搜档网
当前位置:搜档网 › 第十二章 光催化性能评价概述

第十二章 光催化性能评价概述

第十二章 光催化性能评价概述
第十二章 光催化性能评价概述

第十二章光催化性能评价研究方法

本章重点介绍在光催化机理、降解产物分析和性能评价研究中所涉及到的各种表征方法。光催化机理是物理化学研究所关注的领域,在本章中重点介绍了各种光电化学测量手段在光催化机理研究中的应用,除此外也介绍了光生载流子寿命以及活性物种的研究方法;对于光催化降解产物的研究一直是环境化学所关注的重要问题,在这里介绍了不同分析方法(色谱、质谱、色质联用等)在中间产物分析中的应用;光催化材料性能的表征是评价光催化材料及其制备工艺优劣的关键,不仅在理论研究中获得广泛的关注,而且随着光催化技术的迅速发展和广泛的工业化应用,光催化性能标准测试方法的建立是实现不同光催化材料和光催化材料制备工艺评价的基础。

12.1 光催化机理研究

光催化污染物的降解是一个复杂的物理化学过程,涉及到光能吸收、光生电荷分离和界面反应等环节,只有当光激发载流子(电子和空穴)被俘获并与电子给体/受体发生作用才是有效的。在研究光生电荷产生、迁移及复合相关的机理时,需要多种测试手段的相互辅助。这些检测技术如果按照检测参数可以分为:(1)光生电荷产生:吸收光谱法;(2)电荷密度与传输过程特性:电子自旋共振(ESR)、光谱电化学法、电化学I-V法、阻抗谱、表面光伏/光电流技术;(3)寿命与复合,产生辐射、声子或者能量传递给其它载流子:载流子辐射度测量、荧光光谱技术、光声/光热测量、表面能谱技术等等。对于光催化机理的研究是深入认识光催化材料性能及光催化过程的基础,但由于所涉及到的技术手段较多,不同技术涉及到的机理及表征方法各不相同,故在本章中仅介绍文献中常用的技术方法。

12.1.1 紫外-可见漫反射光谱法

在光催化研究中,半导体光催化材料高效宽谱的光吸收性能是保证光催化活性的一个必要而非充分的条件,因此对于光催化材料吸收光谱的表征是必不可少的。半导体的能带结构一般由低能价带和高能导带构成,价带和导带之间存在禁带。当半导体颗粒吸收足够的光子能量,价带电子被激发越过禁带进入空的导带,而在价带中留下一个空穴,形成电子-空穴对。这种由于电子在带间的跃迁所形成的吸收过程称为半导体的本征吸收。要发生本征吸收,光子能量必须等于或大

于禁带的宽度Eg ,即

Eg h h =≥0νν (12.1)

其中,hν0是能够引起本征吸收的最低限度光子能量,即当频率低于ν0,或波长大于λ0时,不可能产生本征吸收,吸收系数迅速下降。这种吸收系数显著下降的特征波长λ0(或特征频率ν0)称为半导体材料的本征吸收限。

在半导体材料吸收光谱中,吸光度曲线短波端陡峻地上升标志着材料本征吸收的开始,本征波长与禁带Eg 关系可以用下式表示出来:

)(nm Eg

12400=λ (12.2) 因此,根据半导体材料不同的禁带宽度可以计算出相应的本征吸收长波限。

由于固体样品存在大量的散射,所以不能直接测定样品的吸收,通常使用固体紫外-可见漫反射光谱测得漫反射谱(UV-Vis Diffuse Reflectance Spectra, DRS ),并转化为吸收光谱。利用紫外-可见漫反射光谱法可以方便的获得半导体光催化剂的带边位置,所以是光催化材料研究中的基本表征方法。 12.1.1.1 紫外-可见漫反射光谱原理

物质受光照射时,通常发生两种不同的反射现象,即镜面发射和漫反射。对于粒径较小的纳米粉体,主要发生的是漫反射。漫反射满足Kubelka-Munk 方程式:

S K R R R /)2/()1()(2

=-=∞∞F (12.3) 式中,K 为吸收系数,与吸收光谱中的吸收系数的意义相同;S 为散射系数; R ∞为无限厚样品的反射系数R 的极限值。

事实上,反射系数R 通常采用与已知的高反射系数(R ∞≈1)标准物质(如,BaSO 4和MgO )比较来测量。如果同一系列样品的散射系数S 基本相同,则F(R)与吸收系数成正比;因而可用F(R)作为纵坐标,表示该化合物的吸收带。又因为F(R)是利用积分球的方法测量样品的反射系数得到的,所以F(R)又称为漫反射吸收系数。

利用紫外-可见漫反射光谱法(UV-vis DRS )可以方便的获得粉末或薄膜半导体材料的能带间隙。紫外-可见光谱的积分球附件原理如图12-1所示,积分球是一个中空的完整球壳,其内壁涂白色BaSO 4漫反射层,且球内壁各点漫射

均匀。入射光照射在样品表面,反射光反射到积分球壁上,光线经积分球内壁反射至积分球中心的检测器,可以获得反射后的光强,从而可以计算获得样品在不同波长的吸收。

根据材料的紫外-可见漫反射光谱可以计算获得半导体材料的吸收带边或禁带宽度。具体求法是先对紫外-可见漫反射光谱图求导,找到一阶导数最低点,通过这个点作切线,切线与吸光度为零时所对应的横轴交点的波长即为材料的吸收带边,同时也就得到了半导体的禁带宽度。也可以根据吸收谱中的吸收系数,作出以光子能量hν为横轴,(αhν)2为纵轴的曲线,如图12-2所示。然后拟合光吸收边所得直线在横轴上的截距即为带隙能量Eg。其中hν=h·c/λ,h=6.626×10-34 J·s为普朗克常数,c=3×108 m/s为光速,λ为相对应的波长,最后把能量转化为电子伏特为单位(J

10

=)。

119-

?

602

.1

eV

图12-1 漫反射积分球结构示意图

图12-2 半导体材料禁带宽度作图法计算

12.1.1.2 紫外-可见漫反射光谱法在光催化材料研究中的应用

通过紫外-可见漫反射光谱可以方便的获得半导体材料的吸收带边,而材料制备工艺对于其吸收带边有明显的影响。水热合成的Bi 2WO 6纳米片与固态合成的Bi 2WO 6样品的紫外-可见漫反射吸收光谱如图12-3所示[1]。由图可见,样品都有明显的吸收带边,其吸收带边位置可以由吸收带边上升的拐点来确定,而拐点则通过其导数谱来确定,相应地可以计算出其光吸收阈值的大小,从而也可以确定其禁带宽度。当入射光的光子能量高于半导体的带宽时,将导致本征跃迁。通常在吸收边附近,吸收系数α同入射光子能量E 的关系为:

n )E g 0-=E (αα (12.4)

式中,指数n 为2时,表示为间接跃迁形式;指数为1/2时,表示为直接跃迁形式。Bi 2WO 6纳米片的吸收边要小于固态合成Bi 2WO 6的吸收边,这种蓝移趋势可以从量子尺寸效应加以解释。一般认为当纳米材料的粒径小于10 nm 时才表现出显著的量子尺寸效应,且粒径越小,其带隙越宽,量子尺寸效应越明显。

图 12-3 Bi 2WO 6纳米片与固态合成的Bi 2WO 6样品的紫外-可见漫反射吸收光谱

图12-4给出了不同C 60修饰量的ZnO/C 60的紫外-可见漫反射光谱。对ZnO 粉体来说,只在400 nm 以下出现吸收峰,这与ZnO 的带隙宽度是一致的。对C 60修饰后的ZnO 样品,则从200~750 nm 均有吸收。从图中可以看出,C 60吸附在ZnO 表面后,催化剂在400~750 nm 范围内出现了宽的吸收带。随着C 60负载量的增加,400~750 nm 范围内的吸收逐渐增强,在C 60负载量为2 %时为最大,2.5 %时吸收值有所下降,如图12-4内嵌图所示。负载量从0到2 %吸光

度的线性增加表明C60在TiO2表面可能形成单分子层化学吸附;当负载量超过2 %,单层吸附达到饱和,C60趋向于在TiO2表面聚集成簇,此时的吸光度有所下降。C60的分子直径是0.71 nm,ZnO的比表面积是57.3 m2 g-1,理论估算表明当C60的负载量约为11 %时,在ZnO粒子表面能形成致密的单分子层覆盖,考虑到C60仅能占据ZnO表面的活性位点以及C60分子间斥力,认为形成致密单分子层所需的C60的量要远小于11 %。综合紫外-可见漫反射结果,当负载量为2 %时,C60在ZnO颗粒表面形成了相对致密的单分子层,负载量为2.5 %时,可能由于C60分子间发生聚集导致吸光度下降,C60的修饰并没有影响到ZnO在紫外区的吸收。因此,ZnO/C60的紫外区吸收由ZnO造成,可见光区的吸收由C60导致。在可见光区域有吸收,使该催化剂利用可见光成为可能。催化活性表征也表明负载C60量为1.5 %的ZnO的活性最高,C60负载量的进一步增加反而降低了负载ZnO的光催化活性。[2]

图12-4经不同含量C60修饰后ZnO/C60催化剂的紫外-可见漫反射光谱12.1.2 荧光光谱:缺陷结构与寿命

晶体的主要特征是其中原子的规则排列,但实际晶体中原子的排列总是或多或少地偏离了严格的周期性。晶体中的原子作微振动时破坏了周期性,因而在晶体中传播的电子波或光电波会受到散射,这就意味着晶体的电学性质或光学性质发生了变化。在热起伏过程中,晶体的某些原子振动剧烈,脱离了格点而跑到表面上,在内部留下了空格点,即空位;或者那脱离格点的原子进入了晶格中的间隙位置,形成间隙原子。另一方面,外来的杂质原子进入晶体后,可以处在间隙

位置上,成为间隙式的杂质,也可以占据空位而成为取代原子。这些在一个或几个晶格常数的线度范围内引起晶格周期性的破坏,统称为晶体中的点缺陷。晶体中的缺陷影响着晶体的力学、电学、热学、光学等等方面的性质。荧光光谱(Photoluminescence Spectroscopy) 是研究半导体纳米材料的电子结构和光学性能的有效方法,特别是对于一些缺陷的判断,并且能获得光生载流子的迁移、捕获和复合等信息[3]。

12.1.2.1稳态荧光光谱及时间分辨荧光光谱仪

稳态荧光谱仪一般由激发光源、单色器、试样池、光检测器及读数装置等部件组成。荧光光谱仪的光源主要有弧光灯、固态发光二极管光源以及激光光源。弧光灯通常具有较宽的连续输出波长范围,在稳态荧光光谱仪上的应用最多,通常对于分子荧光检测以及光致发光材料的检测都具有较好的信号。但是对于荧光信号较弱的半导体固体材料,由于弧光灯光源经单色器分光后,其光强较弱相应发射谱信号也较弱,这时很难探测到微弱的荧光信号。但是利用激光光源强度大,单色性好的特点,可以大大提高荧光测定的灵敏度和检测限,以激光为光源的荧光检测技术被称为激光诱导荧光谱(Laser-Induced Fluorescence Spectroscopy, LIF 谱)。但是由于激光光源波长单一,因此实际测试中需选取合适的激发波长进行相应的检测。

在光催化及光伏材料研究中,对于光诱导电荷分离及其迁移过程的深入认识是一个非常关键的科学问题。通过研究半导体光催化材料的荧光衰减动力学信息,对于理解纳米尺度电荷及能量的传输过程都异常重要。通过时间分辨荧光光谱(Time-Resolved Fluorescence Spectroscopy)的测量能够直接获得荧光衰减曲线(荧光强度-时间曲线),从而获得瞬态相关的物理机制,如图12-5所示。通过对于原始衰变数据的合理拟合,可以定性判断在光激发过程中特定的物理机制。

为了获得荧光寿命,除了测量荧光衰减曲线还必须测量仪器响应函数(即激发脉冲)。因为灯或激光脉冲的时间宽度是有限的,这会使样品本征的荧光反应产生畸变。在典型的实验中,要测量两条曲线:仪器响应函数和荧光衰减曲线。然后把仪器响应函数与模型函数(单指数函数或双指数函数)的卷积与实验衰减结果比较。通过这一迭代数值过程直到与实验衰减曲线一致。

图12-5 实验激光曲线,衰减曲线(点状函数)和最佳数值拟合曲线。真正的

指数函数代表了衰减模型。

12.1.2.2 荧光光谱法在光催化材料研究中的应用

12.1.2.2.1半导体光催化剂缺陷能级的研究

图12-6 N、F共掺的TiO2材料的荧光光谱图

(a)不同热处理温度;(b)900 oC处理后样品的荧光光谱分峰拟合光谱在掺杂态TiO2材料中,通过研究其荧光光谱可以获得其中的缺陷结构及相应的缺陷能级。例如在N、F共掺的TiO2材料中,经不同热处理温度获得的荧光光谱如图12-6(a)所示。实验中,以He-Cd激光器(325 nm)为激发光源。对于

每个N、F共掺样品存在一个由五个峰形成的宽带的荧光发射[4]。图12-6(b)为900 oC处理后样品荧光光谱分峰拟合后的光谱。其中,在465 nm的峰1为带有两个捕获电子的氧空位,例如F心。在525 nm处的峰2归因于带有一个捕获电子的氧空位,例如F+心。根据Franck-Condon理论,在627 nm处的峰3是空位附近离子晶格极化造成的,其发射中心对应于Ti3+离子。峰4归因于掺杂的N 原子,因为对于原始P25及800 oC处理样品不存在这个峰。

在深入探讨相关结果的基础上,可以建立N-F共掺TiO2材料其价带和导带间存在的相关能级结构模型,如12-7图所示。在图中给出了不同荧光峰对应的激发电子转化途径。通过对于荧光光谱的分析可以获得材料内缺陷态信息及其相应的能级状态。

图12-7 N-F共掺TiO2材料的能级结构模型

通常当发光光谱对应带隙能量时,发光峰越强,表明能量损耗的复合作用越强,光催化活性越低。但很多时候发光峰还对应复杂的表面态能级和激子复合,因此对于发光光谱的结果需要综合分析。在对掺杂Zn2+离子的TiO2纳米颗粒的研究中发现,样品光催化活性与其荧光信号强度顺序一致,即荧光信号越强,活性越高,文献认为这是由于光致发光信号主要源于表面氧空位,而在光催化反应中,表面氧空位有利于氧化反应的进行[5]。

12.1.2.2.2电荷分离及迁移的动力学过程研究

当所有被激发分子处于相同的化学环境中时,荧光衰减的动力学过程通常遵循荧光衰减定律,即荧光强度随时间以单指数形式衰减。但是实际上,大多数情况下激发分子所处的环境并不相同,可能被各种参数影响,例如荧光的淬灭、能量的传输过程等。因此,在多数情况下,衰减方程是以多指数甚至是非指数形式出现。

在CdSe 量子点与Au 纳米颗粒杂化体系中,通过比较CdSe 量子点、CdSe 量子点与Au 纳米颗粒混合体系以及CdSe 量子点与Au 纳米颗粒杂化体系中时间分辨荧光光谱(图12-8)的探讨,发现体系中存在三种不同的衰减通道,其中最快速过程对应于电子由CdSe 量子点向金纳米颗粒的迁移。且在这一过程中CdSe 表面形成的空穴被溶液带走,然而在Au 纳米颗粒表面的电子则非常缓慢的释放于溶液中,因此可以在氧化-还原反应中充当还原剂。基于亚甲基蓝的光催化反应模型发现在Au 纳米颗粒上的电子可以保持100分钟以上[6]。

图12-8 CdSe 量子点、CdSe 量子点与Au 纳米颗粒混合体系以及CdSe 量子点与

Au 纳米颗粒杂化体系的时间分辨荧光光谱图

∑-+=)/e x p ()(I i i pl t B A t τ (12.5) 其中,i τ是寿命项,i B 为指前放大系数,A 为附加的背景参数。典型的拟合结果如表12-1所示。

表12-1 荧光寿命τ,淬灭效率Q q 和。。。参数k Au

1τ(ns);

C 1 2τ(ns); C 2

3τ(ns); C 3 **-τ (ns) Q q K Au (ns -1) CdSe 33.5(2) 9.6(1)

28.6 53% 47%

Mixed 23.3(2) 4.1(1)

14.6 49% 0.034 Au/CdSe 17% 83%

Au/CdSe 16.5(7) 3.75(8)

0.76(2) 5.1 82% 0.161 NH

2% 28% 70% %100/3,2,1????? ?

?=∑=*i i i i B B C ,C i 是单独衰减部分的相对浓度;

∑∑==-**=

3,2,13,2,12/i i i i i i B B τττ,-

τ是每个样品的平均寿命。

对于CdSe 量子点与Au 纳米颗粒杂化结构其平均寿命为5.1 ns ,远小于CdSe 量子点的28.6 ns 和Au/CdSe 混合物的14.6 ns 。CdSe 量子点表现为双指数衰减特征,可以把33.5 ns 和9.6 ns 衰减寿命归因于表面态及内核激发发射两种寿命分离造成。而CdSe 量子点的表面缺陷和Au 纳米颗粒与CdSe 间状态都会影响CdSe

荧光衰减的寿命。对于机械混合的Au纳米颗粒/CdSe量子点体系,两种状态的寿命分别变为23.3 ns和4.1 ns;但对Au纳米颗粒与CdSe量子点紧密结合形成杂化结构时,其荧光寿命进一步缩短,变为16.5 ns和3.8 ns。

12.1.3 表面光电压谱

许多半导体材料的特性都和半导体的表面性质有着密切的关系。在某些情况下,往往不是半导体的体相效应,而是其表面与界面效应支配着半导体材料的特性。研究半导体表面现象,利用各种技术研究表面光生电荷在构成其材料中的传输特性,这在半导体材料性能研究中具有极其重要的意义。特别是,光生电荷的研究与光催化机理解释具有密切的相关性,是理解光催化过程及其机理的重要手段[[7]]。

12.1.3.1 表面光电压原理

表面光电压是固体表面的光生伏特效应,是光致电子跃迁的结果。表面光电压的研究始于20世纪40年代末诺贝尔获奖者Brattain和Bardeen的工作,之后这一效应作为光谱检测技术应用于半导体材料的特征参数和表面特性研究上,这种光谱技术被称为表面光电压技术(Surface Photovoltaic Technique,SPV)或表面光电压谱(Surface Photovoltage Spectroscopy,简称SPS)。[8,9]表面光电压技术是一种研究半导体特征参数的极佳途径,这种方法是通过对材料光致表面电压的改变进行分析来获得相关信息的。1973年,表面光电压研究获得重大突破,美国麻省理工学院Gatos教授领导的研究小组在用低于禁带宽度能量的光照CdS 表面时历史性的第一次获得入射光波长与表面光电压的谱图,并以此来确定表面态的能级,从而形成了表面光电压谱这一新的研究测试手段。[10,11] SPS作为一种光谱技术具有许多优点:[7]第一,它是一种作用光谱,可以在不污染样品、不破坏样品形貌的条件下直接进行测试,也可测定那些在透射光谱仪上难以测试的光学不透明样品;第二,SPS所检测的信息主要反映的是样品表层(一般是几十纳米)的性质,因此受基底的影响较弱,这一点对于光敏材料表面的性质及界面电子过程研究显然很重要;第三,由于SPS的原理是基于检测由入射光诱导的表面电荷的变化,因而其具有较高的灵敏度,大约是108 q/cm2(或者说每107个表面原子或离子有一个单位电荷),高于XPS或Auger电子能谱等

标准光谱或能谱几个数量级。表面光电压谱可以给出诸如表面能带弯曲,表面和体相电子与空穴复合,表面态分布等信息,是在光辅助下对电子与空穴分离及传输行为研究的有力手段,是评价光催化材料活性的一个十分有效的方法。

那表面光电压是如何产生的呢?当两个具有不同功函数的材料接触时,由于它们的化学势不同,在界面附近会发生相互作用,电子会从费米能级高的物体向费米能级低的物体转移。n型半导体的费米能级比金属的费米能级高,因此当二者接触时,半导体中的电子向金属运动,直至达到平衡状态,从而在半导体表面形成电子耗尽层,使得表面能带向上弯曲。相反的,p型半导体的费米能级比金属的费米能级低,当二者接触时,金属中的电子向半导体运动,半导体表面形成空穴耗尽层,使得表面能带向下弯曲。在光照条件下,半导体将在其表面附近产生非平衡的载流子(电子或空穴),非平衡载流子在表面和体相内重新分布,并中和部分表面电荷,从而使半导体表面静电荷发生变化。为了保持体系电中性,表面空间电荷区的电荷会发生重新分布,相应的表面势发生改变。这个表面势垒的改变量即为表面光电压,它的数值取决于被测样品表面静电荷的变化。

能够产生表面光电压的光致电子跃迁主要有三种[12]:带-带跃迁、亚带隙跃迁及表面吸附质向半导体的光致电荷注入。当入射光的能量大于或等于半导体的能隙宽度时,半导体吸收光子,电子从半导体价带向导带跃迁产生电子-空穴对,在表面势的作用下,电子-空穴对发生分离,空间电荷重新分布,最终结果使得表面电荷减少,能带弯曲变小,产生表面光电压。而当入射光能量小于半导体能隙宽度时,将产生电子从价带向表面态的跃迁或从表面态向导带的跃迁,这种跃迁也会使表面电荷发生改变,引起表面能带弯曲的变化,也可以产生表面光电压。另外一种表面光电压的产生过程与表面吸附质有关,由于吸附在半导体表面的物质能够吸收光子并与半导体进行直接或间接电荷交换,也能引起半导体空间电荷层电荷的变化,从而引起表面势垒的变化,即产生表面光电压。

12.1.3.2表面光电压谱的测量原理及方法

图12-9表面光电压检测装置

(a)(b)

图12-10 表面光电压谱仪框图(a)及光电压池结构示意图(b)

表面光电压谱与普通的透射或漫反射光谱不同,它是作用光谱,是利用调制光激发而产生光伏信号。因此,所检测的信号包括两方面信息:一个是常见的光电压强度谱,它正比于样品的吸收光谱;另一个是相位角谱。SPV 信号的实质是对样品施加在强度信号上的正弦调制光脉冲,将会导致一个相同频率调制的,而且是正弦波的表面电势的变化。影响表面电势值的是少数载流子平均扩散距离内的光生电子或空穴,即SPV在比少数载流子平均寿命更长的时间后才出现极值。因此,在入射光脉冲和SPV的极值之间有一个时间延迟,也即相位差。可以通过研究样品的SPV 响应相位角来判断固体材料的导电类型、表面态得失电子性质和固体表面的酸碱性质。

表面光电压检测装置主要由光源、单色器、斩波器与锁相放大器、光电压池以及信号采集软件构成,如图12-9所示。一般采用氙灯作为光源,其在紫外及可见光谱范围光强都比较强。氙灯发射的光经透镜系统处理获得平行出射光,并进入光栅单色仪。经由光栅单色仪可以获得具有较高分辨率的单色光,并经过外

部光路引入光电压池。

光电压池是光电转换器件,它的结构对光电响应及信噪比有较大影响。为了获得更好的信噪比,必须采用较好的电磁屏蔽。本实验中采用铜质的屏蔽箱。光电压池结构如图12-10右图所示,为三明治(ITO/样品/ITO)构造。所用的ITO 电极在300~330 nm有明显地吸收。

由于表面光电压信号非常微弱,并且十分容易受到外界电磁信号干扰,因此表面光电压通常基于锁相放大器进行测量。利用斩波器对入射光信号进行调制,通过锁相放大器获得与斩波器具有相同频率的叠加在较大噪音背景下的微弱光电压信号。这一测试系统即使有用的信号被淹没在噪声信号里面,并且噪声信号比有用的信号大很多,只要知道所采集信号的频率值,就能准确地测量出这个信号的幅值。

除此外,电场诱导的表面光电压谱(Electron-Field-Introduced SPS, EFISPS)是在SPS的基础上,研究在外电场作用下纳米粒子表面光生电子和空穴的迁移及空间电荷层变化的一种作用光谱,也具有非常多的应用。

12.1.2.3表面光电压谱在光催化材料研究中的应用

在半导体的表征中,表面光电压谱是一种非常有用的技术,它主要给出在光照条件下载流子的分离和传输行为。表面光电压的信号越高就表明光生载流子的分离速度越快。因此,材料的光催化性能可以通过表面光电压谱进行预测。

图12-11 Si片及Si纳米线与TiO2复合的光电压谱图

在Si片及Si纳米线阵列表面生长获得不同厚度的TiO2层,其表面光电压谱如图12-11 所示。对于Si纳米线阵列结构其光电压谱中存在两个峰,380 nm附近的峰对应于TiO2的带边吸收,在可见光区域的峰对应于p型Si纳米线的吸收。

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

光催化材料的项目报告书

项目报告书

光催化材料的研究概况 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文主要综述了光催化反应基本原理、新型光催化材料开发策略及研究进展。分析了提高光催化材料量子效率的关键所在及开展新型光催化材料研究工作的重要性,展望了该领域的未来发展方向。 关键词:光催化原理、光催化材料、研究与开发 正文:光催化的由来 早在1839年,Becquerel 就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fujishima和Honda研究发现,利用TiO2单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去40年里,人们在光催化材料开发与应用方面的研究取得了丰硕的成果 光催化材料 光催化材料是指在光作用下可以诱发光氧化一还原反应的一类半导体材料。世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。 例如光催化净化空气: 图表1 光催化涂料 光催化材料对净化空气具有以下功效: 具有光催化降解甲醛、苯、氨等有害气体的功效。 具有抗污、屏蔽紫外线功效。

催化剂活性的测定实验思考题

催化剂活性的测定实验思考题 1.为什么氮气的流速要始终控制不变? 答:(1)当氮气的流速为0.1L/min左右时,催化剂的活性较高;(2)V(CO+H2)是通过测有无催化剂时气体的流量差来测定的,因此氮气的流速应始终保持不变。 2.冰盐冷却器的作用是什么?是否盐加得越多越好? 答:(1)冰盐冷却器的作用是将未反应的甲醇蒸气冷凝从而将其截留在捕集器内,使之不影响V(CO+H2)的测量。(2)盐并非加得越多越好。如果盐加的过多,会使冷却器内温度过低,从而使经过的N2、CO及H2温度太低,从而低于湿式流量计上温度计测得的温度,在用理想气体状态方程是会存在一定误差。 3.试评论本实验评价催化剂的方法有什么优缺点。 答:优点: (1)原理巧妙,运用理想气体状态方程及道尔顿分压定律,仅通过测量有无催化剂气体流量的变化便可间接求得甲醇的进入量及反应量;(2)操作简单,只涉及一些基础的操作,如钢瓶、毛细管流量计及湿式流量计的使用等;(3)可以比较不同温度下催化剂的活性;ZnO 可重复利用。 缺点: (1)实验设备较复杂;(2)反应温度较高,存在一定危险性;(3)350℃与420℃催化剂活性差别不大,比较效果不明显;(3)将体系压强近似为大气压,存在一定误差。 4. 毛细管流速计与湿式流量计两者有何异同。 答:相同点:都能通过测量以表征待测气体的流速。 不同点:(1)毛细管流速计与待测气体“并联”,它根据气体在U型管进出口的压力不同而设计,通过U型管两端液面差来显示气体流速大小;湿式流量计待测气体“串联,它是通过直接测量一定时间内通过流量计的气体体积来表征气体流速大小,通过表盘上指针表征转速大小;(2)毛细管流速计只能表示气体瞬时流速大小,而湿式流量计可以准确测量气体在一段时间内的总流量。

光催化材料研究进展

. 光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅[1]。光催化适合特定的污染物而不适合大规模推广应用等方面的缺陷氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 、ZnO、CdS、2 WO 、Fe O 等半导体光催化技术因其可以直接利用光能而被许332[2]。多研究者看好1.1 TiO光催化概述 21.1.1 TiO的结构性质 2二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO在自然界主要有三种结晶形态分布:锐钛矿型、2金红石型和板钛矿型。三种晶体结构的TIO中,锐钛矿和金红石的工2业用

途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密资料Word . 度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见 光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在[3]。光催化处理环境污染物方面有着极为广阔的应用前景 1.1.2TiO光催化反应机理2半导休表面多相光催化的基本原理:用 能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价-+)随后h(e,.)—空穴(带产生相应的空穴,这样就半导体内部生成电子电子-空穴对迁移到粒子表面不同位置、 与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态 的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复 合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO催化剂的局限及改性途径2作为光催化剂,虽然二氧化钛 具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大 规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不 高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸 收的光的波长主要集中在紫外区,而在照射到地球表面的太阳光中,

催化剂评定指标

催化裂化催化剂的主要理化指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质 物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

NiCr-LDHs的制备及光催化性能研究

化学工程学院 新产品开发训练报告 2014-12 课题名称: CoCr-LDHs的制备及光催化性能研究 课题类型:论文 班级:应化 1102 姓名:周柳 学号: 1112083076 指导教师:薛莉 (使用说明:设计/论文请选一使用,左侧装订)

第一部分文献综述 1.1 水滑石的定义及研究背景 层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)[1]。 水滑石材料属于阴离子型层状化合物。层状化合物是指具有层状结构、层间离子具有可交换性的一类化合物,利用层状化合物主体在强极性分子作用下所具有的可插层性和层间离子的可交换性,将一些功能性客体物质引入层间空隙并将层板距离撑开从而形成层柱化合物。水滑石类化合物(LDHs) 是一类具有层状结构的新型无机功能材料, LDHs的主体层板化学组成与其层板阳离子特性、层板电荷密度或者阴离子交换量、超分子插层结构等因素密切相关。 LDHs的发展已经历了一百多年的历史,但直到二十世纪六十年代才引起物理学家和化学家的极大兴趣。1842年,Hochstetter首先在片岩矿层中发现了天然水滑石矿物。[2]后来又相继在挪威的Sunarum地区以及俄罗斯的Ural地区发现了少量的天然水滑石矿。在二十世纪初,人们发现了LDH对氢加成反应具有催化作用,并由此开始了对LDH结构的研究。1942年,Feitknecht等首次通过金属盐溶液与碱金属氢氧化物反应人工合成出了LDH,并提出了双层结构模型的设想。1966年,Kyowa公司首先将LDH的合成工业化。1969年,Allmann等通过测定LDH单晶结构,首次确认了LDH的层状结构。[3,4]七八十年代时,Miyata等对其结构进行了详细研究,并对其作为新型催化材料的应用进行了探索性的工作。在此阶段,Taylor和Rouxhet 还对LDH热分解产物的催化性质进行了研究,发现它是一种性能良好的催化剂和催化剂载体。Reichle等研究了LDH及其焙烧产物在有机催化反应中的应用,指出它在碱催化、氧化还原催化过程中有重要的价值。 进入二十世纪九十年代,人们对LDHs的研究更为迅速。随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化,对LDHs层状结构的认识加深,其层状晶体结构的灵活多变性被充分揭示。特别是近年来,基于超分子化学定义及插层组装概念,有关LDHs的研究工作获得了更深层次上的理论支持,在层状前体制备、结构表征、超分子结构模型建立、插层组装动力学和机理、插层组装体的功能开发等诸方面得到了许多具有理论

催化剂的指标及其意义

催化剂的各项指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质

物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值入g 与Eg有关,其关系式为:入g=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种? OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一o TiO2主要有两种晶型一锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙( 3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。

催化剂活性测试

一.实验操作 1.调节恒温槽40℃,杜瓦瓶中放入冰盐水 2.开启钢瓶,调节流量为100ml/min,开启温控仪使炉温升至350℃,每5min记录一次流量,连续记录30min。 3.换上放有催化剂的管,待炉温恒定后每5min记录一次流量,连续30min。 4.升温至420℃,重复操作3。 二.数据记录(单位:时间min,流量L,流速mL/min) 空管催化剂350℃催化剂420℃ 时刻流量流速时刻流量流速时刻流量流速31:30 3.20 0:00 1.50 0:00 4.30 36:30 3.74 108 5:00 2.16 132 5:00 0.05 146 41:30 4.28 108 10:00 2.82 132 10:00 0.87 164 46:30 4.72 108 15:00 3.53 142 15:00 1.61 146 51:30 0.32 120 20:00 4.22 138 20:00 2.37 152 56:30 0.84 105 25:00 4.92 140 25:00 3.12 150 61:30 1.36 106 30:00 0.62 140 30:00 3.87 150 35:00 1.31 138 35:00 4.63 152 三.数据处理 1.(1)空管 Slope=105mL/min V N2=3.15L (2)有催化剂,350℃

Slope=139.5mL/min V H2+CO =30*139.5-V N2=1.03L (3)有催化剂,420℃ Slope=150.5mL/min V H2+CO =30*150.5-V N2=1.365L 2.p(CH 3OH)=35091Pa p(大气压)=101.55Kpa=p(CH 3OH)+p (N 2) p (N 2)=66459Pa mol RT V N N 0880.0p n 2 22N == CH3OH N2OH 3CH N2n n p p = n (CH 3OH )=0.0465mol m (CH 3OH )=1.488g

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

最新光催化分解水材料研究总结全解

光催化分解水材料研究总结 班级:xxxxx 学号:xxxxx 姓名:xxx 一·研究小组简介 彭绍琴:1985年毕业于南昌大学(原江西大学)无机化学专业,获理学学士学位。 1993,2-1994,6北京大学访问学者;1999年7月研究生毕业于南昌大学物理化学专业,获理学硕士学位;2005年7月研究生毕业于南昌大学材料物理与化学专业,获工学博士学位。目前是江西省高校骨干教师,南昌大学无机化学和应用化学,长期从事无机化学、材料化学的教学和科研工作。在无机功能材料、纳米材料、光催化领域有较长时间的工作积累,在国内外重要学术刊物上发表论文30余篇。参与完成国家自然科学基金和“973”项目2项,主持和完成江西省自然科学基金各1项。主持和完成江西省教育厅项目各1项。 上官文峰:日本国立长崎大学工学博士,原日本国工业技术院科学技术特别研究员, 曾先后任北京大学、东京大学高级访问学者。现任上海交通大学教授、博士生导师,机械与动力学院燃烧与环境技术研究中心副主任。主要从事环境催化与材料、光催化、太阳能制氢、燃烧排放及柴油机尾气催化净化、纳米材料制备及其功能开发等领域的研究。主要负责承担了国家863计划、国家973计划、国家自然科学基金、上海市重点发展基金、海外合作等项目。在Chem Commun, J Phys Chem B, Appl Catal A & B,《科学通报》等国际国内权威期刊上发表了一系列学术论文,取得日本国发明专利 4 项,并获日本政府“注目发明”奖 1 项。获国家发明专利10 余项,获省部级科学技术进步奖 2 项。教育部“跨世纪优秀人才”培养计划入选者,中国化学会催化专业委员会委员,中国太阳能学会氢能专业委员会委员,中国仪表材料学会理事,973计划“太阳能规模制氢的基础研究”项目专家组成员,《环境污染与防治》杂志编委,亚太纳米科技论坛ISNEPP2006、2007学术委员会委员。 李越湘:男,博士,教授,博士生导师,南昌大学科技处副处长。南昌大学材料物 理与化学重点学科光催化方向学术带头人,江西省高校中青年学科带头人,2004年获江西省科学技术协会“江西青年科学家提名”称号。现为中国太阳学会氢能专业委员会委员,《功能材料》通讯编委。1984年大学本科毕业于江西大学化学系,获学士学位;1996,10-1997,12国家公派到德国科隆大学((Universitaet zu Koeln))做访问学者,期间得到德国学术交流中心(DAAD)短期奖学金资助;2002年研究生毕业于中国科学院研究生院(兰州化学物理所),获理学博士学位;2006年6月-11月国家公派到德国汉诺威大学(Leibniz Universitaet Hannover)做高级研究学者。长期从事光催化、无机材料、环境化学等方向的研究,已在国内外重要学术刊物上发表了学术论文50余篇,其中18篇为SCI论文,4篇为EI。作为主要承担者完成省科技厅攻关项目一项和多项横向项目,主持和参与(排名第二)完成江西省自然科学基金各一项。目前承担973计划(国家重点规划基础研究项目)二级子项目和省自然科学基金项目各一项。 尚世通(1985一):男,山东省成武县人,东北电力大学硕士研究生,主要从事水质科学与技术研究工作。 宋华(1963-):女,工学博士,教授、博导,现系大庆石油学院化学化工学院副院长,从

银基光催化材料的研究进展

14 近些年来,随着可持续发展战略的推行,我国的科学技术水平也飞速提升,在国民生活质量得到全面改善的同时,环境不断恶化、资源大大短缺等问题也日益严峻。导致环境恶化的污染物主要为工业生产中排放的废渣、废气、废水等物质,它们成分大都比较复杂,基本为不同类型的有机物,若直接处理难度非常大。在实际生产过程中,如果对污染物的深度处理操作不能在短时间内完成,则必定会导致该企业的运营成本提高。如今,水资源的污染是世界各国普遍存在且急需解决的重大问题之一。许多对人体和动植物有毒害作用的污染物质很难被土壤、水体等环境自我降解去除,同时,它们在水资源和土壤等环境中存在范围很广、时间很长,对人类健康存在很大的威胁。对于这些难降解的有毒有害污物若继续沿用传统的物理、化学、生物等工艺进行处理已收效甚微,因此,为了提高污水处理效率及循环利用率,开展经济而有效的水体中难降解有机污染物控制技术的研究课题迫在眉睫。 1?光催化降解技术 光催化降解技术被认为是当前在处理工业污水、环境污物等方面最有效且最具有应用前景的一种技术。光催化降解技术与传统的降解方法不同之处在于它主要是利用太阳全光或其中的可见光来降解空气和水体中的有机污物,其降解过程绿色环保,不易产生二次污染,同时操作过程简单易懂、成本较低,因此,该处理方法被认为是在处理废水方面最有研究价值的技术之一。 2?传统光催化材料 目前应用最广泛的光催化剂是TiO 2纳米材料,其具有优秀的光稳定性和光催化活性。但TiO 2纳米材料只能受太阳光光谱中含量仅为4 %的紫外光照射,才能表现出其优异的催化活性,这严重阻碍了TiO 2纳米材料在光催化方面的实际应用[1]。因此,为了拓宽纳米材料在光催化领域的应用范围,有必要合成一些能充分利用太阳光光谱中含量为43%的可见光的新型纳米光催化剂,如WO 3,CdS,Bi 2O 3,Cu 2O 等,它们均可利用 太阳光处理环境中难以去除的有机污物。在大量的新型纳米光催化剂中,银基纳米复合材料展现出许多优异的特性,特别是在对太阳光中的可见光吸收方面,绝大部分银基纳米复合物都具有较宽的可见光的吸收范围。所以,近些年银基纳米化合物已成为可见光催化领域中的重要研究材料。 3?银基纳米光催化材料 银基催化剂,如AgSbO 3、AgVO 3、Ag 3PO 4、AgX (X=Br,I)、Ag 2CO 3、Ag 2O、AgNbO 3、AgMO 2(M=Al,Ga,In等)[2]、等均具有很强的可见光光催化活性。它们的光催化降解能力远远高于传统的可见光光催化剂,如P25,N-TiO 2等,有些甚至达到它们的20倍左右。早在2003年,叶金花教授就致力于研究AgInW 2O 8纳米化合物对有机污物的光催化降解作用[3]。在此后的近十年时间里,其课题组对AgIn 5S 8、AgMO 2(M=Al,Ga,In 等)、Ag 2ZnGeO 4、Ag 2O、β-AgAl1-xGaxO 2等一系列含银纳米材料进行了广泛而深入地研究。上述的银基多金属氧化物的价带顶均由O2p和Ag4d的电子轨道杂化形成,而导带底均由其它的金属离子和Ag5s的最外层s电子轨道或d电子轨道杂化形成,它们的带隙较窄,能够很好地吸收太阳中的可见光部分。除此之外,上述的银基多金属氧化物的空穴氧化能力很强,且价带电势位置较正,所以它们可受太阳光中的可见光的激发,高效地降解有机污染物,且其效果远远超过传统的TiO 2纳米光催化剂。到了2010年,该课题组还发表了磷酸银纳米光催化剂在可见光照射下光解水分子产生氧,同时能高效地降解RhB等有机污物,其中磷酸银纳米材料的量子效率超过90%[4]。同时,其他外国学者们也对AgSbO 3、AgGaO 2等一系列银基纳米复合物的可见光光催化性能进行了广而深地研究。在中国,国家生态环境研究中心的胡春课题组正长期研究含银纳米复合材料在可见光照射下的光催化性能。他们的研究说明了AgVO 3、AgX (X=Br,I)等银基纳米复合材料均具有很强的可见光光催化降解性能。南京大学的邹志刚教授课题组也对 银基光催化材料的研究进展 陈颖 广州工程技术职业学院 广东 广州 510075 摘要:纳米半导体材料光催化技术在处理环境污染方面具有潜在的应用研究价值,是当今环保领域的重要研究热点。银基光催化纳米材料由于其在可见光催化降解环境污物中的突出表现已逐步发展成为当今催化领域的重要课题之一。 关键词:光催化技术 银基?纳米 Research?Progress?of?Silver-based?Photocatalytic?Materials? Chen?Ying? Guangzhou Vocational College of Engineering and Technology ,Guangzhou 510075 Abstract:Semiconductor?photocatalytic?technology?has?potential?application?value?in?environmental?treatment,and?it?is?an?important?and hot?research?topic?in?the?environmental?protection?field.?Ag-based?catalytic?materials?have?wide?application?prospects?in?photoelectricity?and?catalysis?etc?due?to?their?excellent?photocatalytic?activity,promising?high?photo-response?performance. Keywords:photocatalytic?activity;Ag-based;Nano (下转第13页)

改性纳米氧化锌的光催化性能研究

改性纳米氧化锌的光催化性能研究 改性纳米氧化锌的光催化性能研究 摘要:本文考察了光降解时间、亚甲基蓝溶液的PH值、亚甲基蓝溶液的初始浓度、催化剂的用量等对亚甲基蓝光催化降解率的影响。实验结果表明,纳米ZnO具有荧光性,掺入不同的金属离子能够改变纳米ZnO对亚甲基蓝溶液的降解效果,其中掺铈纳米ZnO降解效果最好;掺铬纳米ZnO的降解率最低。 关键词:纳米ZnO 掺杂光降解亚甲基蓝溶液 氧化锌,俗称锌白,属六方晶系纤锌矿结构,白色或浅黄色晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中能吸收二氧化碳和水。ZnO是具有较大能隙及优良光学性质的n-型半导体材料,常被用于制备场发射显示器及阴极射线发射装置,光催化材料,紫外半导体激光的发生介质,这些应用主要利用了纳米ZnO粒子吸收紫外光后发出荧光的特点。所吸收与发出的荧光波长取决于其能隙大小。如何降低纳米氧化锌等材料的制备成本、也是纳米氧化锌能否应用于环境污染物治理的关键因素之一,因此探讨氧化锌的光催化性能具有十分重要的意义。 一、实验试剂和实验装置图 (一)仪器试剂 79-1磁力加热搅拌器(江苏金坛市中大仪器厂);UV751GD紫外可见分光光度计(重庆医药股份有限公司化玻分公司);真空干燥箱(重庆银河试验仪器有限公司);高硼紫外线杀菌灯管(ZGZ30W启东市海联有限公办公司);水浴锅;电子天平;马弗炉 乙酸锌、二乙醇胺、四水硫酸铈、硝酸镍、硫酸铬、硝酸铁、无水乙醇、亚甲基蓝均为国产分析纯。 二、纯纳米ZnO和掺杂纳米ZnO的制备 量取50ml无水乙醇置于烧杯中,开始搅拌。称取二水乙酸锌约4.39g(0.02mol),搅拌下加入,缓慢滴加二乙醇胺约2ml。在二乙醇胺溶解之后室温下反应3h,静置陈化24h,水浴锅中控制水温在蒸

相关主题