搜档网
当前位置:搜档网 › 软件无线电.期末考试

软件无线电.期末考试

软件无线电.期末考试
软件无线电.期末考试

软件无线电技术

第四代移动通信技术之软件无线电技术 【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。 一、引言 软件无线电提供了一条满足未来个人通信需要的思路。软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。 图一、软件无线电原理框图 1 二、简介 软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。 1、WLAN与蓝牙融入广域网 近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。 日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。

软件无线电(个人整理)

1. 软件无线电是什么
无线通信在现代通信中占据着极其重要的位置, 几乎任何领域都使用无线通信, 包括有 商业、气象、金融、军事、工业、民用等。我们可从通信系统、调制方式、多址方式等几方 面可看到无线通信系统种类的繁多。 类 别 通信系统 调制方式 多址方式 种 类
卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、 微波通信系统等 AM、FM、LSB、USB、ISB、FSK、PSK、MSK、GMSK、QAM 等 时分多址(TDMA) 、频分多址( FDMA)和码分多址(CDMA)等
各种通信系统由于自身的特点而适用于各种特定的场合,例如: 短波电台适合远距离,其所需的发射功率不大,传输的“中继系统” —电离层不会被 摧毁;卫星通信能传播高质量的信息,所能提供的频带很宽 微波通信抗干扰能力强,适合大量的数据传输,但只能在点与点之间传输,传输距离 又有一定的限制 由于无线通信的设备简单、便于携带、易于操作、架设方便等特点,在军事和民用通信领域 中都是不可缺的重要通信手段。 然而, 电台往往是根据某种特定的用途而设计的, 功能单一, 有些电台的基本结构相似,而信号特征差异很大。比如,工作的频段不同,调制方式不同, 波形结构不同,通信协议不同,数字信息的编码方式、加密方式不同等等。电台之间的这些 差异极大地限制了不同电台之间的互通互连。 经过几十年的发展, 无线通信已有很大的发展, 通信系统由模拟体制不断向数字化体制过渡, 因此是否可能在数字化体制础上一个电台能满足多调制方式和多址方式, 从而根椐需要构成 多种通信系统呢。 我们先看一下一个数字蜂窝网接收站, 显示在图 1 中。 (注意: 为了说明软件无线电的概念, 这里给出了无线电的接收装置部分) 。
图 1:窄带无线接收装置

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

信道化技术在软件无线电接收机中的应用

信道化技术在软件无线电接收机中的应用 姚 澄!朱灿焰!杨会保 " 苏州大学电子信息学院江苏苏州 #$%&#$’ 摘 要(软件无线电是目前通信领域研究的热点!其关键技术之一的数字中频技术则是多速率信号处理理论的典型应用) 介绍了一种基于多相滤波的数字信道化技术在软件无线电接收机中的应用!利用离散傅里叶变换"*+,’的成熟理论和多相滤波的灵活处理!在接收机的数字中频段提出了一种高效的处理结构!对其原理-性能和特点进行了深入地探讨和研究!较好地解决了当前无线通信中硬件速度和高速数据流不匹配的问题)计算机模拟结果证明了处理结构的可行性和有效性) 关键词(软件无线电.信道化.多相滤波器组.离散傅里叶变换中图分类号(,/0 $$文献标识码(1 文章编号($&&23435" #&&%’&4&$4&367789:;<9=>=?@A ;>>B 89C B DE B :A >=8=F G 9>B DL ;D 9= M N O P Q R S T !U V W P X S Y X S !M N /Z V [\]X ^ "_‘Q ^^a ^b c a R ‘d e ^S \‘f S b ^e g X d \^S !_^^‘Q ^h W S \i R e j \d Y !_[k Q ^[!#$%&#$!P Q \S X ’l m n o p q r o (,Q R_^b d h X e R*R b \S R s t X s \^"_*t ’Q X j]R ‘X g Rd Q Rb ^‘[j^be R j R X e ‘Q \S ‘^g g [S \‘X d \^S j u *\T \d X af S d R e g R s \X d R +e R v [R S ‘Y "f +’X j ^S R^b \d j w R Yd R ‘Q S ^a ^T \R j !\j Xd Y x \‘X a X x x a \‘X d \^S^b g [a d \e X d Rj \T S X a x e ^‘R j j \S Td Q R ^e Y u ,Q RX x x a \‘X d \^S^b X s \T \d X a ‘Q X S S R a \k R sd R ‘Q S \v [Rb ^e_*t e R ‘R \i R e j\j\S d e ^s [‘R s\Sd Q \jx X x R e u 1X j R s^Sd Q Rg X d [e Rd Q R ^e Y^bd Q R*\j ‘e R d R+^[e \R e ,e X S j b ^e g "*+,’X S s d Q R b a R y \]\a \d Y ^b d Q R x ^a Y x Q X j R b \a d R e ]X S ws R ‘^g x ^j \d \^S !X SR b b \‘\R S d x e ^‘R j j \S T X e ‘Q \d R ‘d [e R \j x e R j R S d R s \Sd Q R s \T \d X a f +x X e d !\d j x e \S ‘\x a R !x R e b ^e g X S ‘R X S s‘Q X e X ‘d R e \j d \‘X e R s R R x a Ys \j ‘[j j R sX S sj d [s \R s u ,Q R g R d Q ^sT \i R j X]R d d R e j ^a [d \^S^b d Q Rg \j g X d ‘Q]R d h R R Sd Q Ra ^h R e Q X e s h X e Rj x R R sX S sQ \T Qs X d Xe X d R^b d ^s X Y z jh X e R a R j j‘^g g [S \‘X d \^S j u +\S X a a Yj \g [a X d \^Se R j [a d j j Q ^h d Q R R b b \‘\R S ‘Y^b d Q \j x e ^x ^j R sX e ‘Q \d R ‘d [e R u {|}~!p "n (_^b d h X e R *R b \S R st X s \^"_*t ’.‘Q X S S R a \k \S T .x a ^Y x Q X j R b \a d R e ]X S w .*\j ‘e R d R +^[e \R e ,e X S j b ^e g "*+,’ 收稿日期(#&&2$#$2#引 言 软件无线电是近些年来崭露头角的新技术!他代表包括无线通信在内的几乎所有的无线电电子信息系统的发展趋势)为适应其发展!有必要对基于滤波器组的信道化方法进行研究) 理想的软件无线电结构$ $% 在射频直接采样数字化!其核心思想就是将N &*!*&N 变换器尽量靠近天线!在对信号充分数字化的基础上依靠软件来实现无线电的各项功能)但是现阶段!由于受微电子技术水平的限制!直接对射频"t + ’进行采样还很难实现!成本上亦不合算)所以!在目前的软件无线电研究中!大部分都是首先将射频信号转换到中频!然后在中频对模拟信号进行数字化)数字中频软件无线电加上少量的高频模拟前端正逐渐成为理想 软件无线电的一种经济实用的选择$#%)中频软件无线电接 收机的结构如图$所示) 对于单一信道而言!使用宽带N &*!*_’和通用P ’W 的软件无线电方法比传统的使用硬件集成的技术要昂贵的多!而目前多通道接收机"数字下变频器’已有上市!如 f S d R e j \a 公司"原V X e e \j 公司的半导体部分’的V _’ %&#$(!Z e X Y P Q \x 公司的Z P 2&$(!N S X a ^T *R i \‘R j 公司的N *((#2和_^b d P R a a 等)但这些接收机的主要问题是!必须事先确知在哪个信道上有信号!或者用一个全景接收机对整个频 段进行搜索和监视以确定信号的位置$3%)然而!如果搜索 速度不够快! 就会产生漏警现象以至于无法进行全概率的信号截获)本文所讨论的基于滤波器组的信道化接收机就是能够完成全概率信号截获的接收机) 图$中频宽带接收机实现框图 )信道化接收机 信道化接收机瞬时频带宽-动态范围大!能实现超宽带侦察)传统的技术是采用模拟电路来实现信道化!即(用模拟滤波器组把侦察频率范围分割为许多邻接的信道!如图#所示) 显然!当瞬时频带很宽时!需要非常多的滤波器!接收机将变得非常庞大)而在软件无线电信道化技术中!则充分利用数字信号系统精确-灵活-造价低-速度快的优 4 $*现代电子技术+#&&%年第4期总第$0,期-通信与信息技术 . 万方数据

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

认知无线电的发展历程与现状

认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing)和系统的智能学习能力,实现动态频谱分配(DSA:dynamic spectrum allocation)和频谱共享(Spectrum Sharing)。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。 关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Shannon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1.认知无线电的发展历程 认知无线电的概念是由Joseph Mitola博士在1999年提出的,他认为认知无线电可以使SDR从预置程序的盲目执行者转变为无线电领域的智能代理,并在论文中描述了认知无线电如何通过无线电知识表示语言(RKRL)来提高个人无线业务的灵活性。2004年Rieser支出认知无线电不一定必须有SDR的支撑,他提出基于遗传算法的生物启发认知模型更适用于可快速部署的灾难通信系统。该认知模型可对无线电系统的物理层和MAC层烦人演进建模,主要由三部分组成,包括用于监听无线环境,进行信道建模的无线信道遗传算法(WCGA)、演进并自适应无线环境的无线通信遗传算法(WSGA)和根据无线电信道模型和无线电参数,监视并改变系统的状态,以决定如何适应无线电的认知监视系统(CSM)。 2003年5月,FCC召开了无线电研讨会,讨论了利用认知无线电技术实现灵活频谱利用的相关技术问题。并且对从频谱管理的角度出发对认知无线网进行了官方定义,认为认知无线电是指能够通过与工作环境的交互,改变发射参数的无线电设备。针对频谱利用率低的现状,FCC提出采用认知无线电技术实现“开放

软件无线电技术的发展应用探究

软件无线电技术的发展应用探究 软件无线技术相对于传统的“纯硬件电路”具有非常大的优越性,以硬件为基础,软件在可以在此之上扩展更多的通信功能,使得设备的通信功能不再硬件锁限制,并且可以大大简化设备的硬件复杂程度,提升其可靠性、维护性,耐用性,并且由于软件的可升级性以及更加优良的兼容性,因此可以大大降低开发、生产、升级换代和维护成本。软件无线电技术是通信领域的第三次革命,前两次模拟通信和数字通信。目前新技术的发展重点基本都已开始转移软件之上。文章就软件无线电技术的发展和应用进行一些详细的探讨。 标签:软件无线电;软件无线电发展;软件无线电应用 1 软件无线电各个系统的作用 1.1 软件无线电技术与传统无线电技术的区别 软件无线电与软件控制无线电的区别在于软件无线电是开放并且标准化的,因此研究更加容易也更加灵活,设备具有的功能不再主要依赖系统的构架和硬件,转而开始依赖软件环境,通过改变软件来改变功能,使得系统、功能的升级或是不同系统间的兼容变得更加简单,升级换代所需要的时间大大缩短。而数字无线电主要依赖于硬件和系统结构的发展,使得环境更加封闭,不利于推广交流,一旦出现问题,需要花费相当多的人力、物力以及时间。 1.2 软件无线电技术硬件平台解析 软件无线电是一个标准化、开放式的平台,以硬件作为基础,将编写好的指令预先录入,用以操纵硬件进而实现尽可能多的无线通信功能,可以通过改变软件的方式改变软件无线电所具有的功能,并可因此减少硬件模块的数量和复杂程度,所具备的灵活性、集中性、维护性无可比拟。一个典型的软件无线电需要以下的硬件系统:射频、中频、基带、信源、信令,软件部分则为数字信号处理器(DSP),DSP通过录入程序,可以对带宽、频率、调制模式、信源解码等进行控制,因此DSP处理性能的强弱直接影响通信功能的数量和质量。通过录入程序,DSP控制各个系统,实现无线电软件具体化。 1.2.1 天线 天线是保证信号的基础,理论上天线最好应该能覆盖全部的通信频段,但在实际应用中,并不能做到覆盖如此多的频段,更多的时候需要能保证完美适配软件所需的、线性性能较好的频段,使用组合式多频段天线,通过测试自动寻找干扰较小,流量宽松的频段,因此就有多频段天线和宽带天线,其二者都可以为软件无线电技术提供信号的保障,而区别主要在于多频段可在分离的不同频段上工作,而宽带则意味着是连续的宽频。而调频、信号接收、算法优化仍然是天线在无线电技术中的关键。

认知无线电技术

现代通信系统 论文 题目:认知无线电技术 姓名:朱雪峰 学院:潇湘学院 专业:通信工程 班级: 001 学号: 1254040121 指导教师:钟斌 2015年11月1日

目录 一、引言 (2) 二、认知无线电的基本概念 (2) 三、认知无线电的功能与实现 (4) 1.认知无线电的主要功能 (4) 2.认知无线电的实现关键 (5) 四、认知无线电的标准化 (7) 五、认知无线电的管制与应用情况 (8) 六、未来发展与展望 (9)

认知无线电技术的研究及发展 【摘要】认知无线电技术作为软件无线电技术的一个特殊扩展,受到日益广泛的关注。由于该技术能够自动检测无线电环境,调整传输参数,从空间、时间、频率、调制方式等多维度共享无线频谱,可以大幅度提高频谱利用效率。本文首先从认知无线电技术的定义入手,分别讨论了认知无线电的基本概念、功能与实现、标准化的进程。然后介绍了当前应用状况,最后分析了未来的发展及面临的挑战。 一、引言 随着无线通信技术的发展,人们可以获得的带宽不断地增加,移动通信的数据速率从10 kbit/s增长到2 Mbit/s,在不久的将来还可能提高到上百兆比特每秒。但即使如此,也无法满足人们日益增长的无线接入需求。为了缓解这一矛盾,一方面,人们不断开发新的无线接入技术,利用新的频段来提供各种业务;另一方面,不断改进各种编码调制方式,提高频谱效率。但由于移动终端天线尺寸和功率的限制,可以用于无线接入的频段很有限。在提高频谱效率方面,目前较为先进的CDMA空中接口技术,如HSDPA可以达到1 bit/(s·Hz)的频谱效率,将来OFDM和MIMO技术的应用也只能达到3-4 bit/(s·Hz)的频谱效率。3-4倍的频谱效率的提高对于人们成百上千倍的带宽需求增长是微不足道的。认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率开创了崭新的局面。 二、认知无线电的基本概念 认知无线电(cognitive radio,CR)的概念是由Joseph Mitola博士提出的,他在1999年发表的一篇学术论文[1]中描述了认知无线电如何通过一种“无线电知识表示语言(RKRL)”的新语言提高个人无线业务的灵活性。随后在2000年瑞典皇家科学院举行的博士论文答辩中详细探讨了这一理论[2]。 认知无线电也被称为智能无线电。从广义上来说是指无线终端具备足够的智能或者认知能力,通过对周围无线环境的历史和当前状况进行检测、分析、学习、推理和规划,利用相应结果调整自己的传输参数,使用最适合的无线资源(包括频率、调制方式、发射功率等)完成无线传输。认知无线电能够帮助用户自动选择最好的、最廉价的服务进行无线传输。甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。 由定义可以看出。认知无线电的一个最大优势就是无线用户可以通过该技术实现“频谱共享”。目前大多数频谱已经被划分给不同的许可持有者(又称为首要用户),包括移动通信、应急通信、广播电视等。但是随着用户需求的增长,简单地通过开发新的无线接入技术和使用新的频点已经无法充分满足市场需求。 近年来,很多学者通过监测分析当前无线频谱使用状况发现,虽然大部分频谱已经被分配给不同的用户,但是在相同时间、相同地点频谱的使用却非常有限。常常是大部分频点未被使用,而某些热点频率又处于超负荷运行。美国联邦通信管理委员会(FCC)充分注意到了这一点,于2002年11月出版了频谱政策任务组撰写的一份报告[3],该报告指出,当前分配的绝大多数频谱的利用率为15%-85%。因此FCC认为当前存在的最主要问题并不是没有频谱可用,而是现有的频谱分配方式导致资源没有被充分利用。只有彻底改变当前固定频谱分配政策,部分甚至全部采用动态频谱分配政策,使多种技术可以实现“频谱共享”,才能

FPGA在软件无线电中的应用

Altera中文资料 FPGA在软件无线电中的应用 介绍 软件无线电(SDR)是具有可重配置硬件平台的无线设备,可以跨多种通信标准。它们因为更低的成本、更大的灵活性和更高的性能,迅速称为军事、公共安全和商用无线领域的事实标准。SDR成为商用流行的主要原因之一是它能够对多种波形进行基带处理和数字中频(IF)处理。IF处理将数字信号处理的领域从基带扩展到RF。支持基带和中频处理的能力增加了系统灵活性,同时减小了制造成本。 基带处理 无线标准不断地发展,通过先进的基带处理技术如自适应调制编码、空时编码(STC)、波束赋形和多入多出(MIMO)天线技术,支持更高的数据速率。基带信号处理器件需要巨大的处理带宽,以支持这些技术计算量的算法。例如,美国军事联合战术无线系统(JTRS)定义了军事无线中20多种不同的无线波形。一些更复杂的波形所需的计算能力在标准处理器上是每秒数百万条指令(MIPS),或者如果在FPGA实现是数千个逻辑单元。 协处理器特性 SDR基带处理通常需要处理器和FPGA。在这类应用中,处理器处理系统控制和配置功能,而FPGA实现大计算量的信号处理数据通道和控制,让系统延迟最小。当需要从一种标准切换至另一种标准时,处理器能够动态地在软件的主要部分间切换,而FPGA 能够根据需要完全重新配置,实现特定标准的数据通道。 FPGA可以作为协处理器同DSP和通用处理相连,这样具有更高的系统性能和更低的系统成本。自由地选择在哪实现基带处理算法为实现SDR算法提供了另一种方式的灵活性。 基带部件也需要足够灵活让所需的SDR功能支持在同一种标准增强版本之间的移植,

并能够支持完全不同的标准。可编程逻辑结合软核处理器和IP,具有了提供在现场远程升级的能力。图1 是一个框图,其中FPGA能够通过IP功能如Turbo编码器、Reed-Solomon编码器、符号交织器、符号映射器和IFFT,很容易地重配置支持WCDMA/HSPDA或802.16a标准的基带发送功能。 图1. 两种无线信号的SDR基带数据通道重配置例子 数字IF处理 数字频率变化具有比传统模拟无线处理方式更高的性能。FPGA提供了一种高度灵活和集成的平台,在这之上以合理的功率实现大计算量的数字IF功能,这在便携系统中是一个关键的因素。能够在FPGA实现的IF功能包括数字上变频器(DUC)和下变频器(DDC),以及数字预畸变(DPD)和波峰系数削减(CFR),帮助降低功放的成本和功率(见图2)

软件无线电系统综述

软件无线电系统综述 [摘要] 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能。本文介绍了其系统的软硬件组成和发展情况。 [关键词]软件无线电GNU Radio USRP 一、引言 由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。软件无线电将把无线电的功能和业务从硬件的束缚中解放出来。 二、软件无线电系统简介 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 上图表示一个典型的软件无线电处理流程图。为了理解无线电的软件模块,首先需要理解和其关联的硬件。在这个图中的接收路径上,能够看到一个天线,一个RF前端,一个模拟数字转换器ADC和一堆代码。ADC是一个连接连续模拟的自然世界和离散的数字世界的桥梁。 三、软件无线电软件平台GNU Radio GNU Radio是一种运行于普通PC上的开放的软件无线电平台,其软件代码设计完全公开。基于该平台,用户能够以软件编程的方式灵活地构建各种无线应用。 GNU Radio是一个对学习,构建和部署软件定义无线电系统的免费软件工具包。GNU Radio是一个无线电信号处理方案。它的目的是给普通的软件编制者提供探索电磁波的机会,并激发他们聪明的利用射频电波的能力。 它提供信号运行和处理模块,用它可以在易制作的低成本的射频(RF)硬件和通用微处理器上实现软件定义无线电。这套套件广泛用于业余爱好者,学术机构

认知无线电原理技术与发展趋势

摘要:认知无线电是指具有自主寻找和使用空闲频谱资源能力的智能无线电技术。认知无线电技术的提出,为解决不断增长的无线通信应用需求与日益紧张的无线频谱资源之间的矛盾提供了一种有效的解决途径。当前,认知无线电技术从理论到实践都面临很多困难。文章简述了认知无线电的基本原理,对认知无线电涉及的射频、频谱感知和数据传输等物理层核心关键技术进行了总结分析,并结合当前的发展状况对该技术未来的发展趋势进行了预测。 关键词:认知无线电;频谱感知;数据传输;网络体系与协议 Abstract: Cognitive Radio (CR) is an intelligent radio technology which has the capability to search and utilize underutilized spectrum resources. CR has been recognized as an effective solution to the dilemma introduced by the rapid growth of wireless communications and the scarcity of spectrum resources. However, from theory to practical applications, there are many challenges faced by CR currently. In this paper, the key physical layer techniques of CR, such as radio frequency front-end, spectrum sensing and data transmission, are discussed. According to the status of the research, the development tendency of this technology is also predicted. Key words: cognitive radio; spectrum sensing; data transmission; network architecture and protocol 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。因此,人们提出采用认知无线电(CR)技术,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 这一思想在2003年美国联邦通信委员会(FCC)的《关于修改频谱分配规则的征求意见通知》中得到了充分体现,该通知明确提出采用CR技术作为提高频谱利用率的技术手段。此后,CR技术受到了产业界和学术界的广泛关注,成为了无线通信研究和市场发展的新热点。然而,CR技术从理论到大规模实际应用,还面临很多挑战。这些挑战包括了技术、政策和市场等诸多方面。本文从技术的角度,总结分析CR的基本原理、关键技术,并对将来技术发展趋势进行预测。 1 认知无线电基本原理 1.1 认知无线电的概念与特征 自1999年“软件无线电之父”Joseph Mitola Ⅲ博士首次提出了CR的概念并系统地阐述了CR的基本原理以来,不同的机构和学者从不同的角度给出了CR的定义[1-3],其中比较有代表性的包括FCC和著名学者Simon Haykin教授的定义。FCC认为:“CR是能够基于对其工作环境的交互改变发射机参数的无线电”[4]。Simon Haykin则从信号处理的角度出发,认为:“CR是一个智能无线通信系统。它能够感知外界环境,并使用人工智能技术从环境中学习,通过实时改变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部状态适应接收到的无线信号的统计性变化,以达到以下目的:任何时间任何地点的高度可靠通信;对频谱资源的有效利用。”

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

软件无线电技术简介及特点应用

软件无线电技术简介及特点应用 发表时间:2019-09-10T10:31:29.547Z 来源:《科学与技术》2019年第08期作者:刘建新[导读] 软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 海南三亚92823部队 软件无线电技术,顾名思义是用现代化软件来操纵、控制传统的"纯硬件电路"的无线通信。软件无线电技术的重要价值在于:传统的硬件无线电通信设备只是作为无线通信的基本平台,而许多的通信功能则是由软件来实现,打破了有史以来设备的通信功能的实现仅仅依赖于硬件发展的格局。软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 1.起源 软件无线电最初起源于军事通信。军用电台一般是根据某种特定用途设计的,功能单一。虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。同样,民用通信也存在互通性问题,如现有移动通信系统的制式、频率各不相同,不能互通和兼容,给人们从事跨国经商、旅游等活动带来极大不便。为解决无线通信的互通性问题,各国军方进行了积极探索。完整的软件无线电 (Software Definition Radio)概念和结构体系是由美国的Joe.Mitola首次于1992年5月明确提出的。其基本思想是 :将宽带A/D 变换尽可能地靠近射频天线 ,即尽可能早地将接收到的模拟信号数字化 ,最大程度地通过软件来实现电台的各种功能。通过运行不同的算法 ,软件无线电可以实时地配置信号波形 ,使其能够提供各种语音编码、信道调制、载波频率、加密算法等无线电通信业务。软件无线电台不仅可与现有的其它电台进行通信 ,还能在两种不同的电台系统间充当“无线电网关”的作用 ,使两者能够互通互连。 软件无线电充分利用嵌入通信设备里的单片微机和专用芯片的可编程能力 ,提供一种通用的无线电台硬件平台 ,这样既能保持无线电台硬件结构的简单化 ,又能解决由于拥有电台类型、性能不同带来的无线电联系的困难。 2.软件无线电台的功能结构 图1给出了典型的软件无线电系统的结构简图 ,包括天线、多频段射频变换器、含有A/D 和D/A变换器的芯片以及片上通用处理器和存储器等部件 ,可以有效地实现无线电台功能及其所需的接口功能。 其关键思想以及与传统结构的主要区别在于 : (1)将A/D 和D/A向RF端靠近 ,由基带到中频对整个系统频带进行采样。 (2)用高速DSP/CPU代替传统的专用数字电路与低速DSP/CPU做A/D 后的一系列处理。A/D 和D/A移向RF端只为软件无线电的实现提供了必不可少的条件 ,而真正关键的步骤是采用通用的可编程能力强的器件 (DSP和CPU等 )代替专用的数字电路 ,由此带来的一系列好处才是软件无线电的真正目的所在。 典型的软件无线电台的工作模块主要包括实时信道处理、环境管理以及在线和离线的软件工具三部分。 1)实时信道处理 实时信道处理包括天线、射频变换、A/D 和D/A变换器、中频处理、基带与比特流处理及信源编码。其中射频变换包括输出功率的产生、前置放大、射频信号变换为标准中频或由标准中频变换为射频信号 ,以适应宽带A/D和D/A变换。中频处理部分变换调制基带和中频之间的发射和接收信号。比特流部分数字复用由多个用户产生的信源编码比特流 ,而且相反的使它们成帧或多路分解。还提供信令、控制和操作、管理和维护功能。实时信道处理部分最合适的结构是多指令多数据 (MIMD)多处理器的结构 ,即将多处理器组成一个流水线 ,来实现模块分配给内部连接在一起的各个处理器的不同的功能序列。 2)环境管理 在准实时环境管理模块中持续地使用频率、时间和空间特征来表征无线电环境 ,这些特征包括信道识别和估计其它参数。环境管理模块使用操作的块结构很容易用一台MIMD并行处理器来实现。这种高度的并行环境管理模块和流水线工作方式的实时信道处理模块之间的接口必须使环境管理的参数和信道处理模块同步。 3)在线和离线的软件工具

Sora高性能开源软件无线电平台

Sora : 高性能开源软件无线电平台

SORA软件无线电平台是世界上第一款100%基于PC的高性能可编程无线通信系统。它充分发挥了通用处理器(GPP)性能和灵活性,采用软硬件联合优化技术,满足高速信号处理的挑战。可以在通用的PC或者服务器上实时运行无线通信协议,速率可达54Mbps以上。 在传统的无线通讯系统,关键底层处理,如PHY层和介MAC层,通常ASIC芯片或者FPGA实现,因为有非常高的计算要求。这种设计更改或升级比较困难,对设计人员硬件水平要求很高,不适合作为科学研究或者算法工程师的研究平台。但是通用处理器(GPP)的软件和硬件系统都不是为了无线通信的信号处理而设计的,因此很难达到高性能的实时通信。例如,非常流行的USRP系列,只能实现8MHz带宽上,100多Kbps 的实时通信。 高性能的无线通信对系统有非常严格的需求,主要是以下三个方面: 1. 高速的系统吞吐量 包括远端射频头和PHY层协议之间以及PHY层协议内部的模块之间。例如,实现802.11系列协议,单天线需要大约1.2Gbps的吞吐量,如果支持4x4 MIMO应用,那么至少5Gbps以上,这个指标目前对大部分PC都是严峻的挑战。 2. 高强度的计算 无线通信的算法需要大量的计算,而且为了保证实时性,很多计算又是突发性的,因此必须充分发挥GPP的性能才能保证。目前主流的GPP都采用多核架构,所以如何将多核的计算能力汇聚起来,实现通信协议对软件开发也是一个挑战。 3. 实时的响应 无线通信协议中有很多响应门限,为了保证正常通信,这些响应门限必须满足。因此,低延迟的控制方法也很重要。例如,802.11系列的MAC层协议要在几个微秒内就可以得到响应。这对于PC和操作系统都是很难实现的。

基于AD9361的软件无线电硬件平台设计与实现

基于AD9361的软件无线电硬件平台设计与实现电子科技大学 UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 专业学位硕士学位论文 MASTER THESIS FOR PROFESSIONAL DEGREE 论文题目基于AD9361的软件无线电硬件平台 设计与实现 专业学位类别工程硕士 学号 201222010546 作者姓名郜泽 指导教师刘镰斧副教授 分类号密级 UDC注1 学位论文 基于AD9361的软件无线电硬件平台 (题名和副题名) 郜泽 (作者姓名) 指导教师刘镰斧副教授 电子科技大学成都 (姓名、职称、单位名称) ———————————————————————————————————————————————

申请学位级别 工程领域名称 提交论文日期硕士专业学位类别工程硕士电子与通信工程 2015.03 论文答辩日期 2015.05 年06月学位授予单位和日期电子科技大学 2015 答辩委员会主席 评阅人 注1:注明《国际十进分类法UDC》的类号。 摘要 THE DESIGN AND IMPLEMENTATION OF SOFTWARE DEFINED RADIO HARDWARE PLATFORM BASED ON AD9361 A Master Thesis Submitted to University of Electronic Science and Technology of China Major: Master of Engineering Author: Gao Ze Advisor: Professor Liu Lianfu School : Engineering 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工 作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地 ———————————————————————————————————————————————

相关主题