/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害 “喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。轴承液体润滑条件会遭到破坏,轴瓦会烧坏,转子与定子会产生摩擦、碰撞,密封元件也将严重破坏,更甚至会发生轴扭断。同时,对A/A/O池中的DO量影响严重,关系到出水达标问题。 2.鼓风机产生喘振的原因 压力/Mpa Q/(m3/h) 图1 转速恒定状态下进口空气流量与出口压力的特性曲线图离心鼓风机在转速恒定的状态下,其进口空气流量Q与出口的压力的特性如图1所示。A点与B点是鼓风机正常稳定运行状态的两个临界点,也就是说只有在A点与B点这个稳定区间内鼓风机才是正常运行状态。当鼓风机的输出流量超过B点时则为不稳定区域,处于不

高炉轴流风机防喘振控制系统优化及实验

高炉轴流风机防喘振控制系统优化及实验 摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。 【关键词】轴流风机防喘振优化实施 一、前言 高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。 二、存在的问题 萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面: 1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。 2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。 3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。 三、防喘振控制优化方案 1.防喘振控制优化的先决条件 为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。4#高炉鼓风机采用西门子S7-400H PLC,配备冗余414CPU可很好地实现各项控制任务。 为了实现防喘振控制的优化,必须借助于性能优良的防喘振阀。防喘振阀具有可靠的快开性能,当一旦压力过高,可释放由于喘振引起的压力波动;防喘振阀应具有良好的调节性能,当运行点接近防喘振线时,能充分调节流量以防止起浪点;防喘阀应具备灵敏的阶跃响应,超调应限制在最小,可满足风机在启动和停车时的压力、流量变化。4#高炉鼓风机采用的fisher防喘阀可以较好地满足上述要求。 2. 工况点沿防喘线精确控制 (1)防喘振的基本控制方法以喉部差压为横坐标、以出口压力为纵坐标,建立了运行工况画面,画面包含喘振线(红线)、喘振报警线(黄线)和防喘振控制线(蓝线),黄线和蓝线分别设在红线下方97%和93.5%处,以实际运行工况下的喉部差压和出口压力坐标建立运行工况点,如下图所示。根据当前喉部差压(补偿后),在防喘线上查询对应的出口压力,作为防喘振控制的给定值SP,以当前风机出口压力作为防喘振控制的测量值PV,二者之偏差西门子STEP7的PID模块FB41进行控制运算,当工况点接近或越过蓝线时,PLC控制防喘阀打开一定角度,来减小压缩机出口的阻力,使工况点回到稳定工作区,以避免轴流风机喘振现象的发生。 在工况点接近喘振线时,要求轴流风机的防喘阀必须动作迅速,但防喘阀动作速度太快、动作幅度过大,势必会使风机出口压力、流量产生大幅度波动,影响高炉炉况的稳定。由于防喘振控制是以风机吸入气体流量和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作及工艺过程都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用的常规的PID运算,虽然可以在工况点跃过防喘线时迅速地打开放空阀,但无法使工况点在响应线附近被稳定控制,难以实现精确控制。

喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。 失速是风机本身特性引起的 喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾 抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。 我的理解 轴流风机的喘振与失速是不同的情况可以简单概括如下: 喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时; 失速一般发生在动叶可调轴流风机的高负荷区。主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰 抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。 喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。 避免喘振主要采用合适的调节方式 抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反 避免抢风主要有: 1。不采用不稳定性能风机 2.同时在低负荷运行时可以单台运行 3.采取动叶调节 4.开启旁路风

一、风机失速 图1:风机失速 轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。当风机流量减小时,w的方向角改变,气流冲角增大。当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。 由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。这种现象称为旋转失速。 与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量 二、风机喘振: 图1:风机喘振 图2:风机喘振报警线

风机喘振分析和防止风机喘振保护原理

轴流式吸风机喘振分析 轴流式吸风机在大型发电厂中应用比较普遍。轴流式风机在运行中调节不当会出现喘振现象。因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。 主题词:轴流吸风机喘振现象处理 轴流式吸风机由于其本身的特性决定了它在运行中存在着发生 喘振的可能性,这一点从理论和实践中都可以得到证明。 大唐盘山电厂应用两台轴流式吸风机并联运行的方式。运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。 下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析: 第一次喘振现象:当时AGC投入,负荷500MW升至550MW。A、B、 C、D、E磨运行。炉膛压力异常报警。 处理: 运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。液压油压力低,#1吸风机跳闸。通过追忆,确认风机跳闸前两台风机动叶全开,#1吸 风机流量"0",发生喘振。 第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。(风机额定电流260A)两台风机动叶全开。确认#1吸风机喘振。 处理:关小#2吸风机动叶。处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。 第三次现象:当时AGC投入,负荷500MW升至520MW。A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。两台风机动叶开度75%。确认#1吸风机喘振。 处理: 两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。 分析: 1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。由于在高负荷时,烟气量较大,烟气侧阻力较大。#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。 针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,

CCC 压缩机防喘振控制技术

CCC 压缩机防喘振控制技术 作者:https://www.sodocs.net/doc/c811378423.html, 来源:本站发表时间:2010-6-5 17:27:55 点击:68 CCC 压缩机防喘振控制技术 1. 喘振现象 喘振是涡轮压缩机特有的现象,我们可以从下图的简单模型来解释这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运行点由D 沿性能曲线上升,到喘振点A ,流量减小压力升高,这一过程中流量减小压力升高,由A 点开始到B 点压缩机出现负流量即出现倒流,倒流到一定程度压缩机出口压力下降(B-C),又恢复到正向流动(C-D ),这样,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般来讲在1-2 秒内就以发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制。 2. 喘振控制

通常压缩机都会有一系列的性能曲线图(如下图所示),其坐标是多变压头-入口流量,由于压缩机入口条件的不同(如温度、压力、分子量等)其喘振曲线是分散的多条曲线,给喘振的控制带来困难,CCC 根据压缩机的设计理论、喘振理论和自己的经验,开发出了一套计算方法和软件,可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线(如下图),这样就可以方便地确定喘振点,而一般来讲压缩机制造厂商提供的性能曲线,是计算值,会有一定偏差,特别是旧机组的性能会发生变化,或者没有性能曲线,为了精确控制,需要对喘振曲线做现场测试,传统的测试方法需要由经验丰富的测试工程师来进行测试,人为地判断压缩机是否到达喘振点,这样做带来了巨大的风险,因为人的判断无法保证100%的准确。而且由于到喘振点时,需要人来手动控制打开防喘振阀,往往会动作滞后或过早打开,难以避免给机组造成损伤或无法实现准确测量,CCC 的喘振算法和控制算法能够在自动状态下测量喘振曲线,从而避免了人为测量的风险,并能准确测量记录线,这一功能是CCC 的专利技术而且是世界独一无二的。

离心式压缩机防喘振控制设计讲解

1 概述 1.1压缩机喘振及其危害 压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。 1.2喘振的工作原理及防治 压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。

离心式压缩机的防喘振控制

编订:__________________ 审核:__________________ 单位:__________________ 离心式压缩机的防喘振控 制 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5913-30 离心式压缩机的防喘振控制 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二

PLC 在压缩机防喘振控制系统中的应用

PLC在压缩机防喘振控制系统中的应用 前言 抚顺乙烯化工有限公司空分装置空压机防喘振控制系统原来采用FOXBORO盘前二次表来实现,并采用继电器实现其相关联锁逻辑功能,实现手段不仅落后,维护工作量大,而且还经常出现原因不明的意外停车,防喘振控制系统运行也不理想。该装置原控制系统发生爆炸事故之后,现在采用美国GE-Fanuc公司的90-30双机热备型PLC来实现空压机的防喘振功能和机组联锁保护,使用日本Digital公司的GP-470触摸屏来实现监视和操作功能。现在不仅操作直观方便、停车原因明确,也使空压机的防喘振系统设计更加完善,机组运行更加平稳。 空压机工艺简介 抚顺乙烯空分装置采用法国空气液化公司的专利,该装置以空气为原料,经过过滤、压缩、净化、精馏、蒸发等工序,最后分离出产品氧气和产品氮气。吸入的原料空气经过滤后除去灰尘和杂质,过滤后的空气由空气压缩机K601进行压缩,加压后送往下游净化岗位。空压机K601系离心式压缩机,由电机带动,分两级压缩,两级分置于电机两侧即K601A和K601B。空压机K601设计流量为31500 Nm3/h,功率为3200kw,转速为1450rpm,由法国苏尔寿(SULZER)公司制造。 喘振现象的产生 压缩机在工作过程中,当入叶轮的气体流量小于机组该工况下的最小流量(即喘振流量)限时,管网气体会倒流至压缩机,当压缩机的出口压力大于管网压力时,压缩机又开始排出气体,气流会在系统中产生周期性的振荡,具体体现在机组连同它的外围管道一起会作周期性大幅度的振动,这种现象工程上称之为喘振。 喘振是离心式压缩机的固有特性,当发生喘振时需采取措施降低出口压力或增大入口流量,尽量降低喘振时间。为了确保压缩机稳定可靠地工作,防止用量波动发生喘振,该装置设计了防喘振放空阀,当下游工艺设备空气用量减少或压缩机出现喘振时,可由放空阀减量放空来平衡。 防喘振方案的实施 防喘振控制系统描述 1.系统结构 本系统采用GE Fanuc 90-30 PLC 作数据采集和控制,为了保证系统的可靠性,控制部分采用双机热备结构,电源、CPU、通讯模块和通讯总线、以太网通讯模块等都是冗余的,通过

高炉风机防喘振先进控制技术

高炉风机防喘振先进控制技术 高炉鼓风机是炼铁过程中的核心动力设备,对于整个钢铁企业而言,鼓风机的运行状态与企业的产量、效益、安全息息相关,防喘振控制作为高炉风机控制中最重要的一环,其控制效果完善与否,在很大程度上决定了能否充分发挥鼓风机的潜能,为高炉提供一个安全、稳定、高效的风源,保证高炉达到理想的利用系数。 一、目前在炼铁行业高炉风机防喘振控制技术中普遍存在的问题 1.“保风机”与“保高炉”之间的矛盾: 在防喘振控制回路中,由于缺少完备的数学算法,在工况点接近喘振线时,“保风机”和“保高炉”往往成为一对不可调和的矛盾。防喘振动作的速度主要由调节器的增益值来决定,在调试过程中,往往对增益值如何设定感到两为其难:如增大数值,防喘振阀在动作时打开得过快、过大势必会产生较大的流量和压力波动,这种波动是高炉正常生产中无法接受的。如减小数值,又不能保证在工况点上升较快的情况下保证风机不进入喘振区。产生这一矛盾根本的原因是防喘振控制回路设计的出发点是保护风机本体,对如何在保护风机的同时又保护高炉的正常生产缺少必要的考虑。目前普遍应用的防喘振控制效果的现实情况是:一旦工况点越过防喘振线,防喘振阀进行调节动作,工况点在2~3秒钟内由接近喘振区域被向下拉至距离防喘线以下,风机出口压力的波动至少会超过40kPa,在高炉憋压比较突然的情况下,压力的波动甚至可能达到100~150kPa,这样幅度的波动远远超过了高炉操作所允许的范围。一般来说,导致来自高炉的阻力增大、风机工况接近喘振线的原因可能是以下几种:在热风炉切换的过程中操作不慎、高炉炉料下落、炉顶煤气压力控制不稳等,这些原因都可能导致炉料料层透气性下降、高炉工况恶化。从维持高炉工况的角度出发,在这种情况下,最需要的就是高炉风机能够保证稳定的送风压力,使高炉工况得以好转,而由于防喘振控制的局限性,往往恰是在这一时候,供风压力最不稳定,导致和加剧了高炉座料,而高炉工况一旦变坏后往往需要几天的时间才能逐渐恢复,由此给炼铁企业造成巨大的经济损失。 2.AV系列轴流风机尚未发挥出最大效益: 由于目前普遍应用的防喘振控制过分侧重于风机本身,使AV(静叶可调式)系列轴流风机无法在最大工况点上稳定工作。工况点一旦达到或越过防喘振线,防喘阀就会在调节器的作用

相关主题