搜档网
当前位置:搜档网 › 对近世代数的认识

对近世代数的认识

对近世代数的认识
对近世代数的认识

对近世代数的认识

田丽丽

众所周知三大几何难题的解决导致了近世代数的产生。位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

一.三大难题的提出

实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。

古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。

漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。

1.三等分角问题:将任一个给定的角三等分。

2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

二.貌以简单其实难

从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。

三.高斯的发现

历史的车轮转到了17世纪。法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。

最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。

由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。

四.最后的胜利

解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。标准有了,下来该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决,宣布了2000多年来,人类征服几何三大难题取得了重大胜利。他的证明方法是这样的:假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系。所以立方倍积实际是求作满足方程x3-2a3=0的线段X,但些方程无有理根,若令a=1,则要作长度为2的立方根的线段,但2的立方根超出了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。用类似地想法,他证明了三等分角也是不可能解的问题。实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。根据这一定理,任意角的三等分就不可能了。1882年,德国数学家林德曼借助于eiπ=-1证明了π的超越性,从而解决了化圆为方的问题。假设圆的半径为r,正方形的边长为x,按化圆为方数代数方程的根,更不能用加减乘除开平方所表示,因而不可能用尺规法作图。

从此,古典几何的三大难题都有了答案。

近世代数讲授群、环、域、模四种代数体系。对于这些代数体系而言,都比较抽象,不好理解。例如“群”这种代数体系,如果按照“定义-例-性质-定理”的通常模式去学习,往往只记住一些词汇,难以掌握实质。因为那样讲定义,只说“群是一个带有运算的集合,该运算满足结合律,有幺元,任一元有逆元”,而对于为什么其中要有运算,为什么该运算要满足结合律,为什么要有幺元,为什么任一元要有逆元,大家都不清楚,只能死记。其实,“群”有丰富的实际背景。许多数学家说“对称即群”。如果我们看“群的定义”时,按照“客观世界中的对称-对称变换群的定义-抽象群的定义”的顺序来学习,效果很好。首先,从感性认识中的大量“对称”说起,再上升为理性认识,给出“对称的数学描述”;再就相对熟习的“平面图形的对称”,来尝试对其进行数学描述;再用运动的观点看“对称”,抓住“变中有不变”作为对称的本质,引出平面图形K的对称集S(K),来描述K的对称性;然后引出任意客观事物N的对称集S(N),来描述N的对称性;再仔细考察由N的对称变换构成的集合S(N),发现它不是一个普通的集合,而是一个带有运算的集合,这个运算就是“对称变换的相继实施”,而且这一运算对S(N)有封闭性、满足结合律,S(N)中有恒等变换,S(N)中每一变换在其中又都有逆变换,S(N)已经构成了一个具体的群,称为“N的对称变换群”;最后再上升到一般的抽象群。用这种方法学习群的概念,不但使我们当堂记住了群的定义,而且对于群中运算的封闭性,对结合律,对幺元,对逆元,因其都有清晰的来源,从而学生都能有较深入的理解。特别是,由此训练了我们透过现象看本质的素养,培养了我们

主动了解问题的背景、从中提炼数学思想的素养,熏陶了我们以良好的科学态度,合理地提出新概念的素养。

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库 一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,m ax = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设() ,G 为群,其中G 是实数集,而乘法k b a b a ++= :,这里k 为G 中固定的常数。那么群() ,G 中的单位元e 和元x 的逆元分别是( ) ①0和x -; ②1和0; ③k 和k x 2-; ④k -和)2(k x +-。 5、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ) ①11--a bc ; ②11--a c ; ③11--bc a ; ④ca b 1-。 6、设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,。如果6,那么G 的阶=G ( ) ①6; ②24; ③10; ④12。 7、设21:G G f →是一个群同态映射,那么下列错误的命题是( ) ①f 的同态核是1G 的不变子群; ②2G 的不变子群的逆象是1G 的不变子群;③1G 的子群的象是2G 的子群; ④1G 的不变子群的象是2G 的不变子群。 8、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为( ) ①若a 是零元,则b 是零元; ②若a 是单位元,则b 是单位元; ③若a 不是零因子,则b 不是零因子;④若2R 是不交换的,则1R 不交换。 9、下列正确的命题是( ) ①欧氏环一定是唯一分解环; ②主理想环必是欧氏环; ③唯一分解环必是主理想环; ④唯一分解环必是欧氏环。 10、若I 是域F 的有限扩域,E 是I 的有限扩域,那么( ) ①()()()F I I E I E :::=; ②()()()I E F I E F :::=; ③()()()I F F E F I :::=; ④()()()F I I E F E :::=。 三、(2011年近世代数)填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分。每空1分,共10分)

近世代数的应用(论文)

近世代数的应用 1.分子结构的问题: 设在苯环结构上结合CH3或H或NO2,问有多少种不同的化合物? 这个问题可以分成两种情况老考虑。第一种情况是如果把苯环个连接键看成相同的,则分子结构问题就是三种颜色6颗珠子的项链问题第二种情况是如果把苯环的连接键看成不同,单键和双键交替是,则需要另外考虑。 设苯环上碳原子之间是由单键与双键交替连接的,在每个碳原子上结合H或CH3或NO2,问可以形成多少种不同的化合物? 解:这个问题与项链问题的不同之处就是旋转群G,由于两个分子重合时,必须经过旋转后单键与单键重合,双键与双键重合。孤:G={(1),(135)(246),(153)(246),(12)(36)(45),(14)(23)(56),(16)(25)(34)}同构与D3。 全部有标号的分子数3的6次方。G作用于有标号的分子结构上的不动点数计算如下:

所以N=1/6*3*92=138 即共可以形成138种不同的物质,此数把个项链看作等同时要大,因为不对称性增加了。 2.开关的线路的计算问题: 每个开关的状态,由一个开关的变量来表示,例如用A 表示一个开关变量,用0。1表示开关的两种状态,则开关的取值是0或1。 由若干的开关A1。。。。。。AK组成的一个线路称为开关的线路,一个开关线路也有两种状态,接同用一表示。接同用一表示,短开用1表示,他的状态由各个开关的状态决定,因而可用一个函数f(A1….AK)来表示,F的取值是0或1,称F为开关函数,每个开关的对应一个开关函数。S+{0,1},则开关函数F(A1。。。AK)是S*。。。*S到S的一个映射。不难看出,K个开关的变量的开关函数共有2(2(K))个当K=2时工有16个函数。

《抽象代数基础》习题解答

《抽象代数基础》习 题 答 解 于延栋编 盐城师范学院数学科学学院二零零九年五月

第一章 群 论 §1 代数运算 1.设},,,{c b a e A =,A 上的乘法”“?的乘法表如下: 证明: ”“?适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“?适合结合律,只需证明 )()(z y x z y x ??=??. 下面分两种情形来阐明上式成立. I.z y x ,,中至少有一个等于e . 当e x =时,)()(z y x z y z y x ??=?=??; 当e y =时,)()(z y x z x z y x ??=?=??; 当e z =时,)()(z y x y x z y x ??=?=??. II .z y x ,,都不等于e . (I)z y x ==.这时,)()(z y x e x x z z e z y x ??=?===?=??. (II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ??=?==?=??. (III)z y x ,,中有且仅有两个相等. 当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =?=??)(,z u x z y x =?=??)(,从而,)()(z y x z y x ??=??.同理可知,当z y =或x z =时,都有)()(z y x z y x ??=??. 2.设”“?是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=n i i a 1为: 111a a i i =∏=,111 1+=+=????? ??=∏∏r r i i r i i a a a . 证明: ∏∏∏+==+==???? ??????? ??m n k k m j j n n i i a a a 1 11.

近世代数复习试题2010级

《近世代数》复习试题 一 填空题 1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类. 2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射. 3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________. 4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______. 5. 在3S 中,)23()12)(123(1-= . 6. 模6的剩余类环6Z 的所有可逆元: . 7. 模6的剩余类环6Z 的所有零因子: . 8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a . 9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________. 10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________. 二 解答、证明题 1.设Z 是全体整数的集合,在Z 中规定: .,,2Z b a b a b a ∈?-+= 证明:),( Z 是一个交换群. 2.证明:群G 不能表示成两个真子群的并. 3.证明:r-循环为偶置换的充要条件是r 为奇数. 4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群. 5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =?≤. 6.设H G ≤,N G ,证明:HN G ≤. 7.设H G ≤,且2]:[=H G ,证明:.G H 8.证明:每个素数阶的群都是循环群. 9.设N 是群G 的子群,N 的阶是r (1)证明1()gNg g G -∈也是G 的一个子群.

近世代数期末考试题库

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出得四个备选项中只有一个就就是符合题目要求得,请将其代码填写在题后得括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B得映射:x→x+2,x∈R,则就就是从A到B得( )A、满射而非单射?B、单射而非满射 C、一一映射??? D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B得积集合A×B中含有( )个元素。 A、2 ??? B、5 C、7????D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解就就是( )乘法来说 A、不就就是唯一 B、唯一得 C、不一定唯一得D、相同得(两方程解一样) 4、当G为有限群,子群H所含元得个数与任一左陪集aH所含元得个数( ) A、不相等B、0 C、相等 D、不一定相等。 5、n阶有限群G得子群H得阶必须就就是n得( ) A、倍数 B、次数C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题得空格中填上正确答案。错填、不填均无分。 1、设集合;,则有---------。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R得--------。 3、环得乘法一般不交换。如果环R得乘法交换,则称R就就是一个------。 4、偶数环就就是---------得子环。 5、一个集合A得若干个--变换得乘法作成得群叫做A得一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0得有理数对于普通乘法来说作成一个群,则这个群得单位元就就是---,元a得逆元就就是-------。 8、设与就就是环得理想且,如果就就是得最大理想,那么---------。 9、一个除环得中心就就是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换与分别为:,,判断与得奇偶性,并把与写成对换得乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之与。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)就就是不就就是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设就就是群。证明:如果对任意得,有,则就就是交换群。 2、假定R就就是一个有两个以上得元得环,F就就是一个包含R得域,那么F包含R得一个商域。 近世代数模拟试题二 一、单项选择题 二、1、设G有6个元素得循环群,a就就是生成元,则G得子集( )就就是子群。 A、 B、 C、 D、 2、下面得代数系统(G,*)中,( )不就就是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). ¥ A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在.

》 D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. 二. 计算题(每题10分,共30分) 1. 设G是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G中下列各个元素 1213 ,, 0101 c d cd ???? == ? ? - ???? , 的阶.; ;

2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群. } … & 3. 若e 是环R 的惟一左单位元,那么e 是R 的单位元吗若是,请给予证明.

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

近世代数发展简史

近世代数发展简史 根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。 一、近世代数的定义 代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。 二、近世代数的发展 代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。 域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。而域的系统发展是从1910年,施泰尼茨(Steinitz,E.)的著名论文“域的代数理论”开始的。同期,布尔(Boole,G.)研究人的思维规律,于1854年出版《思维规律的研究》,建立了逻辑代数,即布尔代数。但格论是在1933~1938年,经伯克霍夫(Birkhoff,G.D.)、坎托罗维奇(Канторович.П.В.)、奥尔(Ore,O.)等人的工作才确立了在代数学中的地位。另一方面,1843年,哈

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都就是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 就是循环群,那么G 也就是循环群。 ( ) 6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算就是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο就是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),那么ο在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设()ο,G 为群,其中G 就是实数集,而乘法k b a b a ++=οο:,这里k 为G 中固定

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

近世代数期末考试题库45962

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的( ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射 2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 A 、2 B 、5 C 、7 D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样) 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。 5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B ---------。 2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。 3、环的乘法一般不交换。如果环R 的乘法交换,则称R 是一个------。 4、偶数环是---------的子环。 5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。 8、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么---------。 9、一个除环的中心是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换σ和τ分别为:??? ???=6417352812345678σ,? ? ? ???=2318765412345678τ,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

近世代数模拟试题1及答案

近世代数模拟试题 单项选择题(每题5分,共25分) 1、在整数加群(Z+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n , n 是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg= g。G对这个乘法来说作成一个群 B . G是全体整数的集合,G对普通加法来说作成一个群 C . G是全体有理数的集合,G对普通加法来说作成一个群 D. G是全体自然数的集合,G对普通加法来说作成一个群 3.如果集合M的一个关系是等价关系,则不一定具备的是(). A . 反身性B. 对称性C. 传递性D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z 没有生成元. B. 1 是其生成元. C. -1 是其生成元. D. Z 是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R 是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律, 并且单位元, 逆元存在. D. 环R 是指一个非空集合和一个代数运算,满足结合律, 并且单位元,

逆元存在. 二. 计算题(每题10 分,共30 分) 1.设G是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 3 的群,试求中G中下列各个元素c ,cd , 1 的阶. 2. 试求出三次对称群 S3 (1),(12),(13),(23),(123),(132) 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗若是, 请给予证明. 证明题(第1小题10分,第2小题15分,第3小题20分,共45 分). 1. 证明: 在群中只有单位元满足方程

近世代数中拉格朗日定理应用汇总

毕业论文 (2016届) 题目拉格朗日定理的若干应用 学院数学计算机学院 专业数学与应用数学 年级2012级 学号12012241671 学生姓名苗壮 指导教师王伟 2016年5月8 日

摘要 拉格朗日定理是群论中一个非常重要的定理, 通过这个定理还可以得到许多群论中的数量关系,在近世代数中有着广泛的应用.首先介绍了群与子群的定义,其次介绍了子群的陪集和拉格朗日定理;并对拉格朗日定理用两种方法进行证明. 最后,通过讨论相关例题,总结运用拉格朗日定理证明与子群、阶有关的问题一些基本步骤和方法. 关键词:群子群拉格朗日定理陪集

Abstract Lagrange law is a very important theorem in group theory, many quantitative relationships in group theory can be obtained through it, which is widely utilized in Modern Algebra. The definitions of groups and subgroups are introduced first. Then the coset of subgroup and Lagrange law are introduced and the law are proved on two ways. Finally, by talking about the relevant examples, certain primary methods and steps to use Lagrange law and to prove some problems about subgroups and order are concluded. Key words: group subgroup Lagrange law coset

张禾瑞 近世代数基础(复习要点·定理)

定理 同态满射保持运算律(包括结合律、交换律) P21 左右逆元的统一性 P33-34 左右逆元的唯一性 P36 (由此可称为幺元而省掉“左右”) 群的两个定义的等价性 P33 群满足消去律(由逆元的存在性) P38 仅限有限集合的群判定:封闭+结合律+消去律 P39 群的几个分类标准: 1、 有限 / 无限 ——元素个数 2、 交换 / 非交换 ——运算是否满足交换律 3、 循环 / 非循环 ——是否有一元可以遍历其他元 P35 n a : 次n n a aa a ≡ n 是正整数 (由结合律知其有意义) a 的阶: 对群G 中的元a ,若存在最小正整数m ,使得e a =m , 则m 称为 a 的阶;否则我们称a 是无限阶的 P37 群中幂形式的元的运算法则: 若规定:e a =0, n n a a )(1--= 则对任意整数m,n 有:m n m n a a a +=, nm m n a a =)( (由结合律易得) 两种循环群: 整数加群 与 剩余类加群 同构定理: 任何一个群 有一个变换群与之同构 任何一个有限群 有一个置换群与之同构 任何一个无限循环群 与整数加群同构 任何一个有限循环群 与剩余类加群同构 子群的左陪集和右陪集的个数,或都为无限,或相等 P68

子群陪集(左或右算一边)的个数叫做子群的指数 群的阶: 群中元素的个数 对有限群G 而言: G 的子群的阶,与子群陪集的个数(指数),其乘积即为群G 的阶 (即都整除群G 的阶) G 中任意元的阶,都整除群G 的阶(因为任意元可生成循环子群) 子群充要条件: H ab H b a ∈?∈?-1, P63 定理2 子群正规充要条件: N ana N n G a ∈?∈∈?-1, P72 定理2 (首先N 须得是一个子群,然后再有…)

近世代数期末考试题库

世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c ) A、满射而非单射 B、单射而非满射 C、一一映射 D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素。 A、2 B、5 C、7 D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说 A、不是唯一 B、唯一的 C、不一定唯一的 D、相同的(两方程解一样) 4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c ) A、不相等 B、0 C、相等 D、不一定相等。 5、n阶有限群G的子群H的阶必须是n的(d ) A、倍数 B、次数 C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、设集合;,则有。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。 3、环的乘法一般不交换。如果环R的乘法交换,则称R是一个交换环。 4、偶数环是整数环的子环。 5、一个集合A的若干个--变换的乘法作成的群叫做A的一个变换全。 6、每一个有限群都有与一个置换群同构。 7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。 8、设和是环的理想且,如果是的最大理想,那么---------。 9、一个除环的中心是一个-域-----。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。奇1、解:把和写成不相杂轮换的乘积: 可知为奇置换,为偶置换。和可以写成如下对换的乘积: 2解:设A是任意方阵,令,,则B是对称矩阵,而C是反对称矩阵,且。若令有,这里和分别为对称矩阵和反对称矩阵,则,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:,,所以,表示法唯一。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)是不是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设是群。证明:如果对任意的,有,则是交换群。 2、假定R是一个有两个以上的元的环,F是一个包含R的域,那么F包含R的一个商域。 1、对于G中任意元x,y,由于,所以(对每个x,从可得)。 2、证明在F里 有意义,作F的子集 显然是R的一个商域证毕。 近世代数模拟试题二 一、单项选择题 二、1、设G 有6个元素的循环群,a是生成元,则G的子集(c )是子群。 A、B、C、D、 2、下面的代数系统(G,*)中,(d )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( b ) A、a*b=a-b B、a*b=max{a,b} C、a*b=a+2b D、a*b=|a-b| 4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=(b )

相关主题