搜档网
当前位置:搜档网 › 中学数学不等式证明方法

中学数学不等式证明方法

中学数学不等式证明方法
中学数学不等式证明方法

中学不等式证明方法探究

摘要

不等式,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。而不等式的证明,方法灵活多样,还和很多内容结合,它既是中学数学教学中的难点,也是数学竞赛培训的难点,近年也演变为竞赛命题的热点,因其证明不仅蕴涵了丰富的逻辑推理、非常讲究的恒等和不等变形技巧,而且证明过程千姿百态,极易出错,因此,有必要对不等式的证明方法和技巧进行总结归纳并与大家一起分享交流。本文通过对不等式的进一步研究,同时在前人的基础上对不等式的证明方法进行再探讨,得出了几点新方法,再有就是对于一些题目,很多人都是用一些常用的方法来解决,而笔者则是通过另外的一种方法来解,并且解题过程相对简单,在正文的例题当中,我用方法二给出了我的证明过程,以飨读者。

关键词:不等式;证明方法;证明技巧;换元法;微分法

证明不等式的方法灵活多样,内容丰富、技巧性较强要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.

通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识. 1、比较法

比较法是证明不等式的一种最基本的方法,也是最常用的的方法,基本不等式就是用比较法证明的。其难点在第二步的“变形”上,变形的目的是有利于第三步判断,求差比较法变形的方向主要是分解因式、配方。 1)作差比较法的理论依据有:

.0,0,0=-?=<-?<>-?>b a b a b a b a b a b a

2)作商比较法的理论依据有:

.1,0>?>>b a

b a b

3)作差(商)比较法的步骤:

作差(商)→变形→判断符号(与1的大小) 例1:求证:234221x x x +≥+ 证明:法一:)2()21(234x x x +-+

23422223332210

]2

1

)21(2[)1()122()1()

122)(1()12)(1()1)(1()1(2x x x x x x x x x x x x x x x x x x x +≥+∴≥++-=++-=-+--=---=-+--=

法二:)2(21234x x x +-+

2

342222242342210

)1()(1

22x x x x x x x x x x x +≥+∴≥-+-=+-++-=

说明:法一的变形主要是因式分解,其难点在于分解123--x x 的因式,判断1222++x x 的符号除用配方法外,还可用判别式法(此法我们后面再述)。证法二的变形主要是配方法,难点在于拆项,此法笔者又将其归纳为裂项法。通过本例,可以了解求差比较法的全貌,以及关键的第二步变形。

例2:已知0,1>>λa ,求证:)2(log )(log )(λλλ+>++a a a a 证明:a a a a a a a a )()()(log )2(log )

(log )2(log λλλλλλ+++?+=++

).

(log )2(log ,0)(log 1

]2

)(log [

]2

)

2(log [

]2)

2(log [

]2

log )2(log [

)(22

)(22)(2

)(2

)()(λλλλλλλλλλλλλ+<+∴>+=+<+=+=++≤++++++a a a a a a a a a a a a a a a a a a 又

说明:观察不等式的特点,λ+a 充当了真数和底,联想到a

N N a log 1

log =

,进而用了作商比较法,作商比较法的变形主要是利用某些运算性质和性质,如函数的单调性等,我们再看:

例3:若0>>>c b a ,求证: (1)b a b a a b b a >

(2)b a c a c b c b a c b a c b a +++>222

证明:(1)0>>>c b a ,b a b a b a b a

a

b b a -=)(

又0,1,0>->∴

>>b a b

a

b a a

b b a a b a b b

a b a b a b a b a b

a b a b a >∴>>>∴-0

,1,1)( 又即 (2)由(1)的结果,有

0,0,0>>>>>>c a a c b c c b a b b a a c a c c b c b b a b a

两边分别相乘得

b

a c

a c

b c

b

a

c a b c a b a c c b b a c

b

a

c

b a a

c c b b a a c c b b a +++>∴??>??222

2、综合法

利用某些证明过的不等式作为基础,再运用不等式的性质,推导出所求证的不等式,这种证明方法叫做综合法,综合法的思考路线是“由因导果”。 例4:(1)已知证:

为不全相等的正数,求c b a ,,

3>-++-++-+c c

b a b b a

c a a c b (2)已知1,,=abc c b a 为不相等正数,且,

求证:c

b a

c b a 1

11++<

++ 证明:(1)证法一:3)()()(-+++++=a

c

c a c b b c b a a b 左式

2

,22

2,,≥+≥+=?≥+∴

c

a a c c

b b

c b a

a b b a a b c b a 同理:为不全相等的正数

且上面三个等号不能同时成立, 3363)()()=->-+++++∴

a c

c a c b b c b a a b ( 得证; 证法二:)2()2()2(

-+++-+++-++=c

c

b a b

c b a a c b a 左式

3

696

1

336)111)(,,6

)111)((33=-=-?>-++++∴-++++=abc

abc c b a c b a c b a c

b a

c b a (为不全等正数

得证。

(2)证法一:1,,=abc c b a 为不等正数,且

c

b a b a a

c c b ab

ca bc c b a 1

11211211211111+

+=+

++++<++=

++∴

证法二:1,,=abc c b a 为不正数,且

c

b a ab

c c ab bc a bc ac bc ab ac ab ab ac bc c

b a ++=++>++

+++=++=++∴222222111 得证。

说明:(1)题两种方法的差别主要在于对不等式左边施行不同的恒等变形,其目的都是为了有效地利用基本不等式,灵活地运用均值不等式,这也是综合法证明不等式的主要技巧之一;

(2)题是条件不等式的证明,要找出条件与结论之间的内在联系,分析已知与求证,不等式左边与右边的差异与联系,去异求存同,找到证题的切入口,本题合理运用条件

1=abc 的不同变形。

3、分析法

从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为判断这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可判定所求证的不等式成立,这种证明方法叫做分析法,分析法的思路是“执果索因”。

例5:已知函数)21,0(),11lg()(∈-=x x x f ,若.)2

1

,0(,2121x x x x ≠∈且

求证:)2

()]()([21

2121x x f x f x f +>+

证明:要证原不等式成立,只需证明22

121)12

()11)(11(-+>--x x x x 事实上,2121,2

1

0x x x x ≠<

<

)2

()]()([21

)12lg()]11)(11lg[(

)12()11)(11(0

)()1()(4

)(4111)12()11)(11(212122

1212212122121212212

1221212122

121x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x +>+-+>--∴-+>-->+--=++

+---=

-+---∴故即是

得证。 4、换元法

换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元法的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元法的思想与方法来解就很方便,换元法多用于条件不等式的证明中,一般有增量换元、三角换元、和差换元、向量换元、利用对称性换元、借助几何图形换元等几种方法。 1)增量换元

对对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量换元,换元的目的是通过换元达到减元,使问题化难为易,化繁为简。

例6:已知.4

11,c

a c

b b a

c b a -≥-+->>求证:

分析:考虑到)()(c b b a c a -+-=-,由此可以令,0,0>-=>-=c b y b a x 这时问题转

化为“y

x y x y x +≥+>4

11,0,证明若”。

证明:令y x c a c b y b a x +=->-=>-=,0,0,下面只要证明:

y

x y x +≥+411即可。 取等号)

即当且仅当c a b y x y x

x y y x x y y x y x y x +====+≥++=++∴>2,,(4222))(11(,0, 成立。即c

a c

b b a y x y x -≥-+-+≥+∴4

11,411 例7:若.2,0222a b a b ab b a ≥-+-≥≥求证: 分析:如何利用已知不等式0≥≥b a 是证明本题的关键,

因为)0()0(0≥+=?≥=-?≥?≥-h h b a h h b a b a b a ,这样可把已知的不等式关系换成相等关系。

证明:),0(,0≥+=≥≥h h b a b a 设

.

222)()(22222222

22222a b a b ab a

h b bh h nh b b h b b h b b b a b ab ≥-+-∴=+≥+++=-++-+=-+-则

得证。

2)三角换元

三角换元就是根据已知的一些三角等式、三角代换来解决题目中的某些问题,如,问题中

已知

θθs i

n ,c o s )),,0(222a y a x a a y x ==+∞∈=+可设;若已知

)1(s i n ,c o s ,12

2

≤==≤+r r y r x y x θθ可设;若已知,

或1122

222222=-=+b

y a x b y a x 则条件可设??

?==???==,tan ,

sec ;sin ,cos θθθθy a x a y a x 或其中θ的范围取决于y x ,的取值范围,等等。 例8:已知.1,1,1,,,2222≤+=+=+bd ac d c b a d c b a 求证:都是实数,且

分析:由1,12222=+=+d c b a ,可以联想到1cos sin 22=+αα的关系作三角代换。 证明:,cos ,sin ,cos ,sin ,1,12222ββαα=====+=+d c b a d c b a 所以可设 ,)c o s (c o s c o s s i n s i n βαβαβα-=+=+∴bd ac

1,1)cos(≤+∴≤-bd ac βα 又,即原不等式成立。 3)和差换元

例9:对任意实数.2

222,,6

63322b a b a b a b a b a +≤+?+?+求证: 分析:对于任意实数b a 与,都有2

2,22b

a b a b b a b a a --+=-++=

,令t s b t s a b

a t

b a s -=+=-=+=

,,2

,2则有。 证明:设t s b t s a -=+=,,下面只需证

.1515)3)((6422462322t t s t s s st s t s s +++≤++

.

2

222,1515)3)((,012116

63322642246232264224b a b a b a b a t t s t s s st s t s s t t s t s +≤+?+?++++≤++∴≥++=-即左边右边

得证。 4)向量换元

例10:已知.221212,1,,≤+++=+∈+b a b a R b a 求证:

分析:将不等式变形为12122121121+++?≤+?++?b a b a ,观察其结构我们可

联想到学习两个向量的内积是有这样一个性质:2211b a b a ?+?=?≤?。

证明:设)12,12(),1,1(++==b a ,

则有12122,1212+++==+++=?b a b a

.221212,2,1≤+++≤?==+a a n m b a 得由性质

5)利用对称性换元

例11:设).)()((,,,c b a b a c a c b abc R c b a -+-+-+≥∈+求证:

分析:经过观察,我们发现,把c b a ,,中的两个互换,不等式不变,则可令

.8))()((,,,xyz x z z y y x c b a z b a c y a c b x ≥+++-+=-+=-+=则原不等式可化为: 证明:令c b a z b a c y a c b x -+=-+=-+=,,

.8))()((0,,,)(2

1

),(21),(21xyz x z z y y x xyz R c b a y x c z x b z y a ≥+++<∴∈+=+=+=

+时,有当则 当0>xyz 时,有+∈R z y x ,,(否则z y x ,,中必有两个不为正值,不妨设0,0≤≤y x 则0≤c ,这与0>c 矛盾)

因此:02,02,02>≥+>≥+>≥+zx x z yz z y xy y x 则有:xyz x z z y y x 8))()((≥+++ 综上,恒有xyz x z z y y x 8))()((≥+++,

把z y x ,,的值代人上式得:).)()((c b a b a c a c b abc -+-+-+≥得证。 6)借助几何图形换元

例12:已知c b a ,,是ABC ?三边的长,求证:.222222333a c c b b a a c c b b a ++≥++ 分析:如图,作为切点的内切圆,设F E D ABC ,,?,令.,,AE z CD y BD x ===(其中+∈R z y x ,,)

,则原不等式可转化为: z y x y y x x x z z z y 222)()()(2

22++≥+++++ (1) 再利用均值不等式:ab b a 2≥+。

证明:设F E D ,,为切点,令.,,AE z CD y BD x ===则原不等式可化为(1)的形式,又

因为+

∈R z y x ,,,则有,.2,2,22

22x y y

x z x x z y z z y ≥+≥+≥+所以(1)式成立,故原不

等式成立。得证。

7)代数换元

例13:已知+∈R c b a ,,,且.23131313,1≤+++++=++c b a c b a 求证: 分析:引入参数,配凑成二次方程转化为二次不等式 证明:设.131313k c b a =+++++ 则可令.0,3

13,313,313321321=+++=++=++=

+t t t t k

c t k b t k a 其中 所以232221)3

()3()3(131313t k

t k t k c b a +++++=+++++

即)(3)(32362

3222122322213212t t t k t t t t t t k k +++=++++++=

所以3

62

k ≥,解得

23≤k ,即23131313≤+++++c b a 。得证。 8)分式换元

例14:设2232

1,1,0,0+≥+=+>>y

x y x y x 求证:

分析:因为,0,0,1>>=+y x y x 所以用分式换元,转化为均值不等式证明。 证明:设)0,0(,>>+=+=

b a b

a b y b a a x ,则 22323)(221+≥++=+++=+b

a

a b b b a a b a y x , 即

2232

1+≥+y

x 9)比值换元法

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式即可。

例15:已知.10,421222≥++-=+=-z y x z y x 求证: 证明:设k z y x =-=+=-421, 于是4,2,1+=-=+=k z k y k x

把z y x ,,代入222z y x ++得:1010)1(310)12(31363222≥++=+++=++k k k k k 。 得证。 5、放缩法

为了证明不等式,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到证题的目的,这种方法称为放缩法,放缩时主要方法有:

1)舍去或加上一些项,如:.)2

1

(43)21(22+>++a a

2)将分子或分母放大(缩小),如:

).1,.(1

21,1

21

,)1(11,)1(112

2>∈++>

-+<+>-

例16:设)..()1(3221N n n n a n ∈+++?+?= 求证:.2

)1(2)1(2

+<<+n a n n n 证明:n n n n a n ?+?+?>+++?+?= 2211)1(3221

.2

)

1(21+=

+++=n n n 又)..(2

)

1()1(,1N k k k k k k k ∈++<

+∴+≠ 。得证。

2

)1(2)1(2)1(222

)

1(232221)1(3221222+<<+∴+<

+=+++++++<+++?+?=∴n a n n n n n n n n n a n n

说明:在使用放缩法时,需要注意的是放缩要适度,不能放得过大或太小。 6、反证法

反证法就是从否定结论出发,通过逻辑推理,导出矛盾,从而肯定原命题成立,反证法必须考虑各种与原命题相异的结论,缺少任何一个可能都是不完全的,如,要证不等式

B >A ,先假设B A ≤,根据题设及其他性质推出矛盾,从而肯定B >A 成立。

例17:已知.2

1

)3(,)2(,)1(,)(2不全小于求证:

f f f b ax x x f ++= 证明:假设,2

1

)3(,21)2(,21)1(21)3(,)2(,)1(<<

由于,39)3(,24)2(,1)1(b a f b a f b a f ++=++=++=

.2)3()2(2)1(2)3()2(2)1(=+-∴=+-∴f f f f f f

另一方面:由假设得

22

1

22121)2(2)3()1()3()2(2)1(=?++<

++≤+-f f f f f f 显然,22<是错误的 故2

1

)3(,)2(,)1(不全小于

f f f 。得证。 说明:对于存在、不都是、至少(多)、不全小(大)、某个(反面:任意的)等问题,通常从正面难寻突破口,可变换角度,巧用反证法往往会见奇效。 7、判别式法

如果所要证明的不等式可转化为形如:112

12222c x b x a c x b x a y ++++=的函数值域)(R x ∈,或转化为一元二次方程有实数根等问题,则可用判别式法达到证题目的。

例18:若)0(21,,,,2222>=++=++∈a a z y x a z y x R z y x 用且求证z y x ,,都是不大于a

3

2

的非负数。

证明:由22222

1

,a z y x y x a z =++--=代入,可得

。得证。

,同理可得:,化简得即,a z a x a y a ay y a y a y y a R x a y a y x y a x 3

2

032032

00,0230

]2

1

)([8)(4,00

2

1

)()(22222222222≤≤≤≤≤

≤∴>≤-≥--+--≥?∴∈=--++-- 8、构造法

有些不等式可构造函数利用函数性质,或构造复数利用复数向量有关性质,或构造几何图形利用集合知识,还可以构造数列利用数列相关性质来证明不等式。 1)利用函数的单调性

例19:求证:

.111b

b a

a b

a b a ++

+≤

+++

分析:由不等号两边形式可归纳为)0.(1)(≥+=

x x

x

x f 的形式,因此可考虑函数x

x

x f +=

1)(在0≥x 时的单调性。 证明:构造函数x x

x f +=

1)(,设210x x <≤,0)

1)(1(1121212211<++-=+-+x x x x x x x x )(x f ∴在0≥x 上是增函数,且b a b a +≤+

令b a x b a x +=+=21,,则有

.111111b

b a a b

a b b

a a b

a b a b

a b a +++

+

+≤

+++

++=

+++≤

+++ 得证。

2)构造复数利用复数向量有关性质

例20:求证:).()()(222222不同时相等与,与d b c a d b c a d c b a -+-≥+++ 证明:设i d b c a z z di c z bi a z )()(2121-+-=-+=+=,那么,

由于2222212121d c z b a z z z z z +=+=+≤-,

,而 则2221)()(d b c a z z ++-=-

.)()(222222d c b a d b c a +++≤-+-∴有得证。

9、用微分法证明不等式

微分在中学时又称为求导,用微分法其实就是用求导的方法来解决问题。

例21:设函数n a a a nx a x a x a x f n n 都为实数,其中,,,,sin 2sin sin )(2121 +++=为正整数。已知对于一切实数x ,有x x f sin )(≤,试证:.1221≤+++n na a a

分析:问题中的条件与结论不属于一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:).0(2/21f na a a n =+++ 于是问题就转化为求证:.1)0(/≤f

证明:因.cos 2cos 2cos )(21/nx na x a x a x f n +++= 则.2)0(21/n na a a f +++= 利用导数的定义得:

x x f x x f x f x f f x x x )

()(0

)

0()()0(lim

lim

lim

/→→→==

--=

由于,sin )(x x f ≤所以1sin )0(lim

/=≤→x

x

f x , 即.1221≤+++n na a a 得证。

不等式证明的基本方法

'、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 、知识分析 定理1 若a,b为实数,贝当且仅当ab>0时,等号成 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与一b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与—b的距离严格小于a与b到原点距离之和(下图为ab<0, a>0, b<0的情况,ab<0的其他情况可作类似解释)。 |a —b|表示a—b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,贝等号成立,即b落在a,c之间 推论1 推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到

判别式法证 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是 错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A> B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 典型例题】 例1已知函数,设a、b€ R,且a^b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一: ① 当ab< —1时,式①显然成立; 当ab>—1时,式①② b,A式②成立。故原不等式成立。 证法二:当a=—b 时,原不等式显然成立; 当a M— b 时, ???原不等式成立。

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.sodocs.net/doc/d017494466.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.sodocs.net/doc/d017494466.html,) 原文地址: https://www.sodocs.net/doc/d017494466.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

选修4-5 第二节 不等式证明的基本方法例题 1.已知a 、b 、x 、y 均为正实数,且1a >1 b ,x >y . 求证: x x +a > y y +b . 证明:∵ x x +a - y y +b = bx -ay x +a y +b , 又1a >1 b ,且a 、b 均为正实数, ∴b >a >0. 又x >y >0, ∴bx >ay . ∴ bx -ay x +a y +b >0,即x x +a >y y +b . 2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2 +(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得 a 2+ b 2+ c 2 ≥3(abc )23 ,① 1 a +1 b +1 c ≥3(abc )1 3-,② 所以(1 a +1 b +1c )2 ≥9(abc ) 2 3-. 故a 2 +b 2 +c 2 +(1a +1b +1 c )2 ≥3(abc ) 23 + 9(abc ) 23 - . 又3(abc ) 23 +9(abc ) 23 -≥227=63,③ 所以原不等式成立. 当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23 =9(abc ) 23 - 时,③式 等号成立. 即当且仅当a =b =c =314 时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得

a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,① 同理1 a2+ 1 b2 + 1 c2 ≥ 1 ab + 1 bc + 1 ac ,② 故a2+b2+c2+(1 a + 1 b + 1 c )2≥ab+bc+ac+ 3 1 ab +3 1 bc +3 1 ac ≥6 3.③ 所以原不等式成立. 当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立. 即当且仅当a=b=c=31 4时,原式等号成立. 3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1 x2-2xy+y2 ≥2y +3. 解:因为x>0,y>0,x-y>0, 2x+ 1 x2-2xy+y2 -2y=2(x-y)+ 1 x-y2 =(x-y)+(x-y)+ 1 x-y2 ≥33 x-y2 1 x-y2 =3, 所以2x+ 1 x2-2xy+y2 ≥2y+3. 4.已知正实数a,b,c满足 1 a + 2 b + 3 c =1,求证:a+ b 2 + c 3 ≥9.证明:因为a,b,c均为正实数, 所以 1 a + 2 b + 3 c ≥3 31 a · 2 b · 3 c .同理可证: a+ b 2 + c 3 ≥3 3 a· b 2 · c 3 . 所以(a+ b 2 + c 3 )( 1 a + 2 b + 3 c )≥ 3 3 a· b 2 · c 3 ·3 31 a · 2 b · 3 c =9. 因为 1 a + 2 b + 3 c =1,所以a+ b 2 + c 3 ≥9, 当且仅当a=3,b=6,c=9时,等号成立.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

相关主题