搜档网
当前位置:搜档网 › CPU接口介绍

CPU接口介绍

CPU接口介绍
CPU接口介绍

Intel、AMD CPU接口介绍!不知能不能申精转...

马上进入年底又到了我们展望明年DIY市场的时候了,在刚刚结束的CDF2010首届高峰论坛上各界领袖都表现出极强的信心去迎接一个又一个挑战,但是从终端消费者来看,我们看到的却依旧是DIY很不明朗的明天。

如果说去年Intel与AMD新品的发布或多或少还能带给我们些许的惊喜的话,那么2011年的DIY市场可以用“白菜豆腐汤”来形容,淡的出奇。无论是上游的芯片厂商还是中间的品牌厂商,再到下游的渠道经销商都已经失去了创新的动力,更缺少忽悠的资本。披马甲重新上阵的老产品比比皆是,而混乱的产品线布局更是让不少专业人士也有点犯迷糊。

说到最混乱的局面莫过于明年处理器的接口类型,粗略的算了一下明年市面上我们的消费者将面对至少6种以上不同类型的处理器接口,包括Intel平台LGA775、LGA1155、LGA1156、LGA1366,AMD平台则包含至少AM3与AM3+两种接口。为了获得更好的性能接口升级倒也在情理之中,但最要命的是这么多类型的接口却并不能互相兼容......

面对种类繁多的处理器接口类型,你是否做到心中有数呢?

与Intel相比,AMD一直以来所奉行的向下兼容的政策一直受到DIY用户的推崇,在体验最新架构产品的同时却不需要更换平台上的其他产品,将升级成本控制在最低水平。但是到了“推土机”时代,全新AM3+处理器将不能继续在AM3主板上使用,反而AM3处理器可以在AM3+主板上使用。不能相互兼容的结果就意味这我们想要对平台进行需要彻底大换血,成本的增加可想而知。而这些成本的投入能为我们换来性能上的显著提升吗?起码现在大家的心里还是个“问号”。

上图是国外某骨灰级硬件玩家呕心沥血之作,放在这里一方面是让大家看到硬件产品接口类型的演变过程,另外一方面是供大家收藏以备不时之需。在我们不断获得更好的硬件性能的同时,硬件产品的接口类型也在发生着巨大的改变。适时的改变接口类型来配合更好的性能发挥,相信绝大多数的用户完全可以理解。但是一年一种接口的替换真的是从提升性能的角度去考虑的吗?还是为了获取更高的利润呢?恐怕之后这些芯片厂商心里才真正清楚。不论如何明

年这些接口已经成为既定的事实,为了避免接口混乱导致消费中的误区,接来下让我们重新认识一遍这些不同类型的接口吧。

统领数年的775与高端旗舰代表1366

首先来看看Intel平台的接口类型,通常我们都会把Intel处理器的插座称为“LGAXXX”,其中的“LGA”代表了处理器的封装方式,“XXX”则代表了触点的数量。在“LGAXXX"出现之前,Intel和AMD处理器的插座都被叫做“SocketXXX”,其中的“Socket”实际上就是插座的意思,而“XXX”则表示针脚的数量。

统领数年之久——LGA775平台

LGA775,这个造就了几代经典系列产品的平台很有可能会成为Intel公司生命周期最长的处理器接口类型。从2005年诞生至今已经超过了5年,而采用LGA775接口设计的处理器包括单核心的Pentium 4、Pentium 4 EE、Celeron D以及双核心的Pentium D、Pentium EE、Core 2 等我们非常熟悉的CPU。

作为已经过时的产品,我不得不说在实际应用中LGA775平台可能开始显得吃力,虽然对于这代产品Intel之前还有新品推出,但是工艺制程的落后无法弥补性能上的差距。当然目前对于LGA775平台的产品来说价格基本都已经跌至谷底,对于部分要求不高的用户来说,LGA775平台仍不失为一个好的选择。

目前在市面上我们依然能够买到的LGA775处理器主要包括:奔腾双核E5300、E5400 E6500和酷睿2四核Q8400几种。这些处理器一方面发布时间较晚,另外一方面得益于45nm工艺制程以及备受好评的架构设计,性能表现还算不错。现如今价格虽然已经降至较低水准,但是与LGA1156产品没有拉开价格差距。考虑到Intel也已经不再推出LGA775的新品,作为夕阳产品已经不具备购买的意义。

高端王者代表——LGA1366接口

继LGA775接口之后,Intel首先推出了LGA1366平台,定位高端旗舰系列。首颗采用LGA 1366接口的处理器代号为Bloomfield,采用经改良的Nehalem核心,基于45纳米制程及原生四核心设计,内建8-12MB三级缓存。LGA1366平台再次引入了Intel超线程技术,同时QPI总线技术取代了由Pentium 4时代沿用至今的前端总线设计。最重要的是LGA1366平台是目前唯一支持三通道内存设计的平台,在实际的效能方面有了更大的提升,这也是LGA1366旗舰平台与其他平台定位上的一个主要区别。

LGA1366接口

作为高端旗舰的代表,早期LGA1366接口的处理器主要包括45nm Bloomfield核心酷睿i7四核处理器。随着Intel 在2010年买入32nm工艺制程,高端旗舰的代表被酷睿i7-980X处理器取代,全新的32nm工艺解决六核心技术,拥有最强大的性能表现。对于明年准备组建高端平台的用户而言,LGA1366依然占据着高端市场,酷睿i7-980X以及酷睿i7-950依旧是不错的选择。

融合处理器1156与前途未卜的1155

CPU与GPU的融合——LGA1156平台

虽然最早是AMD提出了CPU与GPU整合的概念,但是却被Intel抢了先。Clarkdale处理器首次将CPU与GPU整合在一起,不过并不是放在同一个核心里,而是单独的两个核心。CPU核心采用全新32nm工艺制程,而GPU核心则采用了45nm工艺制程。为了搭配32nm工艺制程的Lynnfield/Clarkdale处理器,Intel改用全新LGA1156插槽,而这种全新的接口也涵盖了从低端入门到高端的不同定位需要。

但是在Clarkdale处理器上市初期,市场的反响并不是很好。首先从性能上来说虽然整合显示核心相比上一代GMA 有了提升,但是对比竞争对手AMD整合芯片组来看,性能上还存在较明显的差距。其次从价格上来说AMD占据着更加明显的优势,Intel又因为接口的更换无法直接升级造成了用户的抵触情绪。还好凭借CPU性能的优势逐渐弥补了用户看到的种种不足,作为行业的大哥大,最终用户还是妥协了

LGA1156

作为Intel目前市场上的主力产品,LGA1156接口的处理器涵盖了从入门到高端的不同用户,32nm工艺制程带来了更

低的功耗和更出色的性能。入门级的代表有酷睿i3-530/540,主流级别的代表有酷睿i5-650/760,中高端的代表有酷睿i7-870/870K等。我们可以明显的看出Intel在产品命名上的定位区分。但是整体来看中高端LGA1156处理器比低端入门更值得选购,面对AMD的低价策略,Intel酷睿i3系列处理器完全无法在性价比上与之匹敌。而LGA1156中高端产品在性能上表现更加抢眼。

希望能走的更远——LGA1155平台

LGA1156平台刚刚开始展开普及,我们又不得不再次面对Intel处理器接口升级的计划。即将于2011年初上市的新一代Sandy Bridge处理器将采用全新LGA1155接口设计,并且无法无LGA1156接口兼容。Sandy Bridge是将取代Nehalem的一种新的微架构,不过仍将采用32nm工艺制程。比较吸引人的一点是这次Intel不再是将CPU核心与GPU 核心用“胶水”粘在一起,而是将两者真正做到了一个核心里,因此对于LGA1155平台的性能表现,大家也表现出充分的期待。

刚接受了LGA1156接口又迎来了LGA1155接口,并且两者之间还不能兼容。不过庆幸的是Sandy Bridge的后续产品,将采用22nm工艺制程的Ivy Bridge架构产品将延续LGA1155平台的寿命,因此对于对于明年打算购买LGA1155平台的用户来说,起码一年之内不用担心接口升级的问题了。

LGA1155

从目前我们获知的情况了解到的是,即将于明年1月发布的Sandy Bridge处理器将采用酷睿i7/i5/i3-XXXX(K)的命名方式,i7针对的依然是中高端用户,i5针对主流用户,i3针对中低端用户,四位数型号后面将有带K和不带K两种,最主要的区别在于倍频的调整范围,因为带K的产品倍频不会锁定,对于超频玩家来说是非常不错的选择。

说到这里可能很多用户会说“即便锁了倍频的我们对外频进行超频还不是一样吗?”,这回真的不行了。Intel将Sandy Bridge处理器外频与PCI-E频率被绑定,因此外频的默认设定只有100MHz。如果我们对外频进行调整,同时PCI-E 的频率也会变化,而PCI-E频率的增加严重影响平台的稳定性,因此目前国内外厂商在对外频进行提升的尝试中最高只达到过108MHz,并且已经无法稳定运行测试。因此我们只能通过提升倍频的方式来提升主频,一方面Intel处理器拥有睿频加速技术,可以小幅提升倍频,另外一方面就是选择不锁倍频的K系列处理器。

LGA1155接口与LGA1156接口

除了处理器方面的限制外,主板也发生变化。对于会在明年选择购买LGA1155接口设计的K系列处理器的用户来说可能影响不大,但是对于选择购买普通LGA1155处理器的用户来说,要想通过Intel睿频加速技术小幅提升主频,需要搭配的是P67主板,因此H67主板并不支持这项技术。由此也进一步拉开P 67主板与H67主板的定位差异。

最后提醒一下用户,Intel目前声称Sandy Bridge处理器的GPU性能比一代提升2倍,如果最后结果确实如此自然是一件好事。但是我们目前对于LGA1155处理器上市初的定价并不乐观,新技术加上新产品,同时面对市面上大量的LGA1156处理器,短期内价格肯定不会降至特别合理的一个位置,究竟是尝鲜还是保守点就看大家自己的腰包了。

开启新时代的AM3与高端利剑AM3+

开启DDR3新时代——AM3平台

良好的兼容策略加上价格策略确实为AMD赢得了不少用户的认可,虽然说在高端领域AMD并不能撼动Intel的霸主地位,但是在主流以及中低端市场,AMD却不容小觑。AM3接口的全称是Socket AM3,作为目前AMD最新的一种CPU接口规格,目前AMD桌面级45纳米处理器均已经全面采用了最新的Socket-AM3接口设计。但是938针的物理引脚却意味着AM3的CPU可以与旧有Socket-AM2+插座甚至是更早的Socket-AM2插座在物理上兼容,因此后两者均采用的是940个针脚,但是老一代的处理器却无法再新一代的AM3主板上使用,因为他们的针脚(940)多余AM3主板938个针脚,因此强行插入的结果只能损坏处理器。

对于AM3接口来说,其最大的特色便是支持DDR3内存,同时AM3处理器基于更为先进的45nm制造工艺也使其从内到外都有了一个全新的变化,无论是从功耗控制还是性能方面,都有了很大的进步。同时,在09年对DDR3内存提供良好的支持在现在看来也有着积极地意义,进一步的刺激内存产业的发展无疑将会使得业内市场得到良性发展。

AM3接口处理器与AM2+接口处理器对比

从入门到高端,目前AMD处理器已经全部过渡到了AM3时代。而明年我们依然能够买到的AM3处理器主要包括定位入门级用户的速龙II X2 240/250处理器,定位主流的速龙II X3 425/435处理器、羿龙II X2 550/555处理器、速龙II X4 635/640处理器、定位高端的羿龙II X4 955/965、羿龙II X6 1090T等。我们可以看到在AMD平台我们的选择不仅非常丰富,同时价格也非常亲民,即便是最高端的六核处理器售价也不超过2000元。

说到这里可能很多用户会质疑我忽视了一个明星产品,那就是定位入门级的速龙II X2 220处理器,通过开核破解的方式,这款售价不足400元的处理器可以媲美近千元的羿龙四核处理器。但是根据笔者实际了解到的情况来看,目前这些比较热门的开核处理器基本上已经很难买到,部分价格甚至也被恶意抬高。同时因为开核破解存在一定的风险,并且会导致处理器失去保修的服务,因此笔者也就不在这里向大家进行推荐。

老主板不兼容——AM3+平台

虽然Intel平台目前处理器接口规格较多,但是目前AMD处理器主力接口却只有一种,就是AM3,而之前的AM2+插座主板通过更新BIOS的方式也能支持AM3处理器,只是损失高速HT总线等新特性。就当AMD宣布将于明年推出基于“推土机”架构的桌面处理器“赞比西河”的时候,大家首先关注的就是接口的变化以及新老平台兼容性的问题。

AMD的官方介绍说为了充分发挥推土机架构的性能,AM3接口将会淘汰,全新的AM3+接口将取而代之。首款基于推土机架构的桌面处理器代号“赞比西河”,核心数量将会是四个或八个,支持DDR3内存,而AM3+针脚数会更多(AM3是938针、AM2+/AM2是940针)。按照AMD的说法,AM3+新接口处理器不能使用在目前的AM3插座主板上,但是现在的AM3接口处理器却能用于未来的AM3+新插座主板。简单地说,目前是新处理器可用于旧主板,而AM3+发布之后变成了旧处理器可用于新主板。

老主板不支持新的处理器确实让人有点难受,而在去年底公布的Roadmap中其实推土机处理器接口仍然标为AM3。看来对于兼容性的问题AMD最也有考虑,但是必须做出一个选择初,究竟是继续采用AM3接口而损失新架构的一些新特性呢?还是升级接口而带来更好的功能和性能?最终为了长远利益,为了能够在高端市场与Intel死磕,AMD还是明智的选择了后者。真正对新产品感兴趣的用户不会屈尊于次等性能,这也和推土机处理器最初的市场定位相关。

推土机架构作为AMD重返高端市场的最佳武器,我们已经看到了AMD在全新架构中给我们带来的惊喜。对于这

场高端对决,相信Intel也绝对不会轻易让出霸主的位置。目前双方的最新产品都没有正式发布,鹿死谁手尚未可知。我们希望看到的是推土机架构能够让AMD斩断Intel的垄断之势,让更为广大的普通消费者受益。

cpu主要包括

CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 一、运算逻辑部件: 运算逻辑部件可以执行定点或浮点算术运算,移位运算和逻辑运算,以及地址运算和转换。 二、寄存器部件: 寄存器部件,包括通用寄存器,专用寄存器和控制寄存器。 通用寄存器可以分为定点数和浮点数。它们用于在指令中存储寄存器操作数和运算结果。 通用寄存器是中央处理器的重要组成部分,大多数指令必须访问通用寄存器。通用寄存器的宽度决定了计算机内部数据路径的宽度,其端口数通常会影响内部操作的并行性。 专用寄存器是执行某些特殊操作所需的寄存器。 控制寄存器通常用于指示机器执行状态或保留一些指针。有处理状态寄存器,地址转换目录的基地址寄存器,特权状态寄存器,条件代码寄存器,异常处理寄存器和错误检测寄存器。 有时,中央处理单元中有一些缓存,用于临时存储一些数据指令。缓存越大,CPU的计算速度越快。目前,市场上的中高端中央处理单元具有大约2M的二级缓存。高端中央处理单元具有大约4M的辅助缓存。 三、控制部件: 控制部件主要负责解码指令并发出控制信号以完成要为每个指令执行的每个操作。

有两种结构:一种是以微存储为核心的微程序控制模式;另一种是微程序控制模式。另一种是基于逻辑硬连线结构的控制模式。 微代码存储在微存储器中,每个微代码对应一个基本的微操作,也称为微指令。每个指令由不同的微代码序列组成,这些序列构成一个微程序。中央处理单元对指令进行解码后,发出一定的时序控制信号,并以给定的顺序以微周期为节拍执行由这些微代码确定的许多微操作,以完成拍子的执行。一定的指示。 简单的指令由(3到5个)微操作组成,而复杂的指令由数十个微操作甚至数百个微操作组成。

CPU接口类型大全

CPU接口类型大全 我们知道,CPU需要通过某个接口与主板连接的才能进行工作。CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。CPU接口类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。Socket AM2 Socket AM2是2006年5月底发布的支持DDR2内存的AMD64位桌面CPU的接口标准,具有940根CPU针脚,支持双通道DDR2内存。虽然同样都具有940根CPU针脚,但Socket AM2与原有的Socket 940在针脚定义以及针脚排列方面都不相同,并不能互相兼容。目前采用Socket AM2接口的有低端的Sempron、中端的Athlon 64、高端的Athlon 64 X2以及顶级的Athlon 64 FX等全系列AMD桌面CPU,支持200MHz外频和1000MHz的HyperTransport 总线频率,支持双通道DDR2内存,其中Athlon 64 X2以及Athlon 64 FX最高支持DDR2 800,Sempron和Athlon 64最高支持DDR2 667。。按照AMD的规划,Socket AM2接口将逐渐取代原有的Socket 754接口和Socket 939接口,从而实现桌面平台CPU接口的统一。Socket S1 Socket S1是2006年5月底发布的支持DDR2内存的AMD64位移动CPU的接口标准,具有638根CPU针脚,支持双通道DDR2内存,这是与只支持单通道DDR内存的移动平台原有的Socket 754接口的最大区别。目前采用Socket S1接口的有低端的Mobile Sempron 和高端的Turion 64 X2。按照AMD的规划,Socket S1接口将逐渐取代原有的Socket 754接口从而成为AMD移动平台的标准CPU接口。 Socket F Socket F是AMD于2006年第三季度发布的支持DDR2内存的AMD服务器/工作站CPU 的接口标准,首先采用此接口的是Santa Rosa核心的LGA封装的Opteron。与以前的Socket 940接口CPU明显不同,Socket F与Intel的Socket 775和Socket 771倒是基本类似。Socket F接口CPU的底部没有传统的针脚,而代之以1207个触点,即并非针脚式而是触点式,通过与对应的Socket F插槽内的1207根触针接触来传输信号。Socket F接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。Socket F接口的Opteron也是AMD首次采用LGA封装,支持ECC DDR2内存。按照AMD的规划,Socket F接口将逐渐取代Socket 940接口。1 W( f- ~' B2 P! C# i w Socket 771 Socket 771是Intel2005年底发布的双路服务器/工作站CPU的接口标准,目前采用此接口的有采用LGA封装的Dempsey核心的Xeon 5000系列和Woodcrest核心的Xeon 5100系列。与以前的Socket 603和Socket 604明显不同,Socket 771与桌面平台的Socket 775倒还基本类似,Socket 771接口CPU的底部没有传统的针脚,而代之以771个触点,即并非针脚式而是触点式,通过与对应的Socket 771插槽内的771根触针接触来传输信号。Socket 771接口不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率、降低生产成本。Socket 771接口的CPU全部都采用LGA封装。按照Intel的规划,除了Xeon MP仍然采用Socket 604接口之外,Socket 771接口将取代双路Xeon(即Xeon DP)目前所采用的Socket 603接口和Socket 604接口。 Socket 479. f$ ~' I" J2 o4 O. L9 \1 q Socket 479的用途比较专业,是2003年3月发布的Intel移动平台处理器的专用接口,具有479根CPU针脚,采用此接口的有Celeron M系列(不包括Yonah核心)和Pentium M系列,而此两大系列CPU已经面临被淘汰的命运。Yonah核心的Core Duo、Core Solo和Celeron M已经改用了不兼容于旧版Socket 478的新版Socket 478接口。. ?6 D5 _8 j0 S* `

英特尔i3_i5_i7处理器型号及参数总览表+CPU型号大全

英特尔i3/i5/i7处理器型号及参数总览表 请仔细看完本文,看完后你将会对笔记本芯片有一定了解,买笔记本才不会被JS坑骗。 ~~Kiong 前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、 奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 名词解释 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Fr Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升10%~20% 以保证程运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU 有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 制程:制程越小越好。越来越高的工艺制程可以提高芯片的集成度,增加晶体管的数量,扩展新的功能。同时随着晶体管尺寸的缩小,每颗的单位成本也有所降低。此外,更高的工艺制程可以帮助降低CPU的功耗,另外,降低CPU的成本以前扩大CPU产能也是新工艺制的积极影响。 TDP:TDP的英文全称是“Thermal Design Power”,中文直译是“散热设计功耗”。主要是提供给计算机系统厂商,散热片/风扇厂商,以及商等等进行系统设计时使用的。一般TDP主要应用于CPU,CPU TDP值对应系列CPU 的最终版本在满负荷(CPU 利用率为100%的理能会达到的最高散热热量,散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。 注意:由于CPU的核心电压与核心电流时刻都处于变化之中,这样CPU的实际功耗(其值:功率P=电流A×电压V)也会不断变化TDP值并不等同于CPU的实际功耗,更没有算术关系。

cpu主要包括

CPU是计算机的核心,是电脑的心脏,叫做中央处理器。负责处理、运算计算机内部的所有数据,主要由运算器、控制器、寄存器组和内部总线等构成。CPU是整个微机系统的核心,它往往是各种档次微机的代名词,CPU的性能大致上反映出微机的性能,因此它的性能指标十分重要。 CPU包括运算逻辑部件、寄存器部件、控制部件。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字和特征码。有的指令中也直接包含操作数本身。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点的算术运算操作、移位操作以及逻辑操作,也可执行地址的运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 32位CPU的寄存器 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通

用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器

cpu包括

Cpu 的组成: CPU的内部由寄存器、控制器、运算器和时钟四个部分组成,各个部分之间由电流信号相互连通。 寄存器中的种类和作用包括: 1.数据寄存器 数据寄存器(Data Register,DR)又称数据缓冲寄存器,其主要功能是作为CPU和主存、外设之间信息传输的中转站,用以弥补CPU 和主存、外设之间操作速度上的差异。 数据寄存器用来暂时存放由主存储器读出的一条指令或一个数据字;反之,当向主存存入一条指令或一个数据字时,也将它们暂时存放在数据寄存器中。 数据寄存器的作用是: (1)作为CPU和主存、外围设备之间信息传送的中转站;

(2)弥补CPU和主存、外围设备之间在操作速度上的差异; (3)在单累加器结构的运算器中,数据寄存器还可兼作操作数寄存器。 2.指令寄存器 指令寄存器(Instruction Register,IR)用来保存当前正在执行的一条指令。 当执行一条指令时,首先把该指令从主存读取到数据寄存器中,然后再传送至指令寄存器。 指令包括操作码和地址码两个字段,为了执行指令,必须对操作码进行测试,识别出所要求的操作,指令译码器(Instruction Decoder,ID)就是完成这项工作的。指令译码器对指令寄存器的操作码部分进行译码,以产生指令所要求操作的控制电位,并将其送到微操作控制线路上,在时序部件定时信号的作用下,产生具体的操作控制信号。 指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码,即可向操作控制器发出具体操作的特定信号。 3.程序计数器 程序计数器(Program Counter,PC)用来指出下一条指令在主存储器中的地址。 在程序执行之前,首先必须将程序的首地址,即程序第一条指令

cpu主要包括

CPU主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。 中央处理器(CPU),是电子计算机的主要设备之一,电脑中的核心配件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。 主要功能 一、处理指令 英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 二、执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 三、控制时间 英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。

四、处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU 具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。

AMD处理器接口详细规格

开始支持DDR2内存的AM2接口 除了APU之外,目前AMD处理器的接口均是以AM为开头命名 常见的有:AM2/AM2+/AM3以及AM3+ 而在AM系列插槽出现之前,主流的插槽有Socket 754以及Socket 939两种,其中Socket 754接口仅支持单通道DDR内存。 AM2 2006.5月AM2接口为用户带来的最大特性就是它开始集成了DDR2内存控制器,接口名“AM2”中的“2”也正是代表着它支持DDR2内存。

过渡性质的AM2+接口 AM2+平台相对于AM2平台在实质上改变并不大 唯一的区别就是AM2+支持HT 3.0前端总线. 此前的AM2平台仅支持HT 1.0以及HT 2.0前端总线,工作频率较低,传输带宽被大大的限制(工作频率仅为1GHz,最高传输速度8GB/s) 而AM2+平台则提供了对HT 3.0总线的支持,工作频率最高可达2.6GHz,最高传输速度增至20.8GB/s。

AM3接口 AM3接口的处理器拥有938根阵脚,可以安装在AM2以及AM2+插槽上使用。但是由于针脚位置不同,AM2以及AM2+的处理器无法安装在AM3插槽上使用。

推土机御用的AM3+ 首先,AM3+插孔要比AM3的大11%,因此安装起来更加方便,其次是电气性能上的差距,AM3+接口的CPU采用了3.1MHz的VID设计,可以提供更好地功耗管理以及节能效果,而AM3只有400KHz,效果自然慢了很多;其余在功耗噪音方面都明显得到了许多的改善。 9系列芯片组的主要使命自然是支持新的黑色Socket AM3+插座和FX系列推土机处理器,不过得益于良好的向下兼容性,也可以继续搭配Socket AM3封装接口的Phenom II/At hlon II/Sempron系列处理器。

CPU的接口类型有哪些

CPU的接口类型有哪些 CPU接口:Socket 939 Socket 939是AMD公司2004年6月才推出的64位桌面平台接口标准,具有939根CPU针脚,支持双通道DDR内存。目前采用此接口的有面向入门级服务器/工作站市场的Opteron 1XX系列以及面向桌面市场的Athlon 64以及Athlon 64 FX 和Athlon 64 X2,除此之外部分专供OEM厂商的Sempron也采用了Socket 939接口。Socket 939处理器和与过去的Socket 940插槽是不能混插的,但是Socket 939仍然使用了相同的CPU风扇系统模式。随着AMD从2006年开始全面转向支持DDR2内存,Socket 939被Socket AM2所取代,在2007年初完成自己的历史使命从而被淘汰,从推出到被淘汰其寿命还不到3年。 CPU接口:Socket 940 Socket 940是最早发布的AMD64位CPU的接口标准,具有940根CPU针脚,支持双通道ECC DDR内存。目前采用此接口的有服务器/工作站所使用的Opteron 以及最初的Athlon 64 FX。随着新出的Athlon 64 FX以及部分Opteron 1XX系列改用Socket 939接口,所以Socket 940已经成为了Opteron 2XX全系列和Opteron 8XX全系列以及部分Opteron 1XX系列的专用接口。随着AMD从2006 年开始全面转向支持DDR2内存,Socket 940也会逐渐被Socket F所取代,完成自己的历史使命从而被淘汰。 CPU接口:Socket 603 Socket 603的用途比较专业,应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是Xeon MP和早期的Xeon,具有603根CPU针脚。Socket 603接口的CPU可以兼容于Socket 604插槽。 CPU接口:Socket 604 与Socket 603相仿,Socket 604仍然是应用于Intel方面高端的服务器/工作站平台,采用此接口的CPU是533MHz和800MHz FSB的Xeon。Socket 604接口的CPU不能兼容于Socket 603插槽。 CPU接口:Socket 775(LGA775) Socket 775又称为Socket T,是目前应用于Intel LGA775封装的CPU所对应的接口,目前采用此种接口的有LGA775封装的单核心的Pentium 4、Pentium 4 EE、Celeron D以及双核心的Pentium D和Pentium EE等CPU。与以前的Socket 478接口CPU不同,Socket 775接口CPU的底部没有传统的针脚,而代之以775个触点,即并非针脚式而是触点式,通过与对应的Socket 775插槽内的775根触针接触来传输信号。Socket 775接口不仅能够有效提升处理器的信号强度、提

最新CPU型号大全

CPU型号大全 收录内容 ※Intel桌面:赛扬、奔腾、酷睿2 、酷睿i3、酷睿i5、酷睿i7 ※Intel移动:凌动、赛扬、奔腾、酷睿2、酷睿i3、酷睿i5、酷睿i7 ※AMD桌面:闪龙、速龙、羿龙、速龙II、羿龙II ※AMD移动:锐龙、闪龙、速龙、速龙II、羿龙II 补充说明 ※带☆的为不锁倍频版本 ※EE(Extreme Edition)为Intel至尊版、BE(Black Edition)为AMD黑盒版 ※红色为停产产品 ※不包括90nm及以前的产品 ※总线频率为等效频率 ※列表数据均来自官方网站 Intel桌面系列 赛扬系列

型号核心架构核心代号制造工艺核心/线程主频 频率 二级缓存虚拟化TDP Celeron D 347 Netburst Cedar Mill 65nm 1C/1T 3.06GHz FSB 533MHz 512KB 不支持86W Celeron D 352 Netburst Cedar Mill 65nm 1C/1T 3.2GHz FSB 533MHz 512KB 不支持86W Celeron D 356 Netburst Cedar Mill 65nm 1C/1T 3.33GHz FSB 533MHz 512KB 不支持86W Celeron D 360 Netburst Cedar Mill 65nm 1C/1T 3.46GHz FSB 533MHz 512KB 不支持65W Celeron D 365 Netburst Cedar Mill 65nm 1C/1T 3.6GHz FSB 533MHz 512KB 不支持65W Celeron 420 Core Conroe-L 65nm 1C/1T 1.6GHz FSB 800MHz 512KB 不支持35W Celeron 430 Core Conroe-L 65nm 1C/1T 1.8GHz FSB 800MHz 512KB 不支持35W Celeron 440 Core Conroe-L 65nm 1C/1T 2GHz FSB 800MHz 512KB 不支持35W Celeron 450 Core Conroe-L 65nm 1C/1T 2.2GHz FSB 800MHz 512KB 不支持35W Celeron E1200 Netburst Allendale 65nm 2C/2T 1.6GHz FSB 800MHz 512KB 不支持65W Celeron E1400 Netburst Allendale 65nm 2C/2T 2GHz FSB 800MHz 512KB 不支持65W Celeron E1500 Netburst Allendale 65nm 2C/2T 2.2GHz FSB 800MHz 512KB 不支持65W Celeron E1600 Netburst Allendale 65nm 2C/2T 2.4GHz FSB 800MHz 512KB 不支持65W Celeron E3200 Core Wolfdale 45nm 2C/2T 2.4GHz FSB 800MHz 1MB 不支持65W Celeron E3300 Core Wolfdale 45nm 2C/2T 2.5GHz FSB 800MHz 1MB 不支持65W Celeron E3400 Core Wolfdale 45nm 2C/2T 2.6GHz FSB 800MHz 1MB 不支持65W ?Celeron G1101 Westmere Clarkdale 32nm 2C/2T 2.26GHz DMI 2500MHz 2MB VT-X 73W ?集成GPU频率533MHz 内存支持DDR3-1066 奔腾系列

中国32位嵌入式CPU芯片

2015-2020年中国32位嵌入式CPU芯片行业市场调研及未来发展分析报告 Special Statenent特别声明 本报告由华经视点独家撰写并出版发行,报告版权归华经视点所有。本报告是华经视点专家、分析师调研、统计、分析整理而得,具有独立自主知识产权,报告仅为有偿提供给购买报告的客户使用。未经授权,任何网站或媒体不得转载或引用本报告内容,华经视点有权依法追究其法律责任。如需订阅研究报告,请直接联系本网站客服人员(8610-56188812 56188813),以便获得全程优质完善服务。 华经视点是中国拥有研究人员数量最多,规模最大,综合实力最强的研究咨询机构(欢迎客户上门考察),公司长期跟踪各大行业最新动态、资讯,并且每日发表独家观点。 目前华经视点业务范围主要覆盖市场研究报告、投资咨询报告、行业研究报告、市场预测报告、市场调查报告、征信报告、项目可行性研究报告、商业计划书、IPO上市咨询等领域,同时也为个阶层人士提供论文、报告等指导服务,是一家多层次、多维度的综合性信息研究咨询服务机构。 Report Description报告描述 本研究报告由华经视点公司领衔撰写。报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。 Report Directory报告目录 第一章研究范围界定及市场特征分析 第一节CPU芯片分类及应用 一、CPU芯片分类 二、CPU芯片应用

CPU型号大全总结CPU型号查询一览表

CPU型号大全总结CPU型号查询一览表 一、X86时代的CPUCPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM 以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL 便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 4004处理器核心架构图1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。 1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 Intel8086处理器1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 Intel80286处理器1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB 内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX 的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位即寻址能力为16MB。1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于

cpu包括以下部件

CPU组成结构 CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。 通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中

央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。

所有CPU插槽介绍(部分设计图,实物图)

所有CPU插槽介绍(部分设计图,实物图) 1.由于部分插槽没有中文 所以个人帮助翻译可能不专业 敬请原谅 2.由于部分原图首发ZOL, 所以部分图片有ZOL 水印并非抄袭 我在ZOL网名为AdrianJ 先发一张总览表 在这张表里 缺失AMD最新插槽AM2+ 以及Intel的最新插槽SOCKET B(LGA 1366)和几款很老很老的CPU插槽(广义上) 但是后面实物图和介绍上我会补上 ———————————————————————————————— ———————————————— - DIP 插槽 DIP 代表Dual in-line package(不知国内叫什么),在微电子学中也被称 作DIL 正常写法是DIPn n代表针脚数入DIP14 DIP 用于集成电路中,入CPU DIP由仙童半导体公司(Fairchild Semicondutor)于1965年发明PLCC插槽 全称Plastic Leaded Chip Carrier(不知怎翻译) PLCC是一个四边有脚而中空的集成电路块 PLCC插槽应对的是CPU Harris 80286-16 (下左图)

INTEL 80286 INTEL 80386 SOCKET 1(自己翻译) SOCKET 1 是第二个被设计出来的用于X86 微型CPU的标准 SOCKETCPU插槽 拥有169个PIN 适用于5-Volt, 16 到33 MHZ , 486 ,DX486, DX2 和 DX4 系列CPU Socket 2 SOCKET 2是SOCKET1的升级版本增加了对奔腾CPU的支持 同时针脚数由原来的169 上升到238 使用19*19的规格划分 支持CPU 有5-volt, 25 到50 MHz 486 SX, 486 DX, 486 DX2, 486 DX4, DX4 63 或者83 MHz,奔腾系列CPU SOCKET 3 SOCKET 3的设计是为了数学协处理器芯片适用于INTEL 低电压CPU 对比于SOCKET2 ,它重新排列了针脚,并且省略了一个针脚 SOCKET3 拥有237个针脚

AMD CPU型号大全1

AMD CPU型号大全(2009-09-29 09:16:15) 标签:it分类:电脑知识 AMD 闪龙3000+ AM2 1.60GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙3200+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 128KB/-- 单核 AMD 闪龙3400+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙 LE-1100 AM2 1.90GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.35V AMD 闪龙 LE-1150 AM2 2.00GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.20V AMD 闪龙 LE-1200 AM2 2.10GHz Socket AM2 Sparta 200MHz 0.065微米 512KB/-- 单核1.20V AMD 闪龙 LE-1250 AM2 2.20GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 512KB/-- 单核 1.40V AMD 闪龙 LE-1640 AM2 2.60GHz Socket AM2 Orleans 1000MHz 200MHz 0.065微米 1024KB/-- 单核 1.35V AMD 闪龙双核 2100+ AM2 1.8GHz Socket AM2 Brisbane 800MHz 200MHz 0.065微米 2x256KB/-- 双核 1.3V AMD 速龙双核 4850e 2.50GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 1024KB/-- 双核 AMD 速龙 X2 BE-2300 1.90GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 1024KB/-- 双核 1.25V AMD 速龙64 X2 3600+ AM2 1.90GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 3800+ AM2 2.00GHz Socket AM2 Windsor 1000MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4000+ AM2 2.00GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 4200+ AM2 2.20GHz Socket AM2 Windsor 1000MHz 200MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4400+ AM2 2.30GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4600+ AM2 2.40GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4800+ AM2 2.50GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米

最新AMD-CPU接口大全

●统一接口时代的开始:Socket AM2 2006年五月,Socket AM2接口发布,支持AMD 64位桌面CPU ,它为用户带来的最大特性就是开始集成了DDR2内存控制器,接口名“AM2”中的“2”也正是代表着它支持DDR2内存。计划用于取代原有的的Sock 754和Sock 939接口,从而实现了AMD 桌面平台CPU 插槽的统一。这一年,中端市场AMD K8架构处理器大行其道,AM2接口也得到了众厂商的一致支持。 AMD 统一接口的时代,从AM2开始

这一年是AMD走下神坛的一年,也是K8架构在主流市场大行其道的一年。为了应对突如其来的Intel的“扣肉”处理器,AMD把旗下的速龙系列大幅度降价,这让追求性价比的主流用户享受到许多物美价廉的好产品,其中最有代表性的就是单核速龙64 3200+和后来成为“入门双核”的速龙64 x2 3600+ AMD AM2 Athlon 64 3200+

速龙64 X2 3600+成为双核市场普及先锋 这段期间AMD发布的产品非常多,也非常复杂。单单是速龙X2 就横跨了90纳米到65纳米两个时代,还有全新命名规则的BE-2300、LE-1150系列,一路穿越到2008年,45纳米全面普及,采用的依然是AM2接口。这种做法让DIY用户的平台升级变得非常简单,不少人就直接从90纳米时代飞跃到45纳米,要做的仅仅是刷新一下BIOS,换一个处理器。 ●“路人甲”:过渡接口Socket AM2+ 2007年第三季度,AMD推出了AM2到AM3之间的过渡性接口:Socket AM2+。其实按照AMD最初的设定,AM2服役时间过后就会被AM3所替代,但由于K8架构的四核羿龙一再跳票只能作罢,推出了过渡性质的AM2+接口,这款接口与AM2完全相容,也就是说AM2+处理器能用在AM2主板上,AM2处理器也能用上AM2+主板。

32位MIPS处理器设计实验报告

数字逻辑与处理器基础实验 32位MIPS处理器设计实验报告 王晗 (2013011076) July26,2015 Date Performed:July15,2015 Partners:耿天毅(2012011119) 陈志杰withdrawn 1实验目的 熟悉现代处理器的基本工作原理;掌握单周期和流水线处理器的设计方法。 2设计方案 2.1总体结构 由于这次实验涉及的功能较多,我们将完整的CPU分成多个模块。指令存储器、寄存器堆、控制器、ALU控制器、ALU、数据存储器、UART等功能单元均在单独的Module中实现。其中指令存储器、寄存器堆、控制器、ALU控制器、ALU等单元在Single Cycle Core中实例化,作为单周期处理器的核心;数据存储器、UART和定时器、LED、七段数码管、开关在Peripheral中实现,作为处理器的外设。处理器核心和外设在顶层模块中实例化,互相通信。 单周期CPU模块的结构关系如Figure1所示:

Figure1:单周期处理器结构 对于流水线CPU,我们还在Pipeline Core中加入了流水线寄存器、冒险检测单元、数据转发单元: Figure2:流水线处理器结构

2.2ALU1 ALU模块的结构如图所示,输入两个操作数A、B和控制信号ALUFun、Signed,在ARITH子模块中做加减法运算,CMP子模块根据ARITH模块的输出进行比较判断,LOGIC和SHIFT模块分别进行逻辑运算和移位运算,ALUFun的最高两位用于控制多路选择器的输出。 Figure3:ALU结构 ARITH模块ARITH模块中包括减法和加法两个模块,加法模块直接通过+号运算,减法模块先对第二个操作数取补码,再调用加法模块做加法运算。Overflow和Negative信号的产生是ALU中的难点: Figure4:ADD中的Overflow和Negative 1原作者:陈志杰;修改:王晗

cpu主要包括

一、cpu基本组成 CPU由运算器、控制器和寄存器组,是计算机的核心,对计算机的整体性能有着决定性的影响。CPU是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。运算器主要对计算机传输过来的信息进行算术或者逻辑运算。控制器则负责计算机CPU中指令的执行。 二、物理结构 运算逻辑部件:运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件:通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制部件:控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 三、CPU主要技术性能指标有 1、主频,这是CPU的内部时钟的频率。计算机要运行的话,主频是需要进行运算时的。是一种工作频率。主频的越高就表明,在一

个时钟的周期里,所需要完成的指令数是非常多的。是正比例的。主频越高,运算的速度就越快; 2、外频指的是系统总线,外频和主频不一样,主频是负责运算时的,而外频是负责CPU周边的设备的数据传输频率的。外频的主要任务就是负责CPU到芯片组之间的总线速度; 3、倍频,原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频=外频×倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高; 4、缓存,在CPU、GPU内部由于需要在高速运算时读写数据,因此一般会设计有多级的缓存,空间小但速度快,在日常运算中很多数据都是从缓存里面调动出来的。缓存可以说是CPU运算的一个重要环节,在整个运行的过程中,起到一个存储的作用,缓存可以有效的提高整个数据的传输速度; 四、CPU 主要功能 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。

相关主题