搜档网
当前位置:搜档网 › 发电厂引风机喘振原因分析及处理

发电厂引风机喘振原因分析及处理

发电厂引风机喘振原因分析及处理
发电厂引风机喘振原因分析及处理

喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。 ③进气状态 在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。 2喘振的判断及消除 2.1喘振现象的判断 ①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

引风机振动增大原因的诊断与处理示范文本

文件编号:RHD-QB-K6229 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 引风机振动增大原因的诊断与处理示范文本

引风机振动增大原因的诊断与处理 示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1台300 MW机组锅炉配备2台型号为 AN25eb、静叶可调轴流式引风机。该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。 1 振动诊断 1.1 原因分析 (1) 引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差

产生的转子质量不平衡;安装、检修质量不良;锅炉负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。 但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决。 (2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振

引风机振动大分析

1B、2A引风机电机轴向振动分析 我厂引风机采用成都电力机械厂的Y A15236-8Z型静叶可调轴流风机,电机为湘潭电机厂的YKK710-6W型空冷电机,电机功率为2240KW,额定电流为267A 转速为980rpm。2012年4月份发现2A引风机电机和1B引风机电机轴向间歇性振动大,最大达20S。 2012年6月份将风机振动测点安装至电机轴向进行实时监测,根据监测数据分析显示电机轴向振动波动频繁。 联系热控从DCS画面中调取了11日至24日1B及2A轴向振动、负荷、电流、风机静叶开度、排烟温度、引风机入口压力、空预器进出口烟气压差曲线图,由生技部电气、锅炉配合分析。从调取的曲线中未发现振动与运行工况变化有明显的关系。以下是几个振动波动明显的曲线图: 1B曲线图 图1 图1:2012.06.11 14:30-16:00 1B引风机轴向振动,其他工况正常。排烟温度:137℃。

图2 图3 图2,3:2012.06.11 21:38-06.12 23:14 1B引风机长时间轴向振动大,其他 工况无明显异常。排烟温度:135摄氏度。

图4 图4:2012.06.13 22:20 1B引风机轴向振动突然减小后又增大,从曲线分析由于功率波动导致引风机电流波、引风机烟气入口压力、空预器进出口压差、引 风机静叶反馈波动。排烟温度132℃。 图5 图5:2012.06.19 09.40.00左右轴向震动从4mm/S在缓慢下降至3mm/S 后突升至6mm/S,然后开始缓慢下降。此时空预器烟气压差、引风机电流、负荷从小到大,随后下降。但电机轴向震动在此点出现缓降突升趋势。此时排烟温度 为137℃。

风机运行中常见故障原因分析及其处理

风机运行中常见故障原因分析及其处理方法
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,是机 械热端最关键机械设备之一,虽然风机的故障类型繁多,原因也很复杂,但根据 经验实际运行中风机故障较多的是:轴承振动、轴承温度高、运行时异响等。 1 风机轴承振动超标 风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺 栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标 的原因较多, 如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事 半功倍的效果。 1.1 叶片非工作面积灰引起风机振动 这类缺陷常见现象主要表现为风机在运行中振动突然上升。 这是因为当气体 进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在 叶片的非工作面一定有旋涡产生, 于是气体中的灰粒由于旋涡作用会慢慢地沉积 在非工作面上。 机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转 离心力的作用将一部分大块的积灰甩出叶轮。 由于各叶片上的积灰不可能完全均 匀一致, 聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致 叶轮质量分布不平衡,从而使风机振动增大。 在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从 而减少风机的振动。 在实际工作中,通常的处理方法是临时停机后打开风机叶轮 外壳,检修人员进入机壳内清除叶轮上的积灰。 1.2 叶片磨损引起风机振动 磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片 磨损, 平衡破坏后造成的。 此时处理风机振动的问题一般是在停机后做动平衡校 正。 1.3 风道系统振动导致引风机的振动 烟、 风道的振动通常会引起风机的受迫振动。这是生产中容易出现而又容易 忽视的情况。风机出口扩散筒随负荷的增大,进、出风量增大,振动也会随之改 变,而一般扩散筒的下部只有 4 个支点,如图 2 所示,另一边的接头石棉帆布是 软接头,这样一来整个扩散筒的 60%重量是悬吊受力。从图中可以看出轴承座 的振动直接与扩散筒有关,故负荷越大,轴承产生振动越大。针对这种状况,在 扩散筒出口端下面增加一个活支点(如图 3),可升可降可移动。当机组负荷变 化时,只需微调该支点,即可消除振动。经过现场实践效果非常显著。该种情况 在风道较短的情况下更容易出现。

锅炉引风机振动分析及处理

锅炉引风机振动分析及处理 摘要:风机振动是运行中常见的现象,只要在振动控制范围内,不会造成太大 的影响。但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺 栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。严重的可能因振动造成事故,危害人身健康及工作 环境。所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处 理办法,往往能起到事半功倍的效果。本文针对锅炉引风机振动分析及处理开展 分析。 关键词:锅炉风机;振动故障;要因分析 引风机作为火力发电厂不可缺少的一部风,其运行状况的好坏直接关系到火 力发电厂的经济效益。对造成引风机振动故障的主要原因进行分析排查。 1、概述 按照国家2011年7月29日发布的最新标准《火电厂大气污染物排放标准》(GB13223-2011)要求,自2014年7月1日起,某企业将执行新标准规定的大 气污染物排放浓度限值,烟尘排放限值为30mg/m3、SO2排放限值为400mg/m (3某区)、NOX排放限值为200mg/m3,我企业投建了电站锅炉烟气除尘脱硫 脱硝项目,从而烟气风阻增大,需提高风机风压。更换成QAY-5D-21.5D型锅炉引风机,流量165174m3/h,压力7000Pa,无负荷单机试车运行发现当风机调节门 开度在50%-60%之间,电流逐步接近额定电流35.5A,风机传动组振动值最高达 到0.223mm,风机机壳及烟道大幅度振动,噪音过大,电机侧振动正常。当风机 调节门开度超过60%,风机传动组振动值逐步正常,噪音减轻,机壳及烟道振动 减小。根据对锅炉引风机运行当中出现的故障看出,风机振动一般归纳为以下几 方面:(1)由基础不牢、连接坚固不够、支承动刚度不足引起振动;(2)风机 转速接近临界转速产生的共振;(3)气流不稳定,调节挡板开度不一致、挡板 销子脱落或损失严重引起;(4)轴承本身损坏或轴承装配不良;(5)部件松动 引起的冲击力;(6)联轴器故障、转子不同心、不平直和轴径本身不圆;(7) 转子不平衡量产生的离心力;(8)电机轴承故障。排除法分别对以上8方面进 行试验数据分析对比发现有可能因气流不稳定,调节挡板开度不一致、挡板销子 脱落或损失严重引起的风机振动。联系厂家技术售后人员,经厂家技术人员对现 场判断,怀疑风机调节门开度在50%-60%之间,使风机气流产生共振,导致振动 情况。按照厂家人员指导在风机入口喇叭口处增加导流板(图1),使风机在进 风的过程中,风向均匀一致,不会发生紊乱,消除风机气流产生的共振。工作完 成后,开始试机,现场测振值结果稍有改变,机壳及烟道振动幅度仍偏大,调节 门开度达到60%以上,电机额定电流超标(35.5A),无法满足锅炉生产负荷要求。 2、振动产生的原因分析 (1)电动机的振动;电动机转子通过二支点的滚动轴承来旋转,轴承的轴向和径向的间隙很小,在润滑状态下磨损产生的振动和扫膛引起的振动极小,一般 不会给引风机造成太大的影响。(2)引风机轴承箱的振动;轴承箱主轴承损坏 和主轴弯曲、地脚螺栓松动和基础下沉会引起振动。(3)联轴器的振动;联轴 器磨损、连接不良、两轴中心线偏差均会引起振动。(4)风机壳体的振动;风 机壳体是由4mm薄钢板焊接而成,本身体型较大,运行中烟气流动使壳体产生 共振。同时,水膜除尘器在处理烟气的过程中,因水膜的不均匀等原因,烟气湿 度极度不均引起的振动。(5)叶轮的振动;烟气携带的灰尘颗粒粘附在叶轮上

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法 李保川 光大水务(德州)有限公司 摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。 关键词:污水处理厂;离心式鼓风机;喘振; 光大水务(德州)有限公司南运河污水处理厂处理规模15万m3/d,一期工程处理规模为7.5万m3/d,二期工程处理规模为7.5万m3/d,采用的污水处理工艺为A/A/O工艺。生物池为一座两池,设计流量:Q=0.868m3/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。配套驱动电机为西门子电机(中国)有限公司贝德牌电机。 多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m3/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害 “喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。轴承液体润滑条件会遭到破坏,轴瓦会烧坏,转子与定子会产生摩擦、碰撞,密封元件也将严重破坏,更甚至会发生轴扭断。同时,对A/A/O池中的DO量影响严重,关系到出水达标问题。 2.鼓风机产生喘振的原因 压力/Mpa Q/(m3/h) 图1 转速恒定状态下进口空气流量与出口压力的特性曲线图离心鼓风机在转速恒定的状态下,其进口空气流量Q与出口的压力的特性如图1所示。A点与B点是鼓风机正常稳定运行状态的两个临界点,也就是说只有在A点与B点这个稳定区间内鼓风机才是正常运行状态。当鼓风机的输出流量超过B点时则为不稳定区域,处于不

离心风机喘振现象及原因

关于风机喘振现象的原因和避免方法 1、喘振现象及原因 具有驼峰型特性的风机在运行过程中,当负荷减小,负载流量下降到某一定值时,出现工作不稳定现象。这时流量忽多忽少,一会儿向负载排气,一会儿又从负载吸气,发出如同哮喘病人“喘气”的噪声,同时伴随着强烈振动,这种现象称之为喘振。 发生喘振现象的根源是离心风机所具有的驼峰型特性。图一给出了具驼峰型特性的离心风机的工作特性曲线。 图中,曲线1是离心风机在某一转速下的特性曲线,代表出口绝压P2和入口绝压P1之比与风机流量之间的关系,是一个驼峰曲线,驼峰点M处的流量为Qm。曲线2是管路特性曲线,正常工作点为A。可以看出,在驼峰点右侧,工作是稳定的。因为任何偶然因素造成的工作点波动(例如流量增加),对于风机特性曲线1而言,压力会减小,而对于管路特性曲线2而言,压力会增加,这两个相互矛盾的结果最终会使工作点返回到原来的位置,在驼峰点M的左侧,这种情况正好相反,任何偶然因素造成的工作点波动将使沿风机特性曲线1上的压力变化趋势与沿管路特性曲线2上的压力变化趋势具有完全的一致性,其结果加剧了工作点的偏移,使之不能返回到原来的工作点上,风机的工作出现不稳定情况。 因此,驼峰点M右侧的区域为稳定工作区域,驼峰点M左侧的区域为不稳定工作区域。负荷下降使处于驼峰右侧的工作点向驼峰点靠近,工作点越靠近驼峰点M,越会出现工作不稳定的可能性,驼峰型特性是发生喘振现象的主要原因。 2、防喘振控制思路 图二给出了风机在不同转速下的特性曲线,可以看出。转速不同,相应的驼峰点和驼峰流量也不同。转速越低,驼峰点越向左移,驼峰流量越小。把不同转速下的驼峰点连接起来,就构成了一条曲线,曲线右侧为稳定工作区,曲线左侧为喘振区。我们称驼峰流量为极限流量,相应的驼峰点连接曲线被称为喘振极限线。 显然,只要在任何转速下,控制风机的流量,使其大于极限流量,则风机便不会发生喘振问题。这就是防喘振控制的基本思想。

风机振动原因分析

1 轴承座振动 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 滚动轴承异常引起的振动 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 | 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交#

风机喘振分析和防止风机喘振保护原理

轴流式吸风机喘振分析 轴流式吸风机在大型发电厂中应用比较普遍。轴流式风机在运行中调节不当会出现喘振现象。因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。 主题词:轴流吸风机喘振现象处理 轴流式吸风机由于其本身的特性决定了它在运行中存在着发生 喘振的可能性,这一点从理论和实践中都可以得到证明。 大唐盘山电厂应用两台轴流式吸风机并联运行的方式。运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。 下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析: 第一次喘振现象:当时AGC投入,负荷500MW升至550MW。A、B、 C、D、E磨运行。炉膛压力异常报警。 处理: 运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。液压油压力低,#1吸风机跳闸。通过追忆,确认风机跳闸前两台风机动叶全开,#1吸 风机流量"0",发生喘振。 第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。(风机额定电流260A)两台风机动叶全开。确认#1吸风机喘振。 处理:关小#2吸风机动叶。处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。联跳#1送风机。RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。 第三次现象:当时AGC投入,负荷500MW升至520MW。A、B、C、D、E磨运行。炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。两台风机动叶开度75%。确认#1吸风机喘振。 处理: 两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。 分析: 1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。由于在高负荷时,烟气量较大,烟气侧阻力较大。#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。 针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,

大型风机震动分析及解决方法

大型风机震动分析及解决方法 摘要:基于我厂某台瓦斯排送机一直震动较大,影响设备运行,本文就其震动原因进行初步分析,并提出解决方法,以使检修人员高度重视关键设备,提高设备安全运行效率。 关键词:排送机叶轮动平衡 Abstract: There is a gas exhauster has greater vibrations in our factory, that effect the equipment’s operation. This article analysis the vibratio ns, and puts forward the solving methods, in order to make the maintenance personnel to pay more attention to the key equipment, and improve safe efficiency. Key words: Exhauster,Impeller, Dynamic balance. 引言 页岩炼油厂是我公司战略转型的重点,主要生产页岩油。衡量其生产能力的首先是页岩的处理量,属于干馏炉自身原因;其次就是回收系统的能力大小,在回收系统中瓦斯排送机是这个系统的心脏。作为回收系统的瓦斯动力来源--瓦斯排送机能力的大小直接影响到页岩的处理量能否进一步提升。 1、现有瓦斯排送机状态 页岩炼油厂共有四个部,每部两台瓦斯排送机,一台运行,一台备用,在2004年以前,各台排送机风量为140000M3/h,各台排送机都已经满负荷工作,不能满足生产需要,基于此原因厂决定对各部其中一台进行修改,以提高风量,具体方法为将风机叶轮由原来八片增加到十二片。改造后各部运行改造完的排送机,其能力均有不同能力的提升,从而直接提高页岩油产量。 而C部2号排送机从2004年运行以来,在接近满负荷的情况下震动很剧烈,使得叶轮轴的轴瓦数次被震坏,到2006年末,一共损坏轴瓦达到4次,导致轴头基础螺栓断3次。不得不停机维修,使用排量较小的1号排送机。1号排送机风量为140000M3/h,2号为150000M3/h。 2 对生产的直接影响 直接降低风量影响了产量,因降低风量约7%从而降低处理量7%,直接造成产量的被迫减产。每次维修时间为换瓦5天,维修基础15天。仅此一项,直接减产以每天产100吨计算,100×7%×(5×4+15×3)=455吨,以目前原油每吨

关于风机喘振原因与处理

关于风机喘振原因与处理 喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏,出现喘振的风机大致现象如下: 1 电流减小且频繁摆动、出口风压下降摆动。 2 风机声音异常噪声大、振动大、机壳温度升高、引送风机喘振动使炉膛负压波动燃烧不稳。 常见的原因: 1 烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。(我们有碰到过但不多) 2 两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差) 4 风机长期在低出力下运转。 一般的处理原则是调整负荷、关小高出力风机的导叶开度使风机出力相近,再根据上面所说的可能原因进行查找再作相应处理。 所谓喘振,就是当具有“驼峰”形Q-H性能曲线的风机在曲线临界点以左工作时,即在不稳定区工作时,风机的流量和能头在瞬间内发生不稳定的周期性反复变化的现象。风机产生的最大能头将小于管路中的阻耗,流体开始反方向倒流,由管路倒流入风机中(出现负流量),由于风机在继续运行,所以当管路中压力降低时,风机又重新开始输出流量,只要外界需要的流量保持小于临界点流量时,上述过程又重复出现,即发生喘振。 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量, 为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。 风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内; b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。 旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关 轴流风机的Q-H性能曲线 的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转

关于引风机振动的分析

关于引风机振动的分析 摘要:本文作者对造成火力发电厂引风机振动故障的原因及其基本特征进行了分析,介绍了如何运用这些振动故障的基本特征对引风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:引风机振动;分析 火力发电厂引风机的振动问题是很复杂的,但只要掌握各种振动的原因和基本特征,加上在平时工作中多积累经验,就能迅速和准确地判断引风机振动故障的根源所在,进而采取有效的措施,提高引风机在火力发电中的安全可靠性。引风机是一种将原动机的机械能转化为输送气体、给予气体能量的机械,它是火力发电厂中不可少的机械设备。在火力发电厂的实际运行中,引风机由于运行条件比较恶劣,发生故障率较高,特别是引风机的振动是一类对生产和运行产生很大影响的故障。一方面振动故障的诊断比较复杂,处理时间也比较长;另一方面振动故障一旦发生并酿成事故,所造成的影响和后果是十分严重的。 1 引风机振动原因分析 1.1 叶轮不平衡引起的振动 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损和叶轮的结垢。造成这两种情况和引风机前接的除尘装置有关,这在平时的工作中深有体会,开滦林西电厂2#、3#、4#锅炉采用的电除尘为干法除尘装置引起的叶轮不平衡的原因以磨损为主,而1# 锅炉采用的文丘里水膜除尘为湿法除尘装置影响叶轮不平衡的原因以结垢为主。 1.1.1 引风机叶轮磨损及处理对策。干式除尘装置虽然可以除掉烟气中绝大部分颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 1.1.2 引风机叶轮结垢及处理对策。经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。 解决叶轮结垢的方法很多,其中有喷水除垢方法,将喷水系统装在引风机的

引风机喘振分析及处理

风机喘振分析及处理 一.风机喘振的形成 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。如下图图所示: 轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK 时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统

中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量, 为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。 风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。 旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。旋转脱流发生在上图所示的风机Q-H性能曲线峰值以左的整个不稳定 区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。旋转对风机的正常运转影响不如喘振这样严重。

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步 取代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴 流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可 以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性 及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于 送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的 方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以 一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风 机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主 要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系 列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分 单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本 身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

引风机振动原因及处理方法

论文发表 投稿邮箱:lwfb2008@https://www.sodocs.net/doc/cb16251757.html, 咨询QQ:393377508 主页博客相册|个人档案 |好友 查看文章 火力发电厂引风机振动的原因及处理方法 2009-10-19 23:08 王绍正(唐山开滦热电有限责任公司,河北唐山 063103) 摘要:随着科技的进步,火力发电厂的单机装机容量也越来越大,而引风机作为火力发电厂不可缺少的一部分,其运行状况的好坏直接关系到火力发电厂的经济效益。文章对造成火力发电厂引风机振动故障的原因及其基本特征进行了分析,介绍了如何运用这些振动故障的基本特征对引风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:引风机振动;故障分析;烟风道;机组振动 中图分类号:TH432 文献标识码:A 文章编号: 1009-2374(2009)20-0192-02 引风机是一种将原动机的机械能转化为输送气体、给予气体能量的机械,它是火力发电厂中不可少的机械设备。在火力发电厂的实际运行中,引风机由于运行条件比较恶劣,发生故障率较高,特别是引风机的振动是一类对生产和运行产生很大影响的故障。一方面振动故障的诊断比较复杂,处理时间也比较长;另一方面振动故障一旦发生并酿成事故,所造成的影响和后果是十分严重的。 随着火力发电厂的不断发展,对引风机性能要求也在提高,引风机设计和制造技术也在不断提高,所以出现的振动故障也越来越复杂,这就要求我们利用先进的检测、诊断仪器,采取科学有效的技术方法分析造成机组振动的原因,并制定行之有效的处理方法。 一、振动原因分析 (一)叶轮不平衡引起的振动 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损和叶轮的结垢。造成这两种情况和引风机前接的除尘装置有关,这在平时的工作中深有体会,开滦林西电厂2#、3#、4#锅炉采用的电除尘为干法除尘装置引起的叶轮不平衡的原因以磨损为主,而1#锅炉采用的文丘里水膜除尘为湿法除尘装置影响叶轮不平衡的原因以结垢为主。 1.引风机叶轮磨损及处理对策。干式除尘装置虽然可以除掉烟气中绝大部分颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 2.引风机叶轮结垢及处理对策。经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进

离心式鼓风机喘振原因分析及对策

离心式鼓风机喘振原因分析及对策 摘要:针对武汉市龙王嘴污水处理厂离心式鼓风机在使用过程中发生的喘振现象,对喘振产生的原因和影响喘振的主要因素进行了分析,提出了判断喘振的方法,并总结了几种消喘振的解决方案,如采用变频器启动、采用出风管放气、降低生物池的污泥浓度、保证管路畅通改变鼓风机的“争风”状态、加强人员技能培训、定期维护保养等。 关键词:离心式鼓风机;喘振;对策 Reason Analysis and Countermeasures for Surge of Centrifugal Blower in WWTP Abstract:In order to solve the surge of the centrifugal blower in Wuhan Longwangzui WWTP,Wuhan City,the reasons and the main influence factors for the surge were analyzed,judging measures were proposed.Several solutions for avoiding the surge were summarized,including using frequency converter for starting,using vent pipe for releasing air,reducing MLSS in biological tank,ensuring piping to be unblocked,changing the state of fighting for air,enhancing personnel training,regular maintenance and so on. Key words:centrifugal blower;surge;countermeasures 武汉市龙王嘴污水处理厂处理能力为15×104m3/d,采用改良型A2O工艺,生物池采用微孔鼓风曝气,使用4台Spencer Power Mizer5000系列多级离心式鼓风机,2用2备。离心风机风量为10833m3/h,功率为250kW,配套电机功率为300kW。 在使用过程中,Spencer鼓风机可靠性高,集成度好,报警参数设置较全,保护措施完善,全部采用触摸自动控制,报警信号自动提示,操作维护较简单,但也存在运行噪音大和开机、倒机时发生喘振等缺点。尤其是喘振,给鼓风机的机械系统带来很大的损伤,加快了鼓风机的老化,降低了鼓风机的使用寿命,增加了修理、维护和管理成本。 1喘振 1.1喘振产生的原因 在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。 1.2影响喘振的主要因素 ①转速 离心式压缩机转速变化时,其性能曲线也将随之改变。当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。反之,转速降低则使性能曲线下移。随着转速的增加,喘振界限向大流量区移动。 ②管网特性 离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。

相关主题