搜档网
当前位置:搜档网 › 永磁铁氧体的制备工艺

永磁铁氧体的制备工艺

永磁铁氧体的制备工艺
永磁铁氧体的制备工艺

1.3 永磁铁氧体磁粉的合成工艺及原理

永磁铁氧体的性能取决于两个方面,一是相成份,与配方,以及原材料的理化性能有很密切关系,对剩磁有重要影响。二是微结构,合成的工艺往往对产物微结构的起决定作用,不同的合成方法,所生产的永磁铁氧体的微结构差异很大对矫顽力有重要影响。因此研究铁氧体生产工艺,深入认识其内在规律,可以有效的控制永磁铁氧体的性能,对生产的指导意义巨大。

根据铁氧体磁粉制备方式的不同,可以把永磁铁氧体的生产分为干法合成和湿法合成两类,之后制备磁体的工艺包括成型和烧结基本相同。干法生产采用氧化物作原料,活性较差,反应程度难以完全,但是工艺简单,应用较为普遍;湿法生产虽然工艺复杂,但由于原料的化学活性较高,铁氧体的磁性能较好,而且还能充分利用各种工业副产品,便于提高质量,降低成本,很有发展前途。

1.3.1 传统的固相合成方法(氧化物法)

图1-1 传统固相合成工艺流程图

Fig.1-1 The conventional solid phase synthesis process process 目前工业生产中主要以氧化铁,氧化锶为原料,在远低于反应物的

熔点或它们低共熔点的温度下以分子扩散的形式,达到离子或者原子的重排,生成新的固溶物即锶铁氧体。反应的温度以及保温时间应该根据原料的特性比如原材料的粒度,纯度,来源进行控制,预烧温度太高或保温时间太长都容易造成合成的铁氧体异常晶粒长大,产生显著的磁畴壁,降低矫顽力,使磁性能恶化;温度太低可能使扩散不充分,铁氧体化过程不完全,通常的反应温度在1220~1280℃之间。因为固相反应的原料活性较低,通常把第一次合成称为预烧阶段,之后进行球磨,成型和二次烧结,在成型阶段进行充磁。因为高温固相法合成永磁铁氧体具有工艺简单,产量大等优点,是当今企业生产永磁铁氧体的最主要方法。

1.3.2 溶胶-凝胶法(Sol-Gel)

溶胶-凝胶法也是目前合成永磁铁氧体使用较多的工艺,按照目前对醇盐水解过程的理解,溶胶的形成过程被概念性的描述如下:即以醇盐为原料,在温和条件下进行水解和缩聚反应,而随着缩聚反应的进行以及溶剂的蒸发,具有流动性的Sol逐渐变粘成为略显弹性的固体Gel,然后再在比较低的温度下烧结成为所合成的材料。Gel的结构和性质在很大程度上决定了其后的干燥、致密过程,并最终决定材料的性能。除了通过对反应过程工艺条件的控制来对材料进行裁减外,各种化学添加剂往往被引入到Sol-Gel反应过程中,这些添加剂可以改变水解、缩聚反应速度,改变Gel结构均匀性,同时也能够控制其干燥行为。这种方法的优点是反应温度低,合成的颗粒粒径小,分布均匀,易实现高纯化,但是该方法本身还不太成熟,干燥时容易开裂,而且成本比较高。

1.3.3 化学共沉淀法

它是在金属盐的工作溶液中加入适量的沉淀剂得到纳米级沉淀物。该法属于湿法工艺,可在离子水平上混合原料,因此可在低温度下形成

细颗粒,该法不需要复杂的设备可通过共沉条件控制颗粒尺寸和形貌,是成本最低的一种湿法工艺。该法的缺点是粉体的团聚难以克服,因此可采用纳米表面改性的方法,以减弱并消除团聚,如在沉淀体系中加入SDBS(十二烷基磺酸钠)等表面活性剂作稳定剂,但是这样做也难以从根本上消除团聚。在共沉淀基础上出现的共沉淀-高温助熔法不需要球磨,从而避免了球磨过程中出现的内应力,粒度不均等。这种方法制备的铁氧体化学组成较均一,而且反应较完全但是容易引入杂质,且不易去除,合成工艺复杂,成本高。

1.3.4 机械球磨法

机械球磨法是利用球磨的作用来促使反应物之间发生物理反应和化学反应形成化合物的方法。球磨过程中,颗粒塑性变形,内部产生大量缺陷,降低元素的扩展激活能。球与粉末颗粒相互撞击,产生大量热量,造成界面升温,从而诱发化学反应. 固相球磨法工艺流程简单,化学成分易于控制,有效地降低合成温度,但是耗能大,反应时间长,容易引入杂质,对设备的材质要求极高,而且球磨过程中有噪声产生。在粉磨过程中,需要合理选择研磨介质并控制球料比、研磨时间和合适的入料粒度。固相球磨法能够使高固相合成在室温下进行,被运用在许多分解反应、置换反应和高温固相合成中。

1.3.5 水热法

水热法的原理是在加热,加压的条件下,有些氢氧化物在水中的溶解度要大于其氧化物在水中的溶解度,于是氢氧化物溶于水而析出氧化物,作为反应物的氢氧化物可以预先制备好再加热加压,也可以通过水解反应同时加热加压,即时产生氧化物。这种方法的特点:(1)可以直接得到结果良好的粉体,无需进行高温燃烧处理和球磨,从而避免了因这些过程可能一起的粉体硬团聚,杂质和缺陷等,而此过程的粉体在烧结

过程中表现很强的活性。(2)易得到合适的化学计量比和晶粒形态。(3)可使用较便宜的原料,工艺简单,所以该方法属于低能耗,低污染,低投入,且粉体质量好,产量也较高。

1.3.6 自蔓延高温合成法(SHS) [39~40]

SHS制备锶铁氧体是利用原料之间的氧化还原反应释放大量反应热推动反应持续进行, 当反应物一旦被点燃就不再需要外界热源,反应区产生的热量预热临近反应区(又称预热区)的原料, 当燃烧波到达预热区时, 预热区就会被点燃并开始反应, 反应热又传导到下一个预热区, 这样周而复始地形成良性循环, 直至整个反应完全

用SHS方法合成铁氧体的工艺流程如图1-2。前处理主要包括干燥,破碎,分级,混配,挤压等,燃烧合成装置包括电热装置,气体加压设备和热真空室;用钨丝线圈通电或者电火花点火等方式局部点燃引然剂(点火温度1500℃~3000℃连续可调);后处理包括破碎,研磨,分级,有时还需要经过适当温度的退火消除磁粉内应力,促使反应完全。

原料混合物

前处理

自蔓延燃烧

SHS产品

后处理

图1-2 SHS工艺流程图

Fig.1-2 The SHS process

自蔓延方法与传统的合成方法相比具有很多优点:工艺过程极其简单,场地和设备要求低,生产效率高;产物一般是凝聚态,环境污染小;反应的燃烧温度高,能够达到1500℃~3000℃,并且能够通过调整配方来控制反应的温度,达到产物的自净化,生产的产品纯度高,有利于合成耐高温材料;体系自身的化学反应热高,一般不需要补充能量,能耗低;SHS反应在自燃烧和冷却过程中有非常高的温度梯度,在产物中能够产生非常高浓度的缺陷以及非平衡结构,从而使合成材料具有非常高的反应活性。

参考文献:

[26] 张密林,赵华,李茹民. M-型超微铁氧体粉末合成方法的进展[J]. 功能材料,1996, 27(3): 202-205.

[16] 许献云,曾恒兴. 钡铁氧体制备工艺简介[J]. 磁记录材料,1995,2:21-23.

[17] 徐春旭,李茹民,景晓燕,等. 超微铁氧体磁性材料的制备技术[J].应用科技,2004.3,31(3): 57-59.

[18] 郭睿倩,李洪桂,孙培梅,等. 不同稀土元素掺杂M型钡铁氧体超微粉末的磁性研究[J].功能材料,2001.32(6): 588~560.

[19] 范薇. 钡磁铅石型铁氧体纳米磁粉的制备[J]. 矿冶,1998,7(3): 62-65.

[20] 刘先松,钟伟,顾本喜,等. 稀土La2+离子取代对M型锶铁氧体的结构和磁性的影响[J]. 稀有金属材料与工程,2002.10,31(5): 385-388. [21] Ketov S V, Yu Yagodkin D A, Lebed L, et al. Structure and magnetic properties of nanocrystalline SrFe12O19alloy produced by high-energy ball milling and annealing[J]. J. Magn. Magn. Mater, 2006.5,300(1): e479-e481.

[22] Litsardakisa G, Manolakis I, Serletis C. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites[J]. J Magn. Magn. Mater, 316 (2007): 170–173.

[23] Kupferling M, Flores V C, Grossinger R. Preparation and characterization of LaFe12O19hexaferrite[J]. J.Magn.Magn.Mater, 290-291 (2005): 1255–1258.

[24] Garcia-Cerda L A, Rodriguez-Fernandez O S, Resendiz-Hernandez P J. Study of SrFe12O19synthesized by the sol–gel method[J]. https://www.sodocs.net/doc/cf10354305.html,p. 369 (2004): 182–184.

气隙在铁氧体磁芯中的应用

气隙在铁氧体磁芯中的应用 益衡电子有限公司 刘祖贵 Enhance electronics CO.,LTD. LiuZugui 摘要:本文详细论述了气隙在目前主要开关电源拓扑磁芯中的应用及其理论推导过程,并从多方面量化地分析了气隙所带来的利弊影响.文中除气隙a l 采用mm 制外,其它均采用国际单位制.a l 为研磨的气隙长度, e l 为研磨前磁芯的有效磁路长路, i l 为研磨后磁芯的磁路长度,其它为一般物理量通用符号. 由于反激拓扑的工作原理可等效为一个功率电感和变压器并联,因此以铁氧体作磁芯的功率电感(PFC 等)气隙设计可参考反激拓扑,这里不作专门讨论. 正文: 气隙在仅工作于第一象限磁芯中的应用. 以正激拓扑为例,由于剩磁B r 的存在,峰值磁密B m =ΔB+B r ,能有效利用的交变磁密ΔB=B m -B r ,如图(一)所示. 图(一) 运行于第一象限的磁滞回线轨迹 图(二) 单端正激拓扑导通阶段

图(三) TDK PC44磁化曲线 图(四) 加入气隙后的磁滞回线 图三为典型铁氧体磁芯材料(TDKPC44)的磁化曲线,从图上可看出磁密范围在0.2T 内为其线性区域,PC44的剩磁T B r 1.0≈(未加气隙).如果正激拓扑磁芯从零磁化力即0.1T 开始进行,则磁芯进入磁滞回线弯曲部分之前的最大磁通变化量ΔB=B m -B r =0.1T. 由法拉第定律 dt d ψ ε- =得: dt dB NAe dAe t B N dt d N dt d V Ae m =??=== -=??φψε 由 I L ψ = 得 : dt dI L dt LI d dt d ==ψ 所以有: dt dI L dt dB NAe V == 变形得: NAe LdI NAe Vdt dB == 即在线性区内有: Ae N I L Ae N T V B p m m p on on ?== ? 公式(一) 其中I m 为励磁峰值电流,它是由零起始(断续)的斜坡电流,故有m m I I =?.从公式<一>可看出初级匝数N P 与ΔB 成反比,较小的ΔB 就要求较多的初级匝数,较多的初级匝数使线径减小,从而降低了变压器的输出电流和功率,因此磁芯的利用率极低. 磁芯加入气隙后使磁滞回线倾斜,剩磁就会显著降低.磁滞回线的倾斜并不改变矫顽力Hc 的大小,也不改变磁饱和磁密Bs 及线性区最高磁密B m 的大小. 它只是使磁滞回线的弯曲部分延伸到更大的磁场强度区域.从图<四>可看出加入气隙后磁芯的有效磁导率约等于Hc 处磁滞回线的斜率:H c o withgap o μμμμ≈)(, 因此加入气隙后的剩磁: C w i t h g a p r w i t h g a p H B ομμ)()(=? 公式(二) 下面开始推导加入气隙后磁芯的磁导率)(withgap μ 由安培环路定律 I Hdl L ∑=? 可导出: C withgap C H c withgap r H H B )()(μμμμοο≈=

永磁铁氧体材料项目可行性研究报告

永磁铁氧体材料项目可行性研究报告 项目可行性报告 中金企信国际咨询公司拥有10余年项目可行性报告撰写经验,拥有一批高素质编写团队,卓立打造一流的可行性研究报告服务平台为各界提供专业可行的报告。 项目可行性报告用途 1、企业投融资 此类研究报告通常要求市场分析准确、投资方案合理、并提供竞争分析、营销计划、管理方案、技术研发等实际运作方案。 2、项目立项 此文件是根据《中华人民某某国行政许可法》和《国务院对确需保留的行政审批项目设定行政许可的决定》而编写,是大型基础设施项目立项的基础文件,国家发改委根据可行性研究报告进行核准、备案或批复,决定某个项目是否实施。另外医药企业在申请相关证书时也需要编写可行性研究报告。 3、银行贷款申请 商业银行在贷款前进行风险评估时,需要项目方出具详细的可行性研究报告,对于国内银行,该报告由甲级资格单位出具,通常不需要再组织专家评审,部分银行的贷款可行性研究报告不需要资格,但要求融资方案合理,分析正确,信息全面。另外在申请国家的相关政策支持资金、工商注册时往往也需要编写可行性研究报告,该文件类似用于银行贷款的可研报告。 4、申请进口设备免税

主要用于进口设备免税用的可行性研究报告,申请办理中外合资企业、外资企业项目确认书的项目需要提供项目可行性研究报告。 5、境外投资项目核准 企业在实施走出去战略,对国外矿产资源和其他产业投资时,需要编写可行性研究报告报给国家发展和改革委或省发改委,需要申请中国进出口银行境外投资重点项目信贷支持时,也需要可行性研究报告。 6、政府资金项目申报 企业为获得政府的无偿资助,需要对公司项目进行策划、设计、技术创新、技术规划等,编写的可行性研究报告包含管理团队、技术路线、方案、财务预测等,是政府无偿资助的项目申报的主要依据。 项目可行性报告分类 可行性研究报告分为:政府审批核准用可行性研究报告和融资用可行性研究报告。 (1)审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;具体概括为:政府立项审批,产业扶持,中外合作、股份合作、组建公司、征用土地。 (2)融资用报告侧重关注项目在经济上是否可行。具体概括为:银行贷款,融资投资、投资建设、境外投资、上市融资、申请高新技术企业等各类可行性报告。 国统调查报告网(即中金企信国际咨询公司)以专业的服务理念、完善的售后服务体系为各界提供精准、权威的项目可行报告。 【报告说明】 可行性研究报告,简称可研,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。

软磁铁氧体磁心主要品种规格及其应用(一)

软磁铁氧体磁心主要品种规格及其应用(一) 适于高频电子变压器和电感器应用的软磁铁氧体磁心,品种规格很多主要有E 型、U 型、罐型及特殊磁心等,下面作一些重点介绍。 (1) E 型磁心 具有矩形截面的E型磁心,由于结构和制造简单,已成为最广泛应用的高频变压器磁心,可以在低磁通密度或高磁通密度下使用。这类磁心通常成对使用,组成闭合磁路。常用规格可细分为 EE 型、EI 型、ETD(EC) 型;新开发的有 EPC、 EFD 型等,在平面变压器中使用。 ① EE 型磁心常用规格有 EE13、EE16、EE19、EE20、EE22、EE25、EE28、EE30、EE40、EE55等。分别表示磁心的外形尺寸。有的适用于开关电源变压器,有的可制作驱动变压器,脉冲变压器等。平面变压器采用更小尺寸的规格,如 EE5、EE10 等。 ② EI 型磁心用一个 E 型和一个条型磁心配对作用,常用规格有 EI22、EI25、EI28、EI30、EI35、EI40、EI50等,这类磁心可以制作开关电源的变压器,也在彩电中制作枕校变压器,近年来,在平面变压器中采用更小规格除菌过滤器磁心,

如 EI14、EI18 等。 ③ ETD(EC) 型磁心国际电工委员会早在 1992 年就推荐了 ETD 磁心尺寸系列,以后又陆续将尺寸系列作了一些扩展,这类磁心中心柱为圆形截面(见图1-1.3), 与相同面积的方形截面相比,绕线长度短,因而微孔滤膜铜耗小,漏感也低。这类磁心国内习惯于称为 EC 型磁心,国外也有称为 ER 型磁心。国际标准推荐的尺寸规格有 ETD19、ETD29、ETD34、ETD39、ETD44、ETD49、ETD54、ETD59。这类磁心主要用于制作功率变压器和扼流图,更适合高频使用。在平面变压器推荐使用低矮形的 ER 型磁心,尺寸规格有 ER95、ER11、ER14.5。

1.铁氧体材料发展及分类

铁氧体 中文名称:铁氧体 英文名称:ferrite 定义:由以三价铁离子作为主要正离子成分的若干种氧化物 组成,并呈现亚铁磁性或反铁磁性的材料。 铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。 简介 铁氧体(ferrites)是一种非金属磁性材料,它是由三氧化二铁和一种或几种其他金属氧化物(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。它的相对磁导率可高达几千,电阻率是金属的1011倍,涡流损耗小,适合于制作高频电磁器件。铁氧体有硬磁、软磁、矩磁、旋磁和压磁五类。 旧称铁淦氧磁物或铁淦氧,其生产过程和外观类似陶瓷,因而也称为磁性瓷。铁氧体是铁和其他一种或多种适当的金属元素的复合氧化物。性质属于半导体,通常作为磁性介质应用,铁

氧体磁性材料与金属或合金磁性材料之间最重要的区别在于导 电性。通常前者的电阻率为102~108Ω·cm,而后者只有10-6~10-4Ω·cm。 发展历史 中国最早接触到的铁氧体是公元前 4世纪发现的天然铁氧体,即磁铁矿(Fe3O4),中国所发明的指南针就是利用这种天然磁铁矿制成的。到20世纪30年代无线电技术的发展,迫切地要求高频损耗小的铁磁性材料。而四氧化三铁的电阻率很低,不能满足这一要求。1933年日本东京工业大学首先创制出含钴铁氧体的永磁材料,当时被称为OP磁石。30~40年代,法国、 日本、德国、荷兰等国相继开展了铁氧体的研究工作,其中荷兰菲利浦实验室物理学家J.L.斯诺克于1935年研究出各种具有优良性能尖晶石结构的含锌软磁铁氧体,于1946年实现工业化生产。1952年,该室J.J.文特等人曾经研制成了以 BaFe12O19为主要成分的永磁性铁氧体。这种铁氧体与1956年该室的G.H.永克尔等人所研究的四种甚高频磁性铁氧体具有类似的六角结构。1956年E.F.贝尔托和 F.福拉又报道了亚铁磁性的Y3Fe5O12的研究结果。其中代换离子Y有Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb和Lu等稀土离子。由于这类磁性化合物的晶体结构与天然矿物石榴石相同,故将其称之为石榴石结构铁氧体。迄今为止,除了1981年日本杉本光男采用超急冷法制得的非晶结构的铁氧体

软磁铁氧体基本磁特性

软磁铁氧体材料和磁心概述 软磁铁氧体材料和磁心概述 软磁铁氧体材料分类 铁氧体又称氧化物磁性材料,它是由铁和其它金属元素组成的复合氧化物。铁氧体采用陶瓷工艺,经高温烧结而制成各种形状的零件。实际上,所有在金属磁性材料中出现的磁现象,在铁氧体中也能观察到,但是有两个基本不同点:一是铁氧体的饱和磁化强度远远低于金属磁性材料,通常为金属材料的一半到五分之一;二是铁氧体的电阻率比金属磁高一百万倍以上。由于这种区别,对于低频(1000 赫兹以下)高功率的磁心一般采用金属磁性材料,用于较高频率(1000 赫兹以上)磁心采用铁氧体材料。按照铁氧体的特性和用途,可把铁氧体分为永磁、软磁、矩磁、旋磁和压磁等五类;如果按照铁氧体的晶格类型来分,最重要的有尖晶石型、石榴石型和磁铅石型等三大类。高频变压器和电器中主要使用软磁铁氧体材料,因此下面主要叙述软磁铁氧体材料的分类及特性。大多数软磁铁氧体属尖晶石结构,一般化学表示式为MeFe 2O 4,这里 Me 表示二价金属元素,如:Mn、Ni、Mg、Cu、Zn等。软磁铁氧体材料是各种铁氧体材料中产量最多,用途最广泛的一种。这类材料的主要特点是起始磁导率高和矫顽力低,即容易磁化也极易退磁,其磁滞回线呈细而长形状。软磁铁氧体材料可按化学成分、磁性能、应用来进行分类。若按化学成分来分类,则主要可分为 MnZn 系、NiZn系和 MgZn 系三大类。MnZn 系铁氧体具有高的起始磁导率,较高的饱和磁感应强度,在无线电中频或低频范围有低的损耗,它是,1兆赫兹以下频段范围磁性能最优良的铁氧体材料。常用的MnZn 系铁氧体,其起始磁导率μi=400~20000,饱和磁感应强度 BS=400~530mT。MnZn 系铁氧体广泛制作开关电源变压器、回扫变压器、宽带变压器、脉冲变压器、抗电磁波干扰滤波电感器及扼流圈等,是软磁铁氧体中产量最大的一种材料(按重量计约占 60%)。NiZn 系铁氧体使用频率 100kHz~100MHz,最高可使用到300MHz。这类材料磁导率较低,电阻率很高,一般为 105~107Ωcm。因此,高频涡流损耗小,是 1MHz 以上高频段磁性能最优良有材料。常用的 NiZn 系材料,磁导率μi=5~1500,广泛用于制作各种高频固定电感器,可调电感器,谐振回路线圈,线性调节线圈抗电磁波干扰线圈等。附加少量 CuO 的 NiCuZn 系材料,最近在表面安装片式电感器中得到广泛应用。NiZn 系材料制成的各类小型磁心产量很大(按数量计),但按重量计的约占软磁铁氧体材料的 10% 左右。MgZn 系铁氧体材料中附加小量 MnO 后制成 MgMnZn系材料,电阻率较高,广泛用于制作各种显象管或显示的偏转线圈磁心,数量很大,产量约占软磁铁氧体材料的30%(按重量计)左右。MgZn 系铁氧体在某些高频电感线圈及天线线圈中也得到应用。

永磁铁氧体粘结磁粉生产的新进展

3邹玮,1991年大学毕业,在北京矿冶研究总院磁性材料研究所工作至今,工程师,主要从事铁氧体粘结磁粉和粘结磁性 材料的研制生产。 永磁铁氧体粘结磁粉生产的新进展 邹玮 杨万有 (北京矿冶研究总院磁性材料研究所,北京 100054) 摘要: 回顾了永磁铁氧体磁粉生产的历史和最新进展,展望了其广阔的发展前景,综述了一些永磁铁氧体磁粉生产的新技术。 关键词: 永磁铁氧体磁粉;预烧料;工艺;高性能 The R ecent Progress of H ard Ferrite Magnetic Powder Manufacture Zou Wei Yang W anYou (Beijin G eneral Research Institute Of Mining &Metallurgy Research Institute For Magnetic Materials ,Beijing 100054) Abstract : The history and recent progress of hard ferrite magnetic powder is reviewed in this article ,involved some of new technology ,new production ,new equipment and management. K ey w ords : hard ferrite magnetic powder ;hard pre -sintered materials ;process ;high magnetic proprieties 1 前言 随着我国国民经济的快速发展,永磁铁氧体工 业也迅猛发展,年总产量已从1975年的5000吨达到目前的15万吨,占世界现有永磁铁氧体生产的25%[1]。预计到2000年将达到18万吨[2]。在短短十年内产量就翻了两番,说明了这段时间是我们发展的黄金时期,这一时期的发展为打开并占领市场作出了巨大贡献。 但是我们也应看到,我国永磁铁氧体行业中还存在一定问题,同发达国家的某些产品相比还有一段差距。例如日本TD K 公司研制的各向异性铁氧体,其磁能积已达到41.4kJ /m 3[3],而我国产品的磁能积只有35kJ /m 3。我们的产品更多的是低附加值产品,高性能产品比例较小。新产品的研制和开发 严重滞后于市场对高新技术产品的需求。工艺落后、设备陈旧、管理水平有待提高、质量意识有待加强,这些就是我们面临的问题。我国的永磁铁氧体已经在产量上迅猛发展了十年,在下一个十年仍然可以快速发展,但更主要的是技术、质量的大发展。 现在随着我国国民经济转型期的到来,从单方面追求产值到质量效益型的转变是大势所趋,行业内企业已经意识到这一问题的迫切性,纷纷从不同的方面着手解决这些问题,如在生产工艺、设备装备与新产品的研制开发上下功夫。 2 生产工艺的新进展及其发展方向 我国现有永磁铁氧体的生产工艺基本上是延续六、七十年代的老工艺,工艺较为落后。六、七十年 — 38—  粉末冶金技术 2001年第19卷第2期

铁氧体磁环

一。下面的是行业标准 1.1 GB/T9637-88《磁学基本术语和定义》,等同采用IEC50-901,代替等同采用IEC205的SJ/T1258-77《磁性材料与器件术语及定义》。 1.2 JJG1013-89《磁学计量常用名词术语和定义》(试行)为中华人民共和国国家计量检定规程,非等效采用IEC50-901制定的,和GB/T9677-88出自于一个文本,基本上都是一个翻译问题,内容基本一样,只是翻译成的中文表述不同。 1.3 SJ/T103213-91《铁氧体材料牌号与元件型号命名方法》,代替SJ/T1582-80。 本标准规定软磁铁氧体材料用R表示,如R20表示磁导率为20的软磁铁氧体材料。软磁铁氧体材料牌号已被等同采用IEC1332(1995)《软磁铁氧体材料分类》的电子行业标准SJ/T1766-97代替。 1.4 SJ/Z1766-81《软磁铁氧体材料系列及测试方法》 1.5 SJ/T1766-97《软磁铁氧体材料分类》电子行业标准等同采用IEC1332(1995) 1.6 GB/T9634-88《磁性氧化物外形缺陷极限规范的指南》等同采用IEC424(1973)制定 1.7 GB/T9632-88《通信用电感器和变压器磁芯测量方法》本标准等同采用IEC367-1(1982)制定。 1.8 GB/T9635-88《天线棒测量方法》本标准等同采用IEC492(1975)制定。 1.9 SJ/T3175-88《磁性氧化物圆柱形磁芯、管形磁芯及螺纹磁芯的测量方法》本标准等同采用IEC732(1982)制定。 1.10 SJ/T10281-91《磁性零件有效参数的计算》等同采用IEC205(1966)、205AMD (1976)、205AMD2(1981)制定。 1.11 GB/T11439-89《通信用电感器和变压器磁芯第二部分:性能规范起草导则》,等同采用IEC367-2(1974)、367-2AMD1(1983)、367-2A(1976)制定。GB/T11439-89在1995年国家标准消化整理以后,被转化为电子行业标准SJ/T11076-96。 1.12 SJ/T9072.3-97《变压器和电感器磁芯制造厂产品目录中有关铁氧体材料资料的导则》等同采用IEC401(1993,第二版),代替SJ/Z9072-3-87二。以下为搜集整理 2.1前景广阔的软磁铁氧体材料

高性能永磁铁氧体行业分析

高性能永磁铁氧体市场现状及未来发展分析
北京汉鼎世纪咨询有限公司 摘要:近年来,电机在汽车、电动工具、家电、电动玩具、办公设备、计算机等领域应 用的不断深入, 高性能的电机用磁瓦的需求不断增加。 中国作为最大的永磁铁氧体材料生产 国家, 有必要对永磁铁氧体的市场现状和未发展做出预测。 本文拟从永磁铁氧体市场的现状 入手,对下游行业的需求做相应预测,进而推导出未来永磁铁氧体市场的需求。 关键字:永磁铁氧体 市场现状 需求预测
一、永磁铁氧体行业概述 永磁铁氧体是以SrO或BaO及Fe为原料,通过陶瓷工艺(预烧、破碎、制粉、 压制成型、烧结和磨加工)制造而成,具有宽磁滞回线、高矫顽力、高剩磁,一 经磁化即能保持恒定磁性的功能性材料。按生产工艺不同,将永磁铁氧体分为烧 结和粘结两种,其中烧结又分为干压成型和湿压成型,粘结分为挤出成型、压制 成型和注射成型。由粘结铁氧体料粉与合成橡胶复合而制成的具有柔软性、弹性 及可扭曲的磁体又被称做橡胶磁。 根据成型时是否外加磁场则分为各向同性永磁 体和各向异性永磁体。 目前永磁铁氧体的生产主要集中在中国、日本等。日本和美国是世界上最早 从事永磁材料研发和生产的国家,新产品的开发能力强,整体技术含量高,但是 随着生产成本过高,加上环保的需要,发达国家的生产正在不断减少,主要以生 产中高档产品为主,而中低档产品的生产逐渐转移到发展中国家。目前,国际上 知名的铁氧体磁性材料生产企业主要有如日本的 TDK、FDK、EPSON、日立金属、 住友特殊等, 欧洲的 PHILIPS、 德国的 VAC、 EPCOS, 美国的 ARNORD、 MAGNEQUENCH 等。目前全球永磁铁氧体产品开发和生产的最高水平当属于日本 TDK,日本 TDK 从 90 年代中期,就能大批量生产 FB6 系列(FB6N、FB6H、FB6B)材料,目前已 能批量生产 FB9(FB9H、FB9B、FB9N) 、FB12 系列产品(磁性能指标接近理论值) , 高端永磁铁氧体产品大部分由日本厂商占据,FB4 以下系列中低档产品早已不生 产。 进入 21 世纪以来,世界磁性材料行业纷纷向中国或第三世界地区转移,以 中国为代表的发展中国家承接了大部分永磁铁氧体产业转移, 随着应用市场的不 断深入发展, 中国的永磁铁氧体行业近年来发展迅猛, 技术差距与发达国家相比, 变得越来越小。国内部分厂家已经开发出与 TDK 高端产品牌号相对应的产品,其 中横店东磁开发的 DM4350(对应 TDK FB9H 牌号)和 DM4545 (对应 TDK FB9B 牌 号)已经能够量产。江粉磁材 JMP-5、JMP-6(对应 TDK FB6 牌号)和 JMP-7(对 应 TDK FB9 牌号)已经量产,同时江粉磁材正在积极研发 JMP-8(对应 TDK FB12 牌号)系列产品。

高性能永磁铁氧体市场现状及未来发展分析

高性能永磁铁氧体市场现状及未来发展分析摘要:近年来,电机在汽车、电动工具、家电、电动玩具、办公设备、计算机等领域应用的不断深入,高性能的电机用磁瓦的需求不断增加。中国早已成为最大的永磁铁氧体材料生产国家,有必要对永磁铁氧体的市场现状和未发展做出预测。本文拟从永磁铁氧体市场的现状入手,对下游行业的需求做相应预测,进而推导出未来永磁铁氧体市场的需求。 关键字:永磁铁氧体市场现状需求预测 一、永磁铁氧体行业概述 永磁铁氧体是以SrO或BaO及Fe2O3为原料,通过陶瓷工艺(预烧、破碎、制粉、压制成型、烧结和磨加工)制造而成,具有宽磁滞回线、高矫顽力、高剩磁,一经磁化即能保持恒定磁性的功能性材料。按生产工艺不同,将永磁铁氧体分为烧结和粘结两种,其中烧结又分为干压成型和湿压成型,粘结分为挤出成型、压制成型和注射成型。由粘结铁氧体料粉与合成橡胶复合而制成的具有柔软性、弹性及可扭曲的磁体又被称做橡胶磁。根据成型时是否外加磁场则分为各向同性永磁体和各向异性永磁体。 目前永磁铁氧体的生产主要集中在中国、日本、美国等。日本和美国是世界上最早从事永磁材料研发和生产的国家,新产品的开发能力强,整体技术含量高,但是随着生产成本过高,加上环保的需要,发达国家的生产正在不断减少,主要以生产中高档产品为主,而中低档产品的生产逐渐转移到发展中国家。目前,国际上知名的铁氧体磁性材料生产企业主要有如日本的TDK、FDK、EPSON、日立金属、住友特殊等,欧洲的PHILIPS、德国的VAC、EPCOS,美国的ARNORD、MAGNEQUENCH 等。目前全球永磁铁氧体产品开发和生产的最高水平当属于日本TDK,日本TDK从90年代中期,就能大批量生产FB6系列(FB6N、FB6H、FB6B)材料,目前已能批量生产FB9(FB9H、FB9B、FB9N)、FB12系列产品(磁性能指标接近理论值),高端永磁铁氧体产品大部分由日本厂商占据,FB4以下系列中低档产品早已不生产。 进入21 世纪以来,世界磁性材料行业纷纷向中国或第三世界地区转移,以中国为代表的发展中国家承接了大部分永磁铁氧体产业转移,随着应用市场的不断深入发展,中国的永磁铁氧体行业近年来发展迅猛,技术差距与发达国家相比,变得越来越小。国内部分厂家已经开发出与TDK高端产品牌号相对应的产品,其中横店东磁开发的DM4350(对应TDK FB9H牌号)和DM4545 (对应TDK FB9B牌号)已经能够量产。江粉磁材JPM-5、JPM-6(对应TDK FB6牌号)和JPM-7(对应TDK FB9牌号)已经量产,同时江粉磁材正在积极研发JPM-8(对应TDK FB12牌号)系列产品。 国内重点永磁铁氧体企业与TDK产品牌号对照表

永磁材料的种类及发展

永磁材料的种类及发展 永磁材料种类多,用途广。现在所应用的永磁材料主要经历了金属永磁材料、铁氧体永磁材料和稀土永磁材料三个阶段。 第一阶段:金属永磁材料,是一大类发展和应用都较早的以铁和铁族元素为重要组元的合金型永磁材料,又称永磁合金。主要包括铝镍钴(Al-Ni-Co)和铁铬钴(Fe-Cr-Co)系两类永磁合金。这类材料的研发和生产始于20世纪初期,通过铸造工艺制备而成,因此,也被称为铸造永磁材料。1880年左右,人们首先采用碳钢制成了永磁材料,其最大磁能积(BH)max约为1.6 kJ/m3。紧接着,人们又发现了钨钢、钴钢等金属永磁材料。1931年以来,人们通过在Fe中加入Al、Ni、Co三种元素,经过浇注和热处理得到了铝镍钴系磁钢。最初,铝镍钴磁钢的(BH)max仅为14.3 kJ/m3,人们对合金成分和工艺进行调整后,(BH)max跃升到39.8 kJ/m3。从此,铝镍钴磁钢在永磁材料中占据了主导地位,一直到60年代。目前国际先进水平已经可以批量身材磁性能为(BH)max=13MGOe,Br>10.8 kGs,Hcb>1550Oe,Tc<550 ℃的铝镍钴磁体。这类材料的磁能积较低,但其居里温度很高(可高达890 ℃),温度稳定性很好,磁感温度系数低,因此,在某些特殊器件上的使用无法取代,至今依然有着稳定的市场需求。 第二阶段:铁氧体永磁材料,又称永磁铁氧体,是由Fe2O3和锶(或钡等)的化合物按一定比例混合,经预烧、破碎、制粉、压制成型、烧结和磨加工而成。当前应用的永磁铁氧体主要为六角晶系的磁铅石型铁氧体,其化学式为MO·6Fe2O3,其中M为Ba、Pb、Sr等元素。20世纪30年代发现了铁氧体永磁材料,这类永磁体的矫顽力一般只有0.5 T,剩磁在0.4 T左右,磁能积较低(25~36kJ/m3),其原材料便宜,工艺简单,价格低廉,因此在70年代得到迅速发展,其产量越居第一位。此外,其电阻率高,特别适合在高频和微波领域应用。 第三阶段:稀土永磁材料,是以稀土元素RE(Sm,Nd,Pr等)与过渡族金属元素TM(Fe,Co等)所形成的金属间化合物为基体的一类高性能永磁材料。从20世纪60年代开始,稀土永磁材料开始发展起来。稀土永磁材料的发展又经历了三代,第一代SmCo5、第二代Sm2Co17稀土永磁,和第三代的NdFeB稀土永磁。下面将三代稀土永磁材料分别介绍如下: 第一代稀土永磁SmCo5合金具有CaCu5型晶体结构,这是一种六角结构,这

永磁铁氧体预烧料的加工工艺及方法

永磁铁氧体预烧料的加工工艺及方法 永磁铁氧体预烧料的加工过程实际上是碳酸钡(BaCO3)或碳酸锶(SrCO3)与铁红(Fe2O3)经过高温下的固相反应充分生成六角形的铁氧体晶粒的过程。固相反应是否完善、充分,晶粒形状是否完整,对材料的质量有很大影响。同时预烧料的优劣在铁氧体磁铁的生产中至关重要,质量差的预烧料是无法生产出高性能铁氧体磁铁。 目前我们公司生产的铁氧体预烧料有:异方性锶料、等方性普通粒料、自动车料三种。决定永磁铁氧体预烧料性能优劣主要有以下几个方面: ○1材料○2配方○3工艺手段及控制方法 一、材料 在永磁铁氧体预烧料生产中首先要选择合适的原材料,选择时主要考虑:原料纯度、含杂质情况、原料化学活动性、颗粒度等几个方面。 1、铁红(Fe2O3):永磁铁氧体预烧料的主料,应选择纯度>97%以上,最好在98%以上。目 前我公司使用印度铁红有98.5%、98%、97.5%、96%四种,用量最大为 97.5%铁红。台湾铁红纯度98.5%、比利时铁红纯度99%。 2、碳酸钡(BaCO3)或碳酸锶(SrCO3):永磁铁氧体预烧料的主料,纯度应大于96%。最 好大于98%以上。目前我公司使用为纯度97%。 3、添加剂:在预烧时增加添加剂主要目的是为了改善材料的结构灵敏度,弥补某一特性。永 磁铁氧体常用的添加剂有:SiO2、CaCO3、SrSO4等,具体作用在配方中再 做介绍。 4、含杂质情况:杂质含量中二氧化硅(SiO2)含量应该在0.5%以下,最好在0.1%以下。 氯离子含量最好在0.15%以下(此杂质对铁氧体性能影响很大,直接影响产 品收缩率、反应气氛,应在烧结低温部分将其挥发排除)。 5、化学活动性:就铁红、铁磷、铁矿砂三种生产永磁铁氧体原料而言,铁红的化学活动性 优于其他两种。我公司目前全部使用铁红生产,另外纯度大的铁红化学活 动性优于纯度小的铁红。 4、颗粒度:原料的粒度最好在1um以下,颗粒度太大往往影响固相反应的充分发生。 5、原料密度:原料的压密程度(密度)同样对预烧料的烧结有较大影响,密度大的铁红在 混料过程中更加容易混料均匀、铁红与碳酸锶能充分接触;预烧过程中会增 加铁氧体的生成比例。 二、原料配方

永磁铁氧体计算说明(基础背景数据等)

永磁铁氧体项目计算说明 一、项目概况 X X磁性材料有限责任公司是目前国内唯一的专业生产永磁铁氧体瓦型磁钢的厂家,其研制开发的产品磁性能达到了国际先进水平,打破了日本对高性能永磁铁氧体市场的垄断。企业的产品已享誉国内外,80%出口到美国和西欧。但企业现有的生产能力仅为5000吨/年,大量的订单由于不能及时生产交付而无法签定,产能已经成本企业发展的瓶颈。为了解决产品供不应求的局面,公司决定新建一条年产5000吨的稀土复合型高性能永磁铁氧体产品生产线。 二、企业组织结构构及劳动定员 2.1企业组织结构 根据生产环节,本新建项目设置的生产车间有:原料车间、压机车间、烧结车间、机加工室及成品库。管理及职能部门保持现有的组织结构模式不变。 2.2工作制度 根据项目生产性质和生产条件,企业年生产工作日为330天,基本生产作业采用连续工作制,即全年除了设备必要的检修天数外,其余时间均进行生产,节假日也不休息。生产班次为混合班次,每班工作8小时。 人员安排符合法定工作时间40小时/周的限制。

2.3劳动定员 本项目新建5000t/a生产规模流水线,采用了新的生产工艺,改善了作业条件,提高了劳动生产率,需要新增劳动定员共430人。人员具体构成见表12-1。 表1项目定员估算结果

2.4工资 不同的岗位及职位将有不同的工资水平,但在此可行性研究阶段,采用企业平均工资水平来估算项目的工资总额。项目平均工资水平定为 2.52万元/人.年,项目年工资及附加费为1084万元。 三、项目总投资及资金筹措 3.1建设投资 根据所选择的工艺流程和需要的辅助、公用设施,新建一条5000t/a的高性能永磁铁氧体生产线,所需建设投资额为8513万元,详细估算及说明见表2。 表2建设投资估算表

铁氧体磁性材料

第一节铁氧体磁性材料概述 铁氧体磁性材料可用化学分子式MFe 2O 4表示。式中M 代表锰、镍、锌、铜等二价金属离子。铁氧体磁性是通过烧结这些金属化合物的混合物而制造出来的。铁氧体磁性的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体磁性能应用于高频领域。 首先,按照预定的配方比重,把高纯、粉状的氧化物(如Fe 2O 4、Mn 3O 4、ZnO 、NiO 等)混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温(1000~1400℃)下进行烧结。烧结出的铁氧体制品通过机械加工获得成品尺寸。上述各道工序均受到严格的控制,以使产品的所有特性符合规定的指标。 不同的用途要选择不同的铁氧体材料。有适用于低损耗、高频特性好的系列,有磁导率的线性材料。按照不同的适用频率范围分为:中低频段(20~150kHz )、中高频段(100~500kHz )、超高频段(500~1MHz )。 第二节铁氧体磁性材料的各项物理特性定义与计算公式 01) 初始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁性曲线始端的极限值,即 H B H i 00lim 1→μ=μ 式中 μ0:真空磁导率(4π×10-7H/m ); H : 交流磁场强度(A/m ); B : 交流磁通密度(T )。 02) 有效磁导率μe 在闭合磁路中(漏磁可以忽略),磁芯的有效磁导率可表示为: μe 72104××= e e A l N L π 式中 L :装有磁芯的线圈的自感量; N :线圈匝数; e e A l =C 1=磁芯常数(mm -1) 03) 饱和磁通密度B s

磁化到饱和状态的磁通密度。 04) 剩余磁通密度B r 从磁饱和状态去处磁场后,剩余的 磁通密度。 05) 矫顽力H c 从饱和状态去处磁场后,磁芯继续被反向的磁场磁化,直至磁通密度减小到零,此时的磁场强度称为矫顽力, 06) 损耗因素tan δ 损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和: tan δ=r e δδδtan tan tan h ++ =111r f e i V L h ++ 损耗因数也可用电阻和电抗之比来表示: L R R L R w eff m ωωδ?==tan 式中:tan δe :涡流损耗因数; tan δr :剩余损耗因数; h1:磁滞损耗因数; L :装有磁芯的线圈的自感量(H ); V :磁芯体积(m 3); i :电流(A ); e 1:涡流损耗系数; f :频率(Hz ); r 1:剩余损耗系数; R m :磁芯损耗的等效电阻(Ω); 0HH

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

常规铁氧体产品性能表

常规铁氧体产品性能表永磁铁氧体材料特性 材料牌号 Br Hcb Hcj(BH)max mT KG KA/m KOe KA/m KOe KJ/m3MGOe Y20 320-380 3.2-3.8 135-190 1.70-2.58 140-195 1.76-2.45 18.0-22.0 2.3-2.8 Y25 360-400 3.6-4.0 135-170 1.70-2.14 140-200 1.76-2.51 22.5-28.0 2.8-3.5 Y28 370-400 3.7-4.0 175-210 2.20-2.64 180-220 2.26-2.77 26.0-30.0 3.3-3.8 Y30H-1 380-400 3.8-4.0 230-275 2.89-3.46 235-290 2.95-3.65 27.0-32.5 3.4-4.1 Y30H-2 395-415 3.95-4.15 275-300 3.46-3.77 310-335 3.90-4.21 28.5-32.0 3.5-4.0 Chinese standard Grade Br Hcb Hcj(BH)max mT KG KA/m KOe KA/m KOe KJ/m3MGOe Y10T 200-235 2.0-2.35 125-160 1.57-2.01 210-280 2.64-3.52 6.5-9.5 0.8-1.2 Y20 320-380 3.2-3.8 135-190 1.70-2.38 140-195 1.76-2.45 18.0-22.0 2.3-2.8 Y22H 310-360 3.1-3.6 220-250 2.77-3.14 280-320 3.52-4.02 20.0-24.0 2.5-3.2 Y23 320-370 3.2-3.7 170-190 2.14-2.38 190-230 2.39-2.89 20.0-25.5 2.5-3.2 Y25 360-400 3.6-4.0 135-170 1.70-2.14 140-200 1.76-2.51 22.5-28.0 2.8-3.5 Y26H 360-390 3.6-3.9 220-250 2.77-3.14 225-255 2.83-3.21 23.0-28.0 2.9-3.5 Y27H 370-400 3.7-4.0 205-250 2.58-3.14 210-255 2.64-3.21 25.0-29.0 3.1-3.7 Y30 370-400 3.7-4.0 175-210 2.2-2.64 180-220 2.64-2.77 26.0-30.0 3.3-3.8 Y30BH 380-390 3.8-3.9 223-235 2.80-2.95 231-245 2.90-3.08 27.0-30.0 3.4-3.7 Y30-1 360-400 3.6-4.0 135-170 1.70-2.14 140-200 1.76-2.51 22.5-28.0 2.8-3.5 Y30BH-1 380-400 3.8-4.0 230-275 2.89-3.46 235-290 2.95-3.65 27.0-32.0 3.4-4.0 Y20-2 395-415 3.95-4.15 275-300 3.46-3.77 310-335 3.90-4.21 28.5-32.5 3.5-4.0 Y32 400-420 4.0-4.2 160-190 2.01-2.38 165-195 2.07-2.45 30.0-33.5 3.8-4.2 Y33 410-430 4.1-4.3 220-250 2.77-314 225-255 2.83-3.21 31.5-35.0 4.0-4.4 Y35 400-410 4.00-4.10 175-195 2.20-2.45 180-200 2.26-2.51 30.0-32.0 3.8-4.0 USA standard Material Br Hcb Hcj(BH)max mT KG KA/m KOe KA/m KOe KJ/m3MGOe C1 230 2.3 148 1.86 258 3.5 8.36 1.05 C5 380 3.8 191 2.4 199 2.5 27 3.4 C7 340 3.4 258 3.23 318 4.00 21.9 2.75 C8(C8A) 385 3.85 235 2.95 242 3.05 27.8 3.5 C9 380 3.8 280 3.516 320 4.01 26.4 3.32 C10 400 4.0 288 3.617 280 3.51 30.4 3.82 C11 430 4.3 200 2.512 204 2.56 34.4 4.32 Europe standard The standard from International Electronics Committee (IEC404-8-1) O×100=Y10T=C1 ×300=Y30=C5 O×330=Y30 BH Grade Allowed Value (min/typical) Br Hcb BrHcj(BH)max

永磁铁氧体预烧料的生产工艺是怎样的审批稿

永磁铁氧体预烧料的生产工艺是怎样的 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

永磁铁氧体预烧料的生产工艺是怎样的 以优质铁鳞为原料,采用链篦机——回转窑干法生产工艺,生产Y30H-1型锶永磁铁氧体预烧料。 经过烘干、球磨后的铁鳞,与一定配比的碳酸锶、高岭土进行配料、强混、造球后,送入链篦机进行烘干、氧化处理。链篦机采用回转窑的尾气对物料进行烘干,以及将物料中的FeO氧化为Fe2O3,将物料中三氧化二铁的成份进行大比例的提高。 完成链篦机烘干、氧化后的球状物料,送入回转窑经过1200℃进行高温煅烧处理。在回转窑中,物料中的碳酸锶和碳酸钙会在高温中发生分解反应,然后再与Fe2O3生成产品——SrO(Fe2O3)6。 项目生产过程中发生的化学反应如下: 链篦机中的氧化反应: 4FeO +O2 = 2Fe2O3? 回转窑中的分解反应: SrCO3 =(高温) SrO+CO2↑ 回转窑中产品的生成反应: SrO+ 6Fe2O3=(高温) SrO(Fe2O3) 6 1、原料来源 铁鳞由汽车运输至本项目厂区铁鳞堆场进行散放堆存。项目外购的袋装碳酸锶、高岭土全部在车间内暂存库房内堆存。 2、原料处理

项目需要对铁鳞进行初步筛分、烘干、冷却、球磨机初磨、配料、配料后强混球磨等工段,为项目三条生产线提供合格的原材料。 具体处理步骤如下: (1)铁鳞筛分 项目铁鳞堆场内设置了一台孔径为75px的粗筛,除去铁鳞中较大的杂质。根据现场勘查,筛除的杂质主要为热轧厂铁鳞沉淀池中混杂的砖头、废弃角钢等固废。 (2)铁鳞烘干窑烘干 经过筛分后的合格铁鳞经3m高的斗提机输送至烘干窑中,通入煤气燃耗后进行烘干处理,将含水率为10%的铁鳞烘干到含水1%左右。 斗提机进料口,会产生车间粉尘(G1),采用集气罩收集后送入SMC4-30型布袋除尘器处理,除尘系统回收的粉尘送强混球磨机进行研磨。 烘干过程中将产生烘干烟气(G2),主要污染物为粉尘。烘干烟气经烟气管道收集送旋风除尘系统处理,除尘系统回收的粉尘送强混球磨机进行研磨。 (3)铁鳞烘干窑后冷却筒 烘干窑后冷却筒与项目烘干窑对接,烘干后的铁鳞直接进入冷却筒进行冷却处理。冷却筒通过对筒体喷淋水进行间接冷却,冷却废水(W1)经冷却水收集槽、收集管道收集后,送循环水处理站处理后循环使用。

相关主题