搜档网
当前位置:搜档网 › 挑战高考压轴题圆锥曲线大题

挑战高考压轴题圆锥曲线大题

挑战高考压轴题圆锥曲线大题
挑战高考压轴题圆锥曲线大题

1 挑战高考压轴题

圆锥曲线满分之路

专题1 待定系数求方程,几何转至代数中 求圆锥曲线方程的策略一般有以下几种:①几何分析法+方程思想;②设而不求+韦达定理;③第二定义+数形结合;④参数法+方程思想。几何分析法,利用图形结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出关于方程中参数的方程,解出参数值即可得到圆锥曲线方程,要求平面几何中相似等数学知识必须十分熟练。设而不求、韦达定理是解圆锥曲线问题的通性通法,缺点是计算量较大,费时费力,容易出错,通常根据题设条件,设出点的坐标和直线方程,将直线方程代入曲线方程,化为关于x 的一元二次方程,利用韦达定理用参数表示出来,根据题中条件列出关于参数的方程,通过解方程解出参数值,即可得出圆锥曲线的方程。不管是哪种方法,最终都要列出关于圆锥曲线方程中的参数的方程问题,通过解方程解出参数值,即可得到圆锥曲线方程,故将利用平面几何知识和圆锥曲线的定义与性质是将几何问题转化为代数问题,简化解析几何计算的重要途径.

【典例指引】

类型一 待定系数法求椭圆方程

例1 【2014年全国课标Ⅱ,理20】设1F ,2F 分别是椭圆()222210y x a b a b

+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (Ⅰ)若直线MN 的斜率为34

,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .

高中数学圆锥曲线压轴题集锦2

高中数学圆锥曲线压轴题集锦2 一.解答题(共60小题) 1.如图,F1(﹣c,0),F2(c,0)分别是双曲线C:=1(a,b>0)的左,右焦点,过点F2作x轴的垂线交双曲线的上半部分于点P,过点F1作直线PF1的垂线交直线l:x=﹣ 于点Q. (1)若点P的坐标为(4,6),求双曲线C的方程及点P处的切线方程; (2)证明:直线PQ与双曲线C只有一个交点; (3)若过l:x=﹣上任一点M作双曲线C:=1(a,b>0)的两条切线,切点分别为T1,T2,问:直线T1T2是否过定点,若过定点,请求出该定点;否则,请说明理由. 2.已知曲线C1:+=1(a>b>0,x≥0)和曲线C2:x2+y2=r2(x≥0)都过点A(0,﹣1),且曲线C1所在的圆锥曲线的离心率为 (1)求曲线C1,C2的方程 (2)设点B,C分别在曲线C1,C2上,k1,k2分别为直线AB,AC的斜率,当k2=4k1时, ①直线BC是否经过定点?请说明理由 ②设E(0,1),求||?||的最大值.

3.已知B(﹣1,0),C(1,0),P是平面上一动点,且满足||?||=?. (1)求点P(x,y)的轨迹C对应的方程. (2)如果点A(m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD⊥AE,问直线DE是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由. 4.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且? 的最大值为1,最小值为﹣2. (1)求椭圆C的方程; (2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由. 5.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点. (Ⅰ)求圆C的方程; (Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l 的方程. 6.过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l. (Ⅰ)若k1>0,k2>0,证明:; (Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程. 7.如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4. (1)求椭圆C的方程; (2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,

2021届高考数学圆锥曲线压轴题专题03 圆锥曲线与垂心问题(通用版原卷版)

专题3、圆锥曲线与垂心问题 从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。“四心”问题进入圆锥曲线,让我们更是耳目一新。因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考. 三角形的垂心:三角形三条高线的交点 (1)、H 是ABC ?的垂心0HA BC HB AC HC AB ??=?=?=。 (2)、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离得2倍。 经典例题: 例1.(2020·浙江高三)记椭圆C :2 2 21x y +=的左右焦点为1F ,2F ,过2F 的直线l 交椭圆于A ,B ,A , B 处的切线交于点P ,设12F F P 的垂心为H ,则PH 的最小值是( ) A B C D 例2.(2020.江苏省高三期中)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左?右焦点,过点2F 且垂直于 实轴的直线与双曲线的两条渐近线分别相交于A ,B 两点,则坐标原点O 可能为1ABF ?的( ) A .垂心 B .内心 C .外心 D .重心 例3、(山东高考理)平面直角坐标系xoy 中,双曲线C 1:22 221(0,0)x y a b a b -=>>的渐近线与抛物线 22:2C x py =()0p >交于点O ,A ,B ,若OAB ?的垂心为C 2的焦点,则C 1的离心率为 . 例4、(2020年福建省高三联考16题)已知:椭圆22 184 x y +=的右焦点为,F M 为上顶点,O 为坐标原点, 直线l 交椭圆于,P Q 两点,当F 为PQM ?的垂心时,则PQM ?的面积为 . 例5、已知点()1,0Q 在椭圆C :2 2 12 y x +=上, 过点()0P m , 作直线交椭圆C 于点,,A B ABQ ?的垂心

高考圆锥曲线压轴题型汇总

高考圆锥曲线压轴题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (湖北卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴题经典预测 一、圆锥曲线中的定值问题 y2 = b2 (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. y2 = b2

二、圆锥曲线中的最值问题 y2 = b2 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点. (i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标;

(Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值. 三、圆锥曲线与过定点(定直线)问题

四、圆锥曲线与求参数 ★★在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴 (Ⅰ)求椭圆C的方程; 的中点,射线OE交椭圆C与点P,设OP→=tOE→,求实数t的值. 五、存在性问题 y2 = b2

②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率k OA、k OB、k OC、k OD满足k OA+k OB+k OC+k OD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由. 六、轨迹方程

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

高中数学圆锥曲线压轴题集锦1

圆锥曲线60道题 一.解答题(共60小题) 1.在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2, 直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点. (1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值; (2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系; (3)若a=2,且k OA?k OB=﹣,求证:△OAB的面积为定值. 2.已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为. (1)求椭圆Γ的方程; (2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标; (3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP面积S的不同取值范围,讨论△AEP存在的个数,并说明理由. 3.已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2: y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=. (Ⅰ)求椭圆C1的方程; (Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B,D在直线7x﹣7y+1=0上,求直线AC的方程. 4.已知F1(﹣2,0),F2(2,0),点P满足|PF1|﹣|PF2|=2,记点P的轨迹为E. (1)求轨迹E的方程;

(2)若直线l过点F2且与轨迹E交于P、Q两点. (i)无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值. (ii)在(i)的条件下,求△MPQ面积的最小值. 5.在平面直角坐标平面中,△ABC的两个顶点为B(0,﹣1),C(0,1),平面内两点P、Q 同时满足: ①++=;②||=||=||;③∥. (1)求顶点A的轨迹E的方程; (2)过点F(,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N. (ⅰ)求四边形A1A2B1B2的面积S的最小值; (ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由. 6.在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程. (Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的 斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率. 7.已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且||=2.

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

圆锥曲线压轴题含答案

1. 已知点100(,)P x y 为双曲线 22 22 1(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程; (2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN 2. 如图,已知圆G :2 2 2 (2)x y r -+=是椭圆2 216 x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ; (2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切. x

3. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线22 1x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ?? ??? ,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程; (2)求证:A M B 、、三点共线. 4. 作斜率为1 3 的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示), 且P 在直线l 的左上方. (1)证明:PAB ? 的内切圆的圆心在一条定直线上; (2)若60o APB ∠=,求PAB ?的面积. A x y O P B

5. 如图,椭圆22122:1(0)x y C a b a b +=>>的离心率为32,x 轴被曲线2 2:C y x b =-截得 的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥; ②记MAB ?,MDE ?的面积分别是1S ,2S .问:是否存在直线l ,使得121732 S S =?请说明理由. 6. 已知抛物线2 :4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设8 9 FA FB =,求BDK ?的内切圆M 的方程 .

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴题 Revised by Hanlin on 10 January 2021

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2 + y2 b2 =1(a>b>0)的离心率e= 3 2 ,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2 + y2 b2 =1(a>b>0)经过点P(1, 3 2 ),离心率e= 1 2 ,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2 + y2 b2 =1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2 , 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;

(Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且 二、圆锥曲线中的最值问题 y2 = b2 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点. (i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|= |FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

专题01 曲线和方程(训练篇B)含详解-用思维导图突破圆锥曲线压轴题

专题01曲线和方程 训练篇 B 1.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,?ABM 为等腰三角形,且顶角为120,则E 的离心率为 A.5 B.2 C.3 D.2 分析 要求e ,不一定要清楚a 和c ,可以求出a ,c 之间的关系,在转化为e 的方程或等式. 解1 设双曲线方程为22 221(0,0)x y a b a b -=>>. 如图所示,||||AB BM =,120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在△BMN 中,由于|BM |=|AB |=2a ,则||BN a =, ||3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得 2 2 2 2 a b c a ==-,即2 2 2c a =,所以2e =. 解2 如图所示,不妨设点M 在第一象限,则直线AM 的方程 3:()AM l y x a =+,直线BM 的方程:3()BM l y x a =-,联立解得23x a y a =???=??,所以点 M 的坐标为(2,3)M a a ,以下同解1. 2.双曲线22 221(0,0)x y a b a b -=>>的渐近线为正方形OABC 的边OA ,OC 所在的直线, 点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =_______________. 解 不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线如图所示. 因为OABC 为正方形,2=OA ,所以22==c OB , π 4 ∠= AOB . 因为直线OA 是渐近线,方程为= b y x a ,所以tan 1=∠=b AOB a . 又222 8+==a b c ,所以2=a . 3.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |= 42,|DE|=25,则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 解 因为抛物线焦点到准线的距离为p ,所以只要求出p ,因D 在圆上,A 既在圆上,又在抛物线上,从而可以得到三个方程,不妨设抛物线为22y px =()0p >,设圆的方程为 222x y r +=,作出示意图如图所示. O C B A y x F A -1 B 1M N x y -2-4-3234O 1 234 -1 -2-3-4

圆锥曲线高考压轴题(精心整理)

A. 2: B B. 1: 2 C. 1: D. 1: 3 园锥曲线单元检测卷 迭様题(共10小陋) 1. 椭圆ax2+by2=l 与直线y=l-x 交于A 、B 两点,过原点与銭段AB 中点的直线的斜率为车,则?的值为< ) 2 b A.更 B.生 C.距 D.生 2 3 2 27 2. 点F 为椭圆W-J=l (a>b>0)的一个焦点,若棉圆上存在点A 使△AOF 为正三角形,那么棉圆的离心率为( ) A.亭 B.学 C.早 0. JJ-1 1 2 3. 已知P 是以F|, F2为焦点的棉圖(?>b>0)上的一点,若PFilPFj, tanZPF,F 24,则此神圖的码心率为( ) a l 戸 2 A. - B. - C. - D.亞 2 3 3 3 4. 设F2是戏曲线力>°)的左、右两个焦点,若双曲线右支上存在一点P ,使(乔十折)?和=。(0为坐 a 1 标原点),且1戶尸11 = 51”2|,则双曲线的离心率为( ) A.罕 B.「+l C.擊 D.网 5. 如圍所示,A, B, C 是双曲线打土=1 <*>0, b>0>上的三个点,AB 经过原点0, AC 经过右焦点F,若 \ [ / BF 丄AC 目|BF| = |CF|,则该双曲线的高心率是< ) \ m A.罗 B. J10 C. I D. 3 6. 已知点F“ F2分别是双曲线W~4=l(a>0, d>0)的左、右焦点,ilFifi 垂直于x 轴的宜线与双曲线交于A, B 两点,若 a 2 b 2 F2是锐角三角形,则该戏曲线高心率的取值范围是( ) A. (1, JI) 7.设双曲线日-4=1仏>0, 6>0) 的右焦点为F (c, 0),方程?x 2-bx-c=0的两支根分别为x“ x 2,则P (x o x 2 A 2 b 2 A.必在Sx 2-y 2=2内 C.必在Sx 2-y 2=Z± 8.已知点A (2, 0),抛物线C: x 2=4y 的焦点为F,射銭FA 与抛物銭C 相交于点II,与其准线相交于点N,则|FM|: |MN| 9. 已知点A (-1, 0) , B (1, 0)及抛物线円2x,若抛物銭上点P 淆足iPAdlPBl,则m 的最大値为( ) A. 3 B. 2 C. D. J2 B.(卩,2j) D. (1,1+41) B.必在圖x2+y2=2外 D.以上三种情况都有可能

高考圆锥曲线压轴题型总结

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ

高中数学圆锥曲线压轴题集锦5-高考数学圆锥曲线压轴题

高中数学圆锥曲线压轴题集锦5 一.解答题(共60小题) 1.已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点. (1)求双曲线C2的方程; (2)若直线与双曲线C 2恒有两个不同的交点A和B,且(其中O为原点),求k的范围. (3)试根据轨迹C2和直线l,设计一个与x轴上某点有关的三角形形状问题,并予以解答(本题将根据所设计的问题思维层次评分). 2.在平面直角坐标系中,若=(x,y+2),=(x,y﹣2),且|=8. (1)求动点M(x,y)的轨迹C的方程; (2)过点(0,3)作直线l与曲线C交于A、B两点,设,是否存在这样的直线l,使得四边形OAPB为矩形?若存在,求出直线l的方程,不存在,说明理由. 3.如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点. (Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由. 4.在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上(如图),且OC=1,OA=a+1(a>1),点D在边OA上,满足OD=a.分别以OD、OC为长、短半轴的椭圆在矩形

及其内部的部分为椭圆弧CD.直线l:y=﹣x+b与椭圆弧相切,与OA交于点E. (1)求证:b2﹣a2=1; (2)设直线l将矩形OABC分成面积相等的两部分,求直线l的方程; (3)在(2)的条件下,设圆M在矩形及其内部,且与l和线段EA都相切,求面积最大的圆M的方程. 5.过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1 (1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程; (2)过点A、B分别作圆C的切线BD、AE,试求|AB|2﹣|AE|2﹣|BD|2的取值范围. 6.已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B 两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q 点坐标;如果不存在,说明理由. 7.设椭圆=1(a>b>0)过点,且左焦点为 (Ⅰ)求椭圆C的方程; (Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q, 满足?=?,证明:点Q总在某定直线上.

圆锥曲线知识点(秒杀压轴题)

圆锥曲线总结和推论 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中, 2||OB b =,2||OF c =,22||B F a =,且2 2 2 2222||||||OF B F OB =-,即222 c a b =-; ④离心率:椭圆的焦距与长轴的比c e a = 叫椭圆的离心率。∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时

(完整word版)数学高考圆锥曲线压轴题经典预测

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1( a>b>0)的离心率e= 3 2 ,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1( a>b>0)经过点P(1, 3 2 ),离心率e= 1 2 , 直线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.

★★椭圆C:x2 a2+ y2 b2=1( a>b>0)的左右焦点分别是F1,F2,离心率为 3 2 , 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且 只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1 + 1 kk2为定值,并求出这个定值. ★★★如图,已知双曲线C:x2 a2- y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(Ⅰ)求双曲线C的方程;

圆锥曲线压轴题解题策略

圆锥曲线压轴题解题策略 圆锥曲线问题将几何与代数知识有机结合在一起,较好地考察了学生的数学思维和创新,灵活处理问题的能力,是高考命题的热点之一.本文重点分析圆锥曲线的解题策略,希望同学们读后对圆锥曲线有一个新的认识,并通过自己不断地领悟和练习提高自己的解题能力. 一、知识准备 圆锥曲线解题的本质就是将题干中的条件和提干中条件和图形中隐含的几何特征转化成等式或不等式,最后通过代数运算解决问题,而其中的关键是怎样转化或构造不等式. 1.抓住定义构造等式,定义是圆锥曲线的核心和根本,涉及焦点时,优先用第一定义或第二定义。 2.抓住题中特殊几何关系来构造等式或应用几何关系使解题简化。 ①内心 1、三条角平分线支点 2、角平分线上的点到两边距离相等 3、切线长定理 4、面积法(S △ABI +S △ACI +S △BCI =S ABC ) ②重心 1、中线交点 2、AH=2HD ③重心 三条高线交点(可用垂直构造等式) ④外心 垂直平分线交点(垂直平分线的性质构造等式) ⑤三角形两边之和大于第三边(焦点三角形) ⑥直线与圆锥曲线相交 (1)两不同交点?△>O (2)交于左右两支?X 1X 2<O (3)交于同一支?X 1X 2>O ⑦用点与圆坐位曲线的关系来构造等式或不等式 (1)在椭圆上122 0220=+b y a x (2)在椭圆外22 022 0b y a x +>1

(3)右椭圆内22 0220b y a x +<1 ⑧用曲线本身的一些坐标限制(在椭圆中,-a≤x≤a,-b≤y≤b ) ⑨用k 相等(三点共线) 注:条件已用完,当缺少等式时,且无明显几何特征时,考虑用⑦、⑧、⑨。 3.用其它条件构造等式或不等式 ①用非负数k 2,R ,|x|大于0构造 ②问题中的要求与条件中的范围相联系 ③结合参数方程,利用参数的几何意义或三角函数的有界性,构造不等式。 4.与平面几何的联系 ①圆 直径所对的圆周角为90度(可用垂直构造等式) 相交弦,割线长定理 ②中位线(坐标原点为中点,往往考虑不到) 5.点差法 ①直线与曲线相交,且出现中点时,常常使用。 ②抛物线涉及k 时,常使用。 二、例题 例1.椭圆122 22=+b y a x (a >b >0)上相异两点A 、B 的垂直平分线在x 、y 轴上的截 距分别tx 、ty 证明:22 22b ty a tx +<2 2222)(b a b a -。 解析:本题初看无法下笔,要求证明的不等式非常复杂,无法入手,条件中只有垂直平分线这个条件,设垂直平分线l 与x ,y 轴交于M (tx ,o )、N (o ,ty )。因为|AM|=|BM|,于是M (x 1-tx )2+y 12=(x 2-tx )2+y 02,但是这个等式与问题求证等式无法联系,还需要等式 或不等式,注意到A 、B 在椭圆上,则1221221=+b y a x ,1222222=+b y a x ,y 12=b 2(22 11a x -), y 22=b 2(22 1a x -)

2020高考圆锥曲线压轴题总结

第一课时 简化解析几何运算的5个技巧 中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程. 想为指导,把定量的分析有机结合起来,则可使解题计算量大为简化,使解题构筑在较高的水平上. [典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2 =1与双曲线C 2的公共焦点,A ,B 分别是C 1, C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ) A .2 B . 3 C .32 D . 62 [解析] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,

可得???? ? |AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a , |AF 1|2+|AF 2|2=12, 解得a 2=2, 故a =2.所以双曲线C 2的离心率e =32=6 2 . [答案] D [方法点拨] 本题可巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量. [对点演练] 抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF | |P A |的 最小值为________. 解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+ y 2P =(x P +m )2 +4mx P ,则 ????|PF ||P A |2=(x P +m ) 2 (x P +m )2+4mx P = 11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2 =1 2(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为2 2 . 答案: 2 2 对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用代点法求解. [典例] 已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A , B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( ) A .x 245+y 2 36=1 B .x 236+y 2 27=1 C .x 227+y 2 18 =1 D .x 218+y 2 9 =1 [解析] 设A (x 1,y 1),B (x 2,y 2),

相关主题