搜档网
当前位置:搜档网 › 肽键的合成方法

肽键的合成方法

酰胺合成的一般方法

?胺与羧酸的缩合反应

?胺与酰卤的酰化反应

?胺与酸酐的酰化反应

?胺与酯的氨解反应

?胺与活性酯反应(缩合试剂参与)

常用缩合试剂:碳二亚胺

副反应:手性氨基酸的消旋化(三种机理)

1.直接消旋化机理

副反应:手性氨基酸的消旋化

2. 恶唑酮(Oxazolone)机理

3. 烯酮(Ketene)机理

HBTU Guanidine

Question & Comments

金刚烷胺的鉴别反应

盐酸金刚烷胺的鉴别反应(2005年版中国药典): 1、取本品10 mg,加水2 mL溶解后,加盐酸使成酸性,滴加硅钨酸试液,即析 出白色沉淀。 2、本品的红外光吸收图谱应与对照的图谱(光谱集369图)一致。 3、本品的水溶液显氯化物的鉴别反应。 氯化物鉴别反应: (1)取供试品溶液,加稀硝酸使成酸性后,滴加硝酸银试液,即生成白色凝乳状沉淀;分离,沉淀加氨试液即溶解,再加稀硝酸酸化后,沉淀复生成。如供试品为生物碱或其他有机碱的盐酸盐,须先加氨试液使成碱性,将析出的沉淀滤过除去,取滤液进行试验。 (2)取供试品少量,置试管中,加等量的二氧化锰,混匀,加硫酸湿润,缓缓加热,即发生氯气,能使用水湿润的碘化钾淀粉试纸显蓝色。 检查: 酸度取本品2.0 g,加水10 mL溶解后,依法测定,pH值应为3.5~5.0。 含量测定取本品约0.15 g,精密称定,加0.01 mol/L盐酸5 mL与乙醇50 mL 使溶解,照电位滴定法(附录ⅦA),用氢氧化钠滴定液(0.1mol/L)滴定,读取两突跃点的体积之差。每1ml的氢氧化钠滴定液(0.1mol/L)相当于18.77mg 的C10H17N·HCl(2010年版中国药典修订方法)。 莽草酸检测出现类似金刚烷胺反应的解释: 1、盐酸金刚烷胺鉴别反应有3项,其中第1项和第3项为非特异性反应,化合物中只要有Cl-、-NH2存在,很容易发生相关反应。因此,检测莽草酸时出现了第1项和第3项的反应,不能立即下定论说莽草酸中含金刚烷胺。可进行第2项,即比对两者的红外图谱,能直接说明问题。 2、针对上述的解释,有人会提出,莽草酸中含有Cl-,为何公司产品资料中莽草酸结构式中没有显示?答案是:由于市场上盗版猖獗,公司处于保密考虑,只公示了莽草酸的通用结构式,而将结构修饰后的莽草酸结构式隐藏。莽草酸的工艺

胺的制备方法

卤代烷的氨解盖布瑞尔合成法腈的还原硝基化合物的还原酰胺的降 一,卤代烷与氨反应可生成1°胺,但反应并不到此停止,生成的1°胺还可继续与卤代烷作用生成2°胺以至3°胺,所以这一反应总是生成三种胺的混合物。 调节原料的配比以及控制反应温度、时间等其他条件,可以命名其中的一种胺为主要产物。当R为较大烃基时,可采用分馏的方法将三种胺分离;当R为较小烃基时,由于生成的三种胺沸点接近,需要高效精馏才能将它们分开而得到纯品。 芳卤烃不活泼,需要高温高压等剧烈条件才能进行反应。例如: 这是工业上生产苯胺的方法之一。 芳香环上有硝基等强吸电子基取代的芳卤烃可在温和的条件下反应: 二, 这是一个用于制备纯1°脂肪胺的方法。首先用邻苯二甲酸酐与氨反应生成邻苯二甲酰亚胺,再利用酰亚胺氮上氢原子的酸性使之与氢氧化钾成盐,然后再与卤烃进行亲核反应。由于氮上只有一个氢,所以只能引入一个烃基,水解后便得到纯的1°胺。 三, 腈的还原也可用于制备1°胺,即可用催化氢化,也可使用化学还原剂。例如:

四, 由硝基化合物还原可制备1°胺,但此法一般只用于合成芳香胺,因为脂肪族硝基化合物不易获得。硝基的还原可采用催化氢化或使用化学还原剂。常用的化学还原剂是金属加酸,金属多用铁、锌、锡等,酸用硫酸、盐酸或醋酸。例如: 若分子中同时有醛基存在又不想使醛基也还原,可采用氯化亚锡作还原剂: 用化学还原剂还原硝基有时会产生对环境造成污染的废弃物,所以近年来已有逐步被催化氢化法取代的趋势。催化氢化法中常用的催化剂是镍、铂和钯,一般是在中性条件下反应。例如: 五, 酰胺在次卤酸钠的作用下可发生降解而失去羰基,生成比原来酰胺少一个碳原子的1°胺(参见第十二章第二节)。

金刚烷胺的合成

金刚烷胺 摘要:金刚烷胺具有药理活性,抗病毒那么,本文以两种方法合成,分别以溴代金刚烷胺为中间产物合成和以金刚醇硝酸酯为中间产物合成。然后,反应生成盐酸金刚烷胺。 关键词:金刚烷胺,盐酸金刚烷胺,合成 金刚烷胺又称金刚胺、三环癸胺,首先是作为抗病毒药使用,后来人们发现其有抗帕金森病作用。 【理化性质】为白色结晶性粉末,味苦,易溶于水或乙醇。 【作用与用途】金刚烷胺能阻断甲型流感病毒脱壳及其核酸释放至呼吸道上皮细胞中;此外,本品尚可能影响已进入细胞的病毒的早期复制。本品作用并无宿主特异性。能阻止病毒进入宿主细胞,影响病毒的脱氢,抑制病毒的复制。其抗病毒谱较窄,对A型流感病毒有明显抑制作用。主要用于禽流感治疗,用药后可明显降低死亡率。 盐酸金刚烷胺为一种对称的三环状胺,可以抑制病毒穿入宿主细胞,并影响病毒的脱壳,抑制其繁殖,起治疗和预防病毒性感染作用。盐酸金刚烷胺为白色结晶性粉末,无臭,味苦。在水或乙醇中易溶,在三氯甲烷中溶解,在丙酮中微溶,同时具有酸溶碱不溶的性质,金刚烷胺抗病毒谱较窄,主要是用于亚洲A型流感的预防,对于B型流感病毒与风疹病毒、麻疹病毒、流行性腮腺炎病毒及单纯疱疹病毒感染均无效。 金刚烷中含有两种碳原予即叔碳原子和仲碳原子,决定了金刚烷化学的反应特性主要通过与这两种碳原予相连的氢原子而体现出来。桥碳原子上氢的反应活性比单纯的叔碳原子上氢的反应活性低,不容易发生取代反应,原因在于由三个不同空间角度的环结构组成的化合物,而金刚烷高度对称的结构使得桥碳原子与相连的三个原子能够形成独特的半平面结构,令sp2杂化成为可能,从而在一定的条件下可以发生取代反应。

合成金刚烷胺的中间产物的合成 溴代金刚烷的合成 卤代反应:在FeS04的H2s04溶液中,金刚烷和溴反应加热到30-40得到85%溴代产物.其中含有97.5%的1.溴代金刚烷。 金刚烷醇硝酸酯的合成 ①向已加入5.4 g(O.04 m01)金刚烷和O.27 g十二烷基苯磺酸钠圆底烧瓶中加入100mL二氯甲烷,搅拌均匀,冰水浴条件下用恒压滴液漏斗向烧瓶中缓慢滴加混酸(将20 mL 98%的浓硫酸加入9.2 mL发烟硝酸中混合而成),约20 min滴加完毕。撤冰水浴,5min之后,改为25℃恒温水浴,反应23 h。 ②停止反应后,在冰浴条件下缓慢向烧瓶中加入尽可能少的冰水并缓慢搅拌,直到没有红棕色气体产生而且底层的深绿色消失,放罨1 h以确定没有酸性气体。旋转蒸发,蒸出二氯甲烷溶剂。 ③将混合物倒入冰水后,直到冰全部融化,过滤得浅黄色固体。或者直接将混合物中加入少量氯化钠和乙酸乙酯溶剂(反应过程中有表面活性剂,加入乙酸乙酯以降低表面张力,从而容易进行分离萃取。待氯化钠溶解完后进行萃取,合并多次萃取的有机层,旋转蒸发后得浅黄色固体物质。 金刚烷胺的合成 1.由溴代金刚烷合成金刚烷胺标准物(工业应用生产金刚烷胺的最主要途径) ①直接固体加热 将109溴代金刚烷与4.5 g尿素混合,直接加热。到180℃时,反应开始,有明显的反应现象,就是突然膨胀,温度猛升至230.240℃。反应结束后,自然降温,加入浓盐酸过量使充分溶解,后加入过量的氢氧化钠,使呈碱性,移入蒸馏罐,进行水蒸气蒸馏,后滤干得金刚烷胺4.0 g。 ②以甲苯为溶剂的氨解反应 为使反应进行的够完全充分,考虑加入甲苯作溶剂,使反应物于液相中进行反应。 于温度182℃条件下回流反应6 h,但反应结果并不理想,转化率只有40%。加入甲苯作溶剂,对反应产生不利的影响,因为甲苯的沸点相对偏低,没有使反应达到所要求的240℃,因此换沸点更高的溶剂对反应将产生什么样的影响有待于作进一步探讨。

合成氨的方法及其应用

闽南师范大学 合成氨的方法及其应用 姓名: 学号: 专业:应用化学 年级: 10应化2 2013年12月30

合成氨的方法及其应用 【摘要】介绍不同原料的合成氨和合成氨各个工段工艺流程,指出了我国合成氨工艺技术现状及其未来发展趋势,认为未来合成氨技术进展的主要趋势是大型化、低能耗、结构调整、清洁生产、长周期运行;介绍合成氨工业产品的用途,指出合成氨对化肥的重要意义。 关键词:合成氨工艺流程发展现状意义 前言 氨是一种重要的含氮化合物。氮是蛋白质质中不可缺少的部分,是人类和一切生物所必须的养料;可以说没有氮,就没有蛋白质,没有蛋白质,就没有生命。大气中存在有大量的氮,在空气中氨占78%(体积分数)以上,它是以游离状态存在的。但是,如此丰富的氮,通常状况下不能为生物直接吸收,只有将空气中的游离氮转化为化合物状态,才能被植物吸收,然后再转化成人和动物所需的营养物质。把大气中的游离氮固定下来并转变为可被植物吸收的化合物的过程,称为固定氮。目前,固定氮最方便、最普通的方法就是合成氨,也就是直接由氮和氢合成为氨,再进一步制成化学肥料或用于其它工业

我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 1.氨的性质 1.1物理性质 无色气体,有刺激性恶臭味。分子式NH3。分子量17.03。相对密度0.7714g/l。熔点-77.7℃。沸点-33.35℃。自燃点651.11℃。蒸气密度0.6。蒸气压1013.08kPa(25.7℃)。 1.2化学性质 蒸气与空气混合物爆炸极限16~25%(最易引燃浓度17%)。

制备氯乙烯方法比较

制备氯乙烯方法比较 班级:10化工(1)班姓名:吴倩学号2010115146 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。 乙烯、乙炔和混合烯炔法的特点如下: 一.乙烯氧氯化法 氧氯化法是利用氯化氢合成有机物的一般称呼。其反应如下 CH2=CH2 +2HCl+1/2 O2→ClCH2CH2Cl+ H2O ClCH2CH2Cl→CH2=CHCl +HCl 二.乙炔法 在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯: CH≡CH+H Cl→CH2=CHCl 其过程可分为乙炔的制取和精制,氯乙烯的合成以及产物精制三部分。 此法工艺和设备简单,投资低,收率高;但能耗大,原料成本高,催化剂汞盐毒性大,并受到安全生产、保护环境等条件限制,不宜大规模生产。电石乙炔法已基本被世界淘汰,但这是我国目前主要的氯乙烯的生产方法。该法的氯乙烯产量占总产量的50%以上。这种方法在我国煤炭和矿石资源丰富的地区,在当前石油涨价的世界经济背景下仍然可获得较高的经济效益。 三.乙烯直接氯化法 CH2=CH2+Cl2→CH2=CHCl+HCl 这是石油化工发展后以石油为基础开发的生产工艺。此法的最大缺点是伴随反应生成了大量的1,2-二氯乙烷,产率较低。该工艺比目前广泛采用的乙烯平衡氧氯化法流程短,能耗

金刚烷胺

金刚烷胺 【药物名称】 中文通用名称:金刚烷胺 英文通用名称:Amantadine 其他名称:金刚胺、金刚烷、硫酸金刚烷胺、三环癸胺、三环癸烷胺、盐酸金刚胺、盐酸金刚烷胺、盐酸三环癸胺、Adamantanamine、Adamantane、Adamantaneamine、Amantadine Hydrochloride、Amantadine Sulfate、Amantadinum、Ddino、Mantadine、Symmetrel、Vider。 【临床应用】 1.用于原发性帕金森病,脑炎、一氧化碳中毒、老年人合并脑动脉硬化所致的帕金森综合征及药物诱发的锥体外系反应。 2.也用于预防或治疗亚洲A-Ⅱ型流感病毒引起的呼吸道感染。与灭活的甲型流感病毒疫苗合用时可促使机体产生预防性抗体。 【药理】 1.药效学本药治疗帕金森病的作用机制尚不清楚,可能与其促进纹状体内多巴胺的合成及释放,减少神经细胞对多巴胺的再摄取,并加强中枢神经系统的多巴胺与儿茶酚胺的作用,增加神经元的多巴胺含量有关。动物实验亦证明,使用本药后动物脑内的多巴胺释放增加。 本药还可抗RNA病毒,其作用机制尚不完全清楚。可阻止RNA病毒穿透宿主细胞,如果病毒已穿透宿主细胞,还能阻止病毒的脱壳和释放核酸,干扰病毒的早期复制。在组织培养中,本药能防止黏液病毒、副黏液病毒和披膜病毒的感染,对体外弹状病毒(Rhabdovirus)也有效,然而在临床应用中本药仅对A型流感病毒有作用。 2.药动学本药口服后在胃肠道吸收迅速而完全,2-4小时后达血药峰浓度(约0.3μg/ml),每日服药者在2-3日内可达稳态浓度(0.2-0.9μg/ml)。本药可分布于唾液、鼻腔分泌液中。组织中(尤其是肺内)的含量高于血浆中的含量,可通过胎盘及血-脑脊液屏障(脑脊液的药物浓度为血浆浓度的60%)。本药在体内代谢量极少,主要由肾脏排泄,90%以上以原形经肾小球滤过随尿液排出,部分可被重吸收。有肾功能障碍者易致药物蓄积中毒。在酸性尿中排泄率可迅速增加,也有少量药物由乳汁排泄,肾功能正常者半衰期为11-15小时,肾衰竭者为24小时,长期透析患者半衰期可达7-10日。总体清除率为16.5L/h,老年人肾清除率下降。血液透析仅可从血中清除少量药物(约4%)。 【注意事项】 1.禁忌症 (1)对本药过敏者。(2)1岁以下儿童。(3)哺乳妇女。 2.慎用 (1)有脑血管病或病史(如脑动脉硬化)者。(2)有反复发作的湿疹样皮疹病史者。(3)周围血管神经性水肿或直立性低血压患者。(4)充血性心力衰竭者。

合成酰胺键的一般方法

合成酰胺键的一般方法 刚才浏览帖子,看到有人问如何合成酰胺键。由于本人博士论文是做多肽合成的,所以有一些经验。现将我的博士论文关于如何合成酰胺键的一段贴过来,希望能对即将从事多肽合成的人有些用。本帖原创,转载请注明出处。 在这里我们简单介绍一下多肽化学合成的方法以及常用的多肽缩合试剂。 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri 等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作用下,中间体不经分离直接进行反应形成酰胺键。这样就无需预先制备酰卤、酸酐和活化酯等羧基被活化的中间体,不仅简捷高效,而且可以有效地避免在活化中间体分离提纯以及存放过程中产生的一些副反应。目前已报道的多肽缩合试剂非常繁多,从分子结构的角度上主要分为碳化二亚胺类型、磷正离子或磷酸酯类型和脲正离子类型。 发展最早和最常用的碳化二亚胺类缩合试剂是DCC。但由于反应生成的二环已基脲(DCU)在大多数有机溶剂中溶解度很小,难以除去,人们对DCC的结构进行了改进,发展了副产物的脂溶性很好的DIPCDI 和BDDC等和副产物水溶性很好的EDCI(Figure 1.7)。 由于这类缩合试剂活性很高,往往会导致产物有较大程度的消旋,为此通常要加入HOSu,HOBt,HOAt 或HOOBt等添加剂一起使用来抑制产物消旋,同时也可有效地抑制N-酰基脲等副产物的生成。[attach]5892[/attach]

聚氯乙烯氯乙烯合成实用工艺原理讲解

合成工艺讲解课件 1、合成工序的生产任务:本工序的主要任务是将盐酸工序送来的HCL和乙炔工序送来的C2H2经混合脱水、转化、清净、压缩、精馏过程生产出纯度为99.99%的氯乙烯单体供聚合使用。 合成工序是烧碱和PVC的衔接工序,前为盐酸工序和乙炔工序,后供聚合,是PVC的工艺核心。 2、氯乙烯 C2H3Cl 分子量:62.5 物理性质:在常温常压下氯乙烯是一种无色有乙醚香味的气体,其沸点为-13.9℃,凝固点为-159.7℃。 爆炸性: 氯乙烯易燃,与空气混合形成爆炸性混合物,爆炸范围4-21.7%(体积比)。 毒性:氯乙烯对人有麻醉作用,对肝脏有影响,可使人中毒。当其浓度在0.1%以上时,开始有麻醉现象,表现为困倦,注意力不集中,随后出现视力模糊,走路不稳,在其浓度达20-40%时,可使人产生急性中毒,呼吸缓慢以致死亡,长期接触能引起消化系统疾病。空气中允许浓度为30mg/m3 3、乙炔:C2H2 ,分子量:26 物理性质:在常温下纯乙炔为无色气体,工业乙炔因含有硫化氢、磷化氢等杂质,而具有特殊的刺激性的气味。沸点:-83.66℃凝固点:-85℃ 爆炸性:下列情况下可以爆炸: A:高温(550℃)加压(>1.5表压)或有某些物质存在时,如电石氧

化铝、铜屑、氢氧化铁等。 B:与空气混合在2.3-81%范围时,特别在含乙炔7-13%时。 C:与氧混合在2.5-93%范围时,特别在含乙炔30%时。 D:当乙炔和氯气混合时,在阳光下即能爆炸。 E:与铜、汞、银接触生成相应的金属化合物时。空气中允许浓度为500mg/m3。 4、氯化氢:HCl,分子量:36.46 物理性质:是一种无色有刺激性气味的气体。沸点:-84.8℃,极易溶于水 化学性质:性质活泼,除贵金属外能与大多数金属反应,生成金属氯化物,对各种植物纤维亦有强烈的腐蚀性。 空气中允许浓度为15mg/m3 5、阻火器及乙炔砂封的工作原理。 目前阻火器普遍使用的是金属丝网过滤器,筒体内部布置了较多的金属丝网, 目的是吸收热量,因为金属是热的良导体,从而阻断了燃烧三要素之一:燃烧所需要的热量。 燃烧三要素是可燃物、助燃物、燃烧所需的热量。由于吸收了大量的热量,使的即使存前两个因素都存在,但是由于热量不够,使得可燃物达不到燃烧(自燃)所需要的温度,自然就燃烧过程就无法继续进行,只能终止。 简单的说阻火器的灭火原理是当火焰通过狭小孔隙时,由于冷却

盐酸金刚烷胺合成进展

科研开发 2018·01 145 Chenmical Intermediate 当代化工研究 盐酸金刚烷胺合成进展 *刘小东 (天津民祥生物医药股份有限公司 天津 300350) 摘要:盐酸金刚烷胺为一种对称的三环状胺,可以抑制病毒穿入宿主细胞,并影响病毒的脱壳,抑制其繁殖,有治疗和预防病毒性感染 的作用。盐酸金刚烷胺抗病毒谱较窄,主要是用于亚洲A型流感的预防。当药物进入脑组织后可促进释放多巴胺,或延缓多巴胺的代谢而发挥抗震颤麻痹作用,对震颤麻痹有明显疗效,缓解震颤、僵直效果好,起效快用药后48小时作用明显。盐酸金刚烷胺也对可用于原发性震颤麻痹及脑炎后脑动脉硬化的震颤麻痹综合征等。本文对盐酸金刚烷胺合成方法进行了综述,以期为该药物的合成及工业化生产提供参考。关键词:金刚烷;盐酸金刚烷胺;合成 中图分类号:O 文献标识码:A Progress in Synthesis of Amantadine Hydrochloride Liu Xiaodong (Tianjin Minxiang Biological Medicine CO., LTD., Tianjin, 300350) Abstract :Amantadine hydrochloride is a symmetrical tricyclic amine, which can inhibit virus penetration into host cells, affect virus shelling, inhibit its reproduction, and has the effect of treating and preventing viral infection. Amantadine hydrochloride has a narrow antiviral spectrum and is mainly used for the prevention of influenza A in Asia. When the medicine enters the brain tissue, the medicine can promote the release of dopamine or delay the metabolism of dopamine so as to play an anti-tremor paralysis effect, and the medicine has obvious curative effect on tremor paralysis and good effect of relieving tremor and rigidity, and fast and obvious effect after the medicine is taken in 48 hours. Amantadine hydrochloride is also useful in the treatment of tremor paralysis syndrome of primary tremor paralysis and cerebral arteriosclerosis after encephalitis. The synthesis methods of amantadine hydrochloride were reviewed in this paper in order to provide reference for the synthesis and industrial production of amantadine hydrochloride. Key words :adamantine ;amantadine hydrochloride ;synthesis 盐酸金刚烷胺化学名称为三环[3.3.1.13.7]癸烷-1-胺盐酸盐,研究它的合成主要集中在研究以金刚烷为起始原料合成产品盐酸金刚烷胺。合成盐酸金刚烷胺已有大量的文献报道,以下对比较重要的几种合成路线进行分析对比。 1.以1-溴代金刚烷为原料 (1) 与尿素胺化、成盐路线 此路线以金刚烷为初始原料与液溴反应生成1-溴代金刚烷,经过蒸馏除溴得到1-溴代金刚烷粗品,收率约95%。1-溴代金刚烷与尿素反应以豆油为溶剂在160℃反应,反应自行升温至180-190℃生成金刚烷胺,再经过提取、酸化、结晶得到盐酸金刚烷胺,收率约80%。 此路线制备1-溴代金刚烷需大量使用溴素,溴素对设备腐蚀严重,而且对环境污染较大,在胺化反应时反应温度较高且反应会突然急速升温存在一定安全隐患,但此路线原料成本低,操作简单、易于工业化。 (2) 与甲酰胺反应、水解、成盐路线 此路线以金刚烷为初始原料与液溴反应生成1-溴代金刚烷,经过蒸馏除溴得到1-溴代金刚烷粗品,收率约95%。1-溴代金刚烷与甲酰胺通过锰催化剂催化在120℃反应3小时得 到酰胺,酰胺经过碱水解,再经过提取、酸化、结晶得到盐酸金刚烷胺,收率约85-90%。 此路线同样使用液溴制备1-溴代金刚烷,胺化以1-溴代金刚烷与甲酰胺和锰催化剂反应较为温和但大量使用甲酰胺和锰催化剂致使总的生产成本较高,并且操作比较复杂, “三废”量大且含有重金属不易处理。 2.以金刚烷为原料 (1) 与乙腈反应经水解、成盐路线 此路线以金刚烷为初始原料,在-5--3℃硫酸中滴加乙腈,滴加结束后加入镍催化剂和金刚烷,反应液在18℃反应6.5小时,反应结束再用水稀释及二氯甲烷萃取、蒸馏得到1-乙酰氨基金刚烷粗品,1-乙酰氨基金刚烷粗品用正丁醇溶解经过碱回流水解、稀释分层、成盐结晶等步骤得到盐酸金刚烷胺。 此路线单元操作繁琐,反应总周期长、反应过程加入大量的水,并且使用大量有机溶剂提取等,以致产生大量酸性及碱性有机废水,易造成环境污染,工业化生产成本较高。 (2)与浓硝酸反应生成硝酸酯、经尿素胺化、游 离、成盐路线 此路线以金刚烷为初始原料与发烟硝酸反应生成金刚烷

氯乙烯的制备

氯乙烯单体的制备 培训教材

第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 二、反应基本原理 三、产品说明 四、工艺流程简述 五、工艺流程方框图 六、生产中原辅材料和成品的性质 第二章工艺流程 第一部分混合脱水和合成系统 一混合脱水系统 二、氯乙烯的合成系统 三、氯乙烯合成对原料气的要求 四、氯乙烯合成反应条件的选择 五.混脱和合成系统工艺流程方框图 第二部分粗氯乙烯的净化和压缩 一、净化的目的 二、净化原理—水洗和碱洗 三、盐酸脱吸 四、粗氯乙烯的压缩 五、粗氯乙烯的净化和压缩系统工艺流程方框图 第三部分氯乙烯的精馏 一、精馏的目的和方法 二、精馏的一般原理 三、精馏操作的影响因素

四、单体质量对聚合的影响 五、先除低沸物后除高沸物精馏工艺的优点 六. 氯乙烯精馏系统工艺流程方框图 第四部分精馏尾气变压吸附回收 一. 工艺原理 二、吸附平衡 三、工艺生产过程 四、变压吸附部分操作条件表 第五部分氯乙烯的贮存及输送 第三章、安全技术措施:

氯乙烯的制备培训教材 第一章氯乙烯安全生产基础知识 一、氯乙烯工序的任务 本工段的生产任务是将精制后的乙炔气(纯度≥98.5%)、与氯化氢工段送来的氯化氢气体(纯度≥93%)按一定量配比(1:1.05)混合,经混合脱水、预热后进入装有氯化高汞触媒的转化器合成粗氯乙烯气体,并经水洗、碱洗、加压、精馏制得纯度达99.9%以上的合格氯乙烯单体,供聚合聚氯乙烯树脂使用。 二、反应基本原理 HCL+C H≡CH→CH2=CHCL+124.6KJ/mol 氯乙烯的物化性质: 氯乙烯在常温、常压下是比空气重一倍的微溶于水的无色气体,带有一种麻醉性的芳香气味。氯乙烯分子式是C2H3CL,分子量62.51。 主要参数: 沸点:-13.9℃凝固点:-159℃ 爆炸范围(空气中)3.6%~32%(体积含量) 爆炸范围(氧气中)4%~70%(体积含量) 冲N2或CO2可缩小其爆炸浓度范围。 纯的氯乙烯气体加压到0.5MPa时,可用工业水冷却得到比水略轻的液体氯乙烯。 液态氯乙烯无论从设备或从管道向外泄漏,都是极其危险的,一方面它遇到外界火源会爆炸起火,另外,由于它是一种高绝缘性液体,在压力下快速喷射,就会产生静电积聚而自发起火爆炸。因此,输送液态氯乙烯时宜选用低流速(一般≤3m/s),并将设备与管道进行防静电接地。 +

笼状烃金刚烷的现状和合成技术进展

笼状烃金刚烷的现状和合成技术进展 杨辉琼1,李 宾2 Ξ (1.湖南工程学院化学化工系,湖南湘潭411101;2.天一科技股份有限公司有机总厂,四川沪州646300) 摘 要:金刚烷是精细化工领域的一种新兴的热门产品,是制药、功能高分子、香料化妆品、照相感光材 料、催化剂、表面活性剂及特种润滑材料等的原料,有广泛应用前景.综述了金刚烷的各种合成方法及特点. 关键词:金刚烷;无水三氯化铝;固体酸催化;沸石中图分类号:O635.1 文献标识码:A 文章编号:1671-119X (2005)04-0092-03 金刚烷(C 10H 6)是烃类家族中发现较晚的成员之一,1933年才从石油的精密馏分中分离出少量的纯物质[1],由于其独特的环状四面体笼状结构,使其成为近30年来精细化工领域的一种新兴的热门产品[2],是制药、功能高分子、香料化妆品、照相感光材料、催化剂、表面活性剂及特种润滑材料等的原料,有广泛应用前景。目前国内主要用于制药行业(主要是金刚烷胺的生产),经济效益显著. 1 结构和性质 金刚烷可以看成是三个椅式结构的环己烷组成, 可以由下面三种形式来表示它的结构[3-4]. 由于结构的高度对称性,所以金刚烷具有良好的热稳定性、润滑性和亲油性,且无毒无味.分子中1,3,5,7四个叔碳原子上的氢原子具有较强的化学 反应能力,其它的仲碳氢原子在一定条件下也可以被取代,因此可以形成一系列的取代衍生物[5],新形成的化合物同时具有金刚烷和引进基团的双重性能.由于分子中氢原子可以同时或分别被取代,而且允许引进相同或不同的基团,所以分子可设计性很强,是一种合成精细化工产品的极佳原料. 2 生产现状和市场前景分析 随着1995、1996年金刚烷胺复方制剂的陆续上市并迅速打开市场,产量迅速增长.已从1996年的84t 增至2000年的320t 以上.预计到2005年将达到500t ,由于含PPA 抗感冒药的退出市场,这使得含金刚烷胺的抗感冒药如快克、感康等快速发展,故其原料金刚烷胺的需量大增,另外,兽药用的市场也正逐年增长。 金刚烷作为新型抗感冒药物金刚烷胺类的原料,已被市场所认可,化工级金刚烷售价8-9万元/吨(现在的市场价格),曾有报道其出口价为25美元/公斤,纯度为9919%的金刚烷国内报价为60万元/吨.因此,金刚烷的合成前景较好. 3 合成方法 目前,国内金刚烷的合成方法[6-9]有几种:一 是三氯化铝法生产金刚烷的技术,已经工业化,但收率特别低,只有30%左右;二是中科院大连化物所采用新技术(固体酸催化)合成金刚烷,小试收率可达到60%,现该技术成果已被大庆开发区购买,但是,并没有实现工业化生产,还需要进一步攻关;三是对于沸石(即分子筛)进行改性用于制备金刚烷;四是应用固体超强酸制备金刚烷。 以双环戊二烯为原料,通过催化异构化合成金刚烷,再经分离得到医药级的金刚烷.目前国内实现 第15卷第4期 2005年12月 湖南工程学院学报Journal of Hunan Institute of Engineering Vo1.15.No.4 Dec.2005 Ξ收稿日期:2005-07-09 作者简介:杨辉琼(1971-),女,副教授,研究方向:精细化学品及其中间体的合成研究.

胺的合成

1 目前胺的合成方法 1.1硝基的还原 【1】 硝基的还原是一种常用的合成伯胺的方法,特别是芳香伯胺。一般而言,最干净和简便的还原方法就是通过Pd/C 或Raney Ni 加氢,因此一般建议尽可能使用加氢还原的方法还原硝基。当分子内存在对加氢敏感的官能团如:卤素(Cl, Br, I; F 对加氢不敏感)、双键、三键时,我们不得不采用化学还原的方法,最为经典的要数铁粉的还原,SnCl 2还原,应用保险粉也可用于还原硝基,在还原硝基时开始跟踪反应时,经常看到很多反应点,其实主要是各种反应的过渡态,如亚硝基,偶氮中间体等等。继续还原会将这些中间体还原彻底到氨基。 一般来说,硝基化合物不用氢化锂铝(LAH)还原,因为氢化锂铝(LAH)无法将硝基还原彻底,从而得到混合物, 但对于不饱和的共轭硝基化合物其可通过氢化锂铝(LAH)还原或NaBH 4-Lewis 酸的方法进行还原得到饱和的胺。 芳香硝基的铁粉还原: N S NO 2 Fe/AcOH N S NH 2 脂肪硝基的铁粉还原: N O 2N Fe/HCl N N H 2 1.2酰胺还原合成胺 酰胺的还原也是合成胺基的一种常用的方法,其常常用于伯胺的单烷基化,一般将酰胺还原到胺最常见的方法就是通过LAH 在加热回流下进行。但当分子内有对LAH 还原敏感的官能团存在时,如芳环上有卤原子存在特别是溴和碘存在时(在此剧烈的条件下,容易造成脱卤)。分子内存在其他的碳酰胺等等。因此这时需要一些温和的还原条件,目前常用的有:硼烷还原,NaBH 4-Lewis 酸体系还原,DIBAL 还原等等。 另外碳酰胺在LAH 的还原条件下,也可被还原成为甲基,这也是一个常用的将伯胺单甲基化的一种方法。一般由于Boc (叔丁氧羰基),易于反应,及中间体的提纯,因此常用于此类反应。

金刚烷胺的合成设计1

题目:维生素A的合成设计

金刚烷胺的工艺合成设计 1产品简介 1.1金刚烷胺(amantadine)C10H17N 英文别名:Adamantanamine、Amantan、Amazolon、Antadine、Contenton、L-Adamantanamide Hydrochlori、L-Adamantanamine、Mantadan、Mantadine、Mantadix、Protexin、Solu-Contenton、Symmetrel、Trivaline、Virofral、Virosol. 中文别名:金刚胺、三环炔胺、1-氨基金刚烷、1-金刚烷胺、1-胺基金刚烷。 结构式: 1.2物化性质 金刚烷胺(amantadine)又称三环癸胺。略溶于水,溶于氯仿,熔点180一192℃(封管)。白色结晶性粉末,无臭无味。对光和空气稳定,溶于2.5倍水,溶于5倍的乙醇,18倍的氯仿,不溶于苯和乙醚。 1.3用途 除用于亚洲甲一11型流感的预防和早期治疗外,也可以与抗菌素合用可治败血症和病毒性肺炎,并有退烧作用。也有抗震颤麻痹的作用。 1.4 金刚烷胺的生产现状与前景分析 a.生产现状: 我国的金刚烷胺是1971年首先由东北制药总厂开发上市的。现在国内主要的生产厂家有东北制药总厂、浙江康裕制药、浙江迪耳化学等,其中浙江康裕制药年产300吨,市场占有率为45%左右。 金刚烷胺具有扼制亚A型流感病毒生长的作用机制,能有效抵御流感病毒的感染,其复方制剂是一个高效、低毒性的抗流感药物,目前含金刚烷胺的复方抗感冒制剂有多种配方,其中影响力较大的是复方氨酚烷胺、复方金刚烷胺氨基比林等,剂型有片剂、胶囊、颗粒剂、口服液等,生产厂商已达数百家,估计国内年总产量将达25亿-30亿粒左右,消耗金刚烷胺原料300多吨。在品牌如林的抗流感病毒市场中,快克、小快克、感康、克欣诺、感抗、泰克、永龙新速效感冒丸己是市场中重要品种,感舒、喜乐克、扑感灵、感克、盖克、轻克、感诺、感力克、感速宁等也占据了一定的份额。 目前国内金刚烷胺原料药主要用于复方抗感冒制剂,糖浆剂和颗粒剂,消耗量约占总产量的3/4,而其它单方制剂和外销仅占1/4左右。金刚烷胺单方制剂产量较稳定,金刚烷胺兽用药市场呈逐年增长趋势。 b.前景分析 ①含金刚烷胺的复方抗感染制剂稳定增长 目前,含金刚烷胺的复方抗感冒制剂有近十种,但只有快克和感康成为有影响力的品牌产品。由于2000年春季的流感高峰和2000年11月含PPA药物被禁止使用,使用这类制剂产品在2000年的销售和生产大幅增长。受中药类抗感冒制剂强劲势头和抗流感疫苗的推广的影响,以后这类复方制剂将出现稳定小幅增长的成熟趋势,预计增长速度将低于我国药品市场12%的增长速度。

其他方法合成胺-060123

其他方法合成胺-060123

经典化学合成反应标准操作其他方法合成胺 编者:刘国超

药明康德新药开发有限公司化学合成部

1.Curtius 重排合成胺及相应的衍生物 Curtius重排是一种常用的将羧酸转化为少一个碳的胺及相应衍生物的方法。其机理如下 R O Cl R O N3R O N N N R O N N R-N=C=O + N2 2 O R-NH2 BnOH R-NHCbz R-NHBoc R'NH2 O NHR' RHN t BuOH R O OH 首先酰氯被转化为酰基叠氮,其加热重排脱去一分子氮气后得到相应的异氰酸酯,异氰酸酯水解或和其他亲核试剂反应得到胺及相应的衍生物。早期的合成方法都是将酸转变为相应的酰氯,再生成酰基叠氮。后来Shiori(JACS,1972,94,6203)等人报道了DPPA和羧酸在室温下很温和的生成酰基叠氮,可一锅法合成胺。若直接用过量的醇或直接用醇做溶剂可得到相应的胺的衍生物。如用苄醇可一步得到Cbz保护的胺; 用叔丁醇可一步得到Boc保护的胺。 R O OH R-N=C=O R-NH2 P O N3 PhO PhO DPPA R O N3 H2O R O OH R-N=C=O P O N3 PhO PhO DPPA R O N3 R'OH R'OH R N H O O R' 一般情况下,用此方法直接做胺并不是一个好的方法,特别是制备烷基胺,其主要有两个原因:一是得到的胺特别是烷基胺不易纯化;二是加水分解异氰酸酯时得到的胺会和未反应完全的异氰酸酯反应成脲,因此分解时要剧烈搅拌,另外也有人使用稀酸水解异氰酸酯得到相应的胺的盐酸盐。 1.1 酰基叠氮重排合成胺示例

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸

氯乙烯合成与净化

沈阳化工大学 化工设计 氯乙烯合成与净化的工艺流程设计 说明书 专业:化学工程与工艺 班级:科化工0701 学生姓名:A于子钧,潘磊 B 邓小丹,刘莉,徐军军,李慧 指导教师: 设计时间: 2 010 年11 月 所属设计组:科化工1班(A、B)组 成绩:

目录 一、总论 (3) 1.1.氯乙烯简介 (3) 1.2.氯乙烯生产技术及进展 (3) 1.3.历史沿革 (4) 1.4.生产方法 (4) 1.4.1.乙烯氧氯化法 (5) 1.4.2.乙炔法 (6) 1.4.3.混合烯炔法 (7) 二、生产流程简述 (7) 三、生产流程图 (8) 四、操作条件 (8) 五、计算结果 (10) 六、结束语 (11)

一、总论 1.1.氯乙烯简介 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。 1.2.氯乙烯生产技术及进展 氯乙烯工业化生产始于20世纪20年代,早期生产方法采用电石为原料的乙炔法路线,电石水解生成乙炔,乙炔与氯化氢反应生成VCM。由于该工艺能耗较高,污染严重,因此自以乙烯为原料的工艺路线问世之后就逐渐被淘汰。目前全世界范围内95%以上的VCM产能来自乙烯法工艺。另外,为利用廉价的烷烃资源,Geon、Lummus、EVC(Ineos)等还开发了以乙烷为原料的VCM工艺路线。 乙烯氧氯化法由美国Goodrich公司于1964年首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产VCM的产能约占VCM总产能的95%以上。 乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC 和EDC裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC精制单元和VCM精制单元等工艺单元组成。乙烯和氯气在直接氯化单元反应生成EDC。乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。生成的粗EDC在EDC精制单元精制、提纯。然后在精EDC裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。 直接氯化有低温氯化法和高温氯化法;氧氯化按反应器型式的不同有流化床法和固定床法,按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。具有代表性的Inovyl公司的VCM工艺是将乙烯氧氯化法提纯的循环EDC和直接氯化的EDC在裂解炉中进行裂解生产VCM。经急冷和能量回收后,将产品分离出HCl(HCl循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。来自VCM装置的

其他方法合成胺

经典化学合成反应标准操作 1.Curtius 重排合成胺及相应的衍生物 Curtius 重排是一种常用的将羧酸转化为少一个碳的胺及相应衍生物的方法。 其机理如下 R O Cl R O N 3 R O R-N=C=O + N 2 2O R-NH 2 R-NHCbz R-NHBoc R'NH O NHR' RHN R O OH 首先酰氯被转化为酰基叠氮,其加热重排脱去一分子氮气后得到相应的异氰酸酯,异氰酸酯水解或和其他亲核试剂反应得到胺及相应的衍生物。 早期的合成方法都是将酸转变为相应的酰氯,再生成酰基叠氮。 后来Shiori (JACS ,1972,94,6203)等人报道了DPPA 和羧酸在室温下很温和的生成酰基叠氮,可一锅法合成胺。若直接用过量的醇或直接用醇做溶剂可得到相应的胺的衍生物。如用苄醇可一步得到Cbz 保护的胺; 用叔丁醇可一步得到Boc 保护的胺。 R O OH R-N=C=O R-NH 2 P O N 3 PhO PhO R O N 3 H 2O R O OH R-N=C=O P O N 3 PhO PhO R O N 3 R'OH R N H O O R' 一般情况下,用此方法直接做胺并不是一个好的方法,特别是制备烷基胺,其主要

有两个原因:一是得到的胺特别是烷基胺不易纯化;二是加水分解异氰酸酯时得到的胺会和未反应完全的异氰酸酯反应成脲,因此分解时要剧烈搅拌,另外也有人使用稀酸水解异氰酸酯得到相应的胺的盐酸盐。 1.1 酰基叠氮重排合成胺示例 F F O CO2H 2. NaN3, H2O, acetone F F O 2 2,6-difluoro-4-methoxyphenyl carboxylic acid (2.00 g, 10.6 mmol) was dissolved in thionyl chloride (16 mL). One drop of DMF was added and the mixture was heated to reflux for 2 h. The crude mixture was evaporated to dryness and the residue was dissolved in 5mL acetone. A solution of sodium azide (970 mg, 14.9 mmol) in water (2 mL ) was added dropwise at room temperature. After 30 min, water (10 mL) was added and the solution was extracted with toluene (50 mL). The organic layers were dried over sodium sulfate and heated to reflux for 30 min. Then 10 mL of a 45% sodium hydroxide solution was added and the mixture was heated for a further 30 min. The organic layer was separated, dried over sodium sulfate and evaporated. The residue was purified by column chromatography (dichloromethane) to yield 660 mg (39%) of the title compound. Reference:Tetrahedron Lett., 2004, 45, 95 - 98. 1.2 使用DPPA合成胺示例 CO2H O O NO2 NH2 O O NO2 78% 2-benzyloxy-3-methoxy-4-nitroanilin acid (27.9 g, 91.8 mmol) was dissolved in THF (400 mL) and treated with Et3N (30 mL). Diphenylphosphoryl azide (26.5 g, 96.4 mmol) was added dropwise and the reaction mixture was stirred for 3 h at 25 o C. H2O (150 mL) was added and the reaction mixture was refluxed for 2 h. The solvent was removed in vacuo and

相关主题