搜档网
当前位置:搜档网 › 三角形边和角

三角形边和角

三角形边和角
三角形边和角

八年级(上)数学周末同步课1三角形

知识点一:三角形中线和高与面积

1.下面四个图形中,线段BE是△ABC中AC边上的高是()

A.B.C.D.

2.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.

3.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.

4.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.

5.如图,S△ABC=20,AD:DC=1:4,BE:ED=3:1,则S△AED=.

6.如图,凸四边形ABCD中,对角线AC、BD相交于O点,若三角形AOD的面积是2,三角形COD的面积是1,三角形COB的面积是4,则四边形ABCD的面积是.

知识点二:三角形三边关系

7.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长差为()

A.6B.3C.2D.不确定

8.已知三角形三边长为2,3,x,则x的取值范围是()

A.x>1B.x<5C.1<x<5D.﹣1<x<5

9.设一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是()

A.0<m<B.﹣5<m<﹣2C.﹣2<m<5D.<m<﹣1

10.已知AB=3,BC=1,则AC的长度的取值范围是()

A.2≤AC≤4B.2<AC<4C.1≤AC≤3D.1<AC<3

11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.

12.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.

知识点三:与三角形有关的角(学会代数法的运用)

13.将一副三角尺按如图所示的方式摆放,则∠α的大小为()

A.85°B.75°C.65°D.60°

14.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()

A.15°B.20°C.25°D.30°

15.已知:△ABC中,D为BC上一点,满足:∠B=∠C=∠BAD,∠ADC=∠DAC,AE是△ABC中BC 边上的高.

(1)补全图形.

(2)求∠DAE的度数.

16.在一个三角形中,若其中一个内角等于另两个内角的差,则()

A.必有一个内角等于90°B.必有一个内角等于60°

C.必有一个内角等于45°D.必有一个内角等于30°

17.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为.

18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.

19.如图,在△ABC中,AD,BE分别是∠BAC,∠ABC的角平分线.

(1)若∠C=70°,∠BAC=60°,则∠BED的度数是;

(2)探究∠BED与∠C的数量关系,并证明你的结论.

20.已知:CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.

(1)如图1,求证∠BAC=∠B+2∠E;

(2)如图2,过点A作AF⊥BC,垂足为点F,若∠DCE=2∠CAF,∠B=2∠E,求∠BAC的度数.

21.如图,△ABC中,D为AC上一点,且∠ADB=∠ABC=α(0°<α<180°),∠ACB的角平分线分别交BD、BA于点E、F.

(1)若α=90°,判断∠BEF和∠BFE的大小关系并说明理由;

(2)是否存在α,使∠BEF大于∠BFE?如果存在,求出α的范围,如果不存在,请说明理由.

22.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于.

23.如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠1﹣∠2=60°,则∠B的度数是()

A.30°B.32°C.35°D.60°

24.已知线段AB与CD相交于点O,连结AD,BC.

(1)如图1,试说明:∠A+∠D=∠B+∠C;

(2)请利用(1)的结论探索下列问题:

①如图2,作AP平分∠DAB,交DC于点M,交∠BCD的平分线于点P,PC交AB于点N,若∠B+∠

D=80°,求∠P的大小;

②如图3,若∠B=α,∠D=β,∠P=γ,且∠BAP=∠BAD,∠BCP=∠BCD,试探索α,β,γ之

间的数量关系,并说明理由.

知识点四:多边形的边和角

25.一个多边形的外角和是内角和的,这个多边形的边数是()

A.7B.8C.9D.10

26.已知正多边形的一个内角为144°,则该正多边形的边数为()

A.12B.10C.8D.6

27.若一个多边形的内角和是三角形内角和的5倍,则这个多边形是()

A.七边形B.八边形C.九边形D.十边形

28.一个多边形所有内角与外角的和为1260°,则这个多边形的边数是()

A.5B.7C.8D.9

29.已知正多边形的一个内角是140°,则这个正多边形的边数是()

A.九B.八C.七D.六

30.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为.31.一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

《利用“边角边”判定三角形全等》同步练习题

1.如图,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( ) 2.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能说明△ABC≌△DEF,这个条件是( ) A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF 3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( ) A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE

4.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( ) A.BC=ED B.∠BAD=∠EAC C.∠B=∠E D.∠BAC=∠EAD 5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB, 詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=错误!未找到引用源。AC;③△ABD≌△CBD,其中正确的结论有( ) A.0个 B.1个 C.2个 D.3个 6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( ) A.∠B=∠C B.AD=AE

C.BD=CE D.BE=CD 7.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( ) A.8 cm B.9 cm C.10 cm D.11 cm 8.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( ) A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD 9.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD. 10.如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC 与△AEB全等吗?请说明理由.

八年级数学竞赛讲座三角形的边与角附答案

第九讲 三角形的边与角 三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。角度的计算、图形的计数等方面有广泛的应用. 解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类. 熟悉以下基本图形、并证明基本结论: (1) ∠l +∠2=∠3+∠4; (2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+ 21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°- 21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E= 2 1∠A . 注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部. 代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组). 例题求解 【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题) 思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组. 【例2】以1995的质因数为边长的三角形共有( ) A .4个 B .7个 C .13个 D .60个 (河南省竞赛题) 思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

三角形的边与角试题与答案

三角形的边与角 一、选择题 1. (2016·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①BC DE =21 ; ② S S COB DOE △△=21; ③AB AD =OB OE ; ④ S S ADE ODE △△=31. 其中正确的个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题) 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线, ∴DE=21 BC ,即BC DE =21 ; 故①正确; ②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB ∴ S S COB DOE △△=(BC DE )2=(21)2=41 , 故②错误; ③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE △DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE ,

故③正确; ④∵△ABC 的中线BE 与CD 交于点O 。 ∴点O 是△ABC 的重心, 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知, S △ODE =41 S △COB ,S △ADE =41 S △BOC , ∴ S S ADE ODE △△=31. 故④正确. 综上,①③④正确. 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外.

三角形边与角的范围问题(答案)

三角形边与角的范围问题 课堂练习: 1、在锐角ABC 中,1,2a b ,则最大边c 的取值范围为_____________. 2 222214cos 0245,5,,25a b c c C C ab c c c c c 解析:由题意知是锐角,则又为最大边2、在ABC 中,角A ,B ,C 成等差数列,边AC=2,则三角形周长的取值范围为_________. A B C 2,3sin sin sin sin 43sin sin 3 sin 43sin 43sin()sin 33343(sin sin cos cos sin )3333 1 4(sin cos )4sin() 22625(0,),(,)(2,4]3666 B A C B a b c A B C b A A a B b C C c A B a c A A A A A A A A a c 解析:角、、成等差数列,由正弦定理=====周(4,6] 长取值范围为3、在ABC 中,角A 、B 、C 所对的边为a ,b ,c,且sin sin()sin sin cos A B C B C A ,则2ab c 的最大 值为_______. 解析: 2222222222 sin (sin cos cos sin ) sin sin cos sin sin cos sin cos sin sin sin cos sin sin() sin cos cos 32A B C B C B C A A B C A B C B C A C A B C c ab C c C ab a b c c a b c ab ab 由题可得移项得由正弦定理可得由余弦定理得因此 即最大值为. 4、在ABC 中,已知BC=AC ,ABC 周长为7,则BC 边上的中线AD 的最小值是________.

三角形边长公式

三角形边长公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由 A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S

三角形的判定-角边角

铺头中学课堂教学导学案 年级七学科数学课型新授主备教师李云云协作教师 设计时间授课时间总课时序数授课人李云云学习内容 学习目标 1、体验角边角(基本事实)、角角边(定理)三角形全等判定的探索过程,理解并掌握角边角、角角边解决问题。 2、在学生经历观察、归纳、猜想、探索角边角(基本事实)、角角边(定理)过程中,发展合情推理能力,并在探索过程中,发展学生的归纳、概括能力。 3、通过探索角边角(基本事实)、角角边(定理),培养学生积极参与、合作交流的意识,体验获得成功的喜悦及数学模型与实际生活中的问题之间的联系. 学习重点掌握角边角(基本事实)、角角边(定理)学习难点文字命题的证明 学习准备学案、课件、三角板等 导学过程一、问题导学 1、你已经知道的判定三角形全等的方法有几种? 2、如果两个三角形有两个角、一条边分别对应相等,可以分 成几种不同的情况,它们分别是怎样的? 二、自主学习 1、阅读教材P66中的做一做,按要求画图。 请将自己所画的三角形与其他同学所画的三角形进行比 较,所以的三角形都全等吗?换两个角和一条线段,试试看, 是否有同样的结论。 2、如果两个三角形有两个角及其中一个角的对边分别对应相 等,那么这两个三角形是否一定全等?(完成课本68页的证 明过程) 3、练习 (1)如图,AB⊥BC, AD⊥DC, ∠1=∠2. 求证:AB=AD . (2)已知:点D在AB上,点E在AC上,BE和CD相交于 点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD 三、合作探究 组长组织:将自己明白的与大家分享、不明白的与大家交 流。共同分析、探究。 二次备课

导学过程四、拓展延伸 阅读教材P69例4,从中你学到了什么?用这种方法解决下列问题。 1、如图,AB//DC,AD//BC,BE⊥AC,DF ⊥AC垂足为E、F。 试说明:BE=DF 2、变形,如图,将上题中的条件“BE⊥AC,DF ⊥AC”变为“BE //DF”,结论还成立吗?请说明你的理由。 五、达标检测 1、如图,∠ABC=∠DCB,试添加一个条 件,使得△ABC≌△DCB,这个条件可以是 _______ 或______ 或______ 2、一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗? 六、收获小结 1、畅所欲言。 2、作业布置:一定要动脑筋哦 (1)预习P69页例5,结合例5的证明完成P70的思考。(2)等腰三角形两底角的角平分线相等吗?两腰上的高呢?两腰上的中线呢 板书设计导学反思

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边 一、基础知识 本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系. 1.边与边的关系 (1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?); (2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方. 2.角与角的关系 (1)三角形的内角和为180?; (2)直角三角形中两锐角互余; (3)三角形的一个外角大于任何一个与它不相邻的内角; (4)三角形的一个外角等于与它不相邻的两内角之和. 3.边和角的关系 (1)在同一个三角形中,大边对大角,大角对大边; (2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大. 4.不等式变形时常用的性质 (1)若a>b,c>d,则a+c>b+d; (2)若a>b,c>d,则a-d>b-c; (3)若a>b,c>0,则ac>bc; 若a>b,c<0,则acb>0,则11 a b < ; (5)总量大于任何一个部分量. 5.三角形中的不等关系根源: (1)两点之间线段最短; (2)垂线段最短. 二、例题 第一部分边的问题 例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.

例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是() A.直角三角形 B.等腰三角形 C.等边三角形 D.直角三角形或等腰三角形 例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( ) A.3 1 4 k << B. 1 1 3 k << C.12 k << D. 1 1 2 k << 例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( ) A.17cm B.5cm C.17cm或5cm D.无法确定 例5. (★★★)如图3-1,已知P为三角形ABC内一点, 求证: 1 () 2 AB AC BC PA PB PC AB AC BC ++<++<++. 例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.

三角形的边与角的认识

三角形三大专题 知识互联网 题型一:整数边三角形 思路导航 1、边长都是整数的三角形,称为整数边三角形. 2、若三角形三边的长为a ,b ,c 且a b c ≤≤,则 ⑴ 三角形的最小的边a 满足:03 a b c a ++<≤,当且仅当a b c ==时,等号成立; ⑵ 三角形的最大的边c 满足:32 a b c a b c c ++++< ≤,当且仅当a b c ==时,等号成立. 方程(特别是不定方程)和不等式是解决整数边三角形或内角是整数的三角形的常用工具.运用这一工具时,枚举法(树状图)则是常用的方法,但要注意对求得的结果进行检验. 例题精讲 【引例】 已知等腰三角形的周长是8,边长是整数,则腰长是多少? 典题精练 【例1】 ⑴若三角形的周长为60,求最大边的范围. ⑵设m 、n 、p 均为自然数,且m n p ≤≤,15m n p ++=,试问以m 、n 、p 为边长 的三角形共有多少个? 【例2】 ⑴三角形三边长a 、b 、c 都是整数,且a b c <<,若7b =,则有 个满足题意的 三角形. ⑵三角形三边长a 、b 、c 都是整数,且a b c <≤,若7b =,则有 个满足题意的三角形. ⑶三角形三边长a 、b 、c 都是整数,且a b c ≤≤,若7b =,则有 个满足题意的三角形.

题型二:多边形及其内、外角和 思路导航 多边形及其内、外角和 (一)多边形及其内角和 1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ① 多边形的顶点、边、内角、外角、对角线 内角:A ∠、ABC ∠、C ∠、CDE ∠、E ∠…… 外角:α∠ 对角线:连接不相邻两个顶点的线段是多边形的对角线.如BD . n 边形对角线条数: (3) 2 n n -条 ② 凸、凹多边形:多边形的每一边都在任何一边所在直线的同一侧,叫做凸多边形;反之叫做凹多边形.(如图) 图(a )为凸多边形 图(b )为凹多边形 ( a ) (b ) ③ 正多边形:各个角都相等,各条边都相等的多边形叫做正多边形 (如图正六边形) AB=BC=CD=DE=EF=AF A B C D E F ∠=∠=∠=∠=∠=∠ 2.多边形内角和:n 边形内角和等于(2)180n -?° ① 多边形内角和公式推理方法一: 过n 边形一个顶点,连对角线,可以得(3)n -条对角线,并且将n 边形分成 (2)n -个三角形,这(2)n -个三角形的内角和恰好是多边形的内角和. 将n 边形分成()2n -个三角形 ② 多边形内角和公式推理方法二: 在n 边形边上取一点与各顶点相连,得(1)n -个三角形,n 边形内角和等于这 (1)n -个三角形内角和减去在所取的一点处的一个平角,即 (1)180180(2)180n n -?-=-?°°° 将n 边形分成()1n -个三角形 F E D C B A

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA2+cosA2=1 2)倒数关系:t an A·c ot A=1 3)商的关系:t an A=sinA cosA ,c ot A=cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA,cos(90°-A)=sinA t an(90°-A)=c ot A, cot(90°-A)=t an A 4.一些特殊角的三角函数值

5.锐角α的三角函数值的符号及变化规律. (1)锐角α的三角函数值都是正值 (2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小. 6.解直角三角形 (1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角. (2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形. 7.解直角三角形的应用, 解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念: (1)仰角、俯角 视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角 (2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示, 即i=h l (3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=h l (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.

初中奥数讲义_三角形的边与角附答案

三角形的边与角 三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。角度的计算、图形的计数等方面有广泛的应用. 解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类. 熟悉以下基本图形、并证明基本结论: (1) ∠l +∠2=∠3+∠4; (2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+ 21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°- 21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E= 2 1∠A . 注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部. 代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组). 例题求解 【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题) 思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组. 【例2】以1995的质因数为边长的三角形共有( ) A .4个 B .7个 C .13个 D .60个 (河南省竞赛题) 思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的

全等三角形边角边判定的基本练习

全等三角形边角边判定的基本练习 1、边角边公理. (简称“边角边”或“SAS”) 一、例题与练习 1、填空: (1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。 (2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是 ____________还需要一个条件________________(这个条件可以证得吗?)。 2、例1 、已知:AD∥BC,AD=CB(图3)。求证:△ADC≌△CBA. 例2 、已知:AB=AC、AD=AE、∠1=∠2(图4)。求证:△ABD ≌△ACE。 练习: 1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证: △ABE≌△ACF。

A B C D E 2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF. 3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE 4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。 A B D C 5、已知:如图,AD∥BC,CB AD=。求证:CBA ADC? ? ?。

6、已知:如图,AD ∥BC ,CB AD =,CF AE =。求证:CEB AFD ???。 7、已知:如图,点A 、B 、C 、D 在同一条直线上,DB AC =,DF AE =,AD EA ⊥,AD FD ⊥,垂足分别是A 、D 。求证:FDC EAB ??? 8、已知:如图,AC AB =,AE AD =,21∠=∠。求证:ACE ABD ???。 9、如图,在ABC ?中,D 是AB 上一点,DF 交AC 于点E ,FE DE =,CE AE =,AB 与CF 有什么位置关系?说明你判断的理由。 10、已知:如图,DBA CAB ∠=∠,BD AC =。求证∠C=∠D

三角形的边和角练习题

3 题图⑥⑤④③② ①6题图 7题图 5题图 D D F D E B C C B B C 三角形的边和角练习题 1、下列长度的三条线段能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,10 2、长为11,8,6,4的四根木条,选其中三根组成三角形,有____种选法,它们分别是_________________________________________. 3、下列图形中具有稳定性的有( )个 A 、2 B 、3 C 、4 D 、5 4、等腰三角形两边长分别为3,7,则它的周长为( ) A 、13 B 、17 C 、13或17 D 、不能确定 5、如图,BD=DE=EF=FC ,那么,A E 是 _____ 的中线。 6、如图,BD=1 2 B C ,则BC 边上的中线为 ______,ABD S ?=__________。 7、如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ?= 42cm ,则S 阴影等于( )。 A .22cm B. 12cm C. 12 2 cm D. 14 2 cm 8、△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是________________. 9、等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为( )cm. A 、3 B 、8 C 、3或8 D 、以上答案均不对 10、若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为( ) A 、2cm B 、4cm C 、6cm D 、8cm 11、在△ABC 中,D 是BC 上的点,且BD ∶DC=2∶1,A C D S ?=12,那么ABC S ?等于( ). A .30 B. 36 C. 72 D. 24 12、若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、钝角三角形 13、在△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A 、100° B 、120° C 、140° D 、160° 14、已知△ABC 中,∠A=20°,∠B=∠C ,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等边三角形 15、一个三角形至少有( ) A 、一个锐角 B 、两个锐角 C 、一个钝角 D 、一个直角

全等三角形角边角判定的基本练习

全等三角形角边角判定的基本练习 V三角形辅助线做法>图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 注意:三角形全等的条件的选用选择哪种方法判定两个三角形全等, 要根据具体情况和题设条件确定,其基本思路见下表:已知条件可选择的判定方法 一边一角对应相等SAS、AAS ASA 两角对应相等ASA、AAS 两边对应相等SAS、SSS 但形如“ SSA和“ AAA不能判定三角形全等。 1. 如图,∠ ABC∠ DCB ∠ ACB∠ DCB 试说明△ ABC^△ DCB. 4 / D

2. 已知:如图,∠ DAB∠ CAB ∠ DBE∠ CBE 求证:AC=AD. 3. 已知:如图,AB=AC ∠ B=∠ C, BE DC交于O点。求证:BD=CE. 4. 如图:在厶ABC和厶DBC中,∠ ABD∠ DCA,∠ DBC∠ ACB求证: AC=DB 5. 如图,D E分别在AB AC上,且AD=AE DB=DC ∠ B=∠ G 求证: BE=CD.

6. 如图,已知:AE=CE ∠ A= ∠ C ∠ BED ∠ AEC 求证:AB=CD. 9. 如图,AB // CD, AD BC 交于O 点,EF 过点O 分别交AB CD 于E 、 F ,且AE=DF, 求证:O 是EF 的中点. 求证: ZA=ZB. BE=CF l 求证:AB=DC. C F

三角形的边与角试题与答案

ABC中,中线BE, CD相交于点0,连接DE,下列结论:其中正确的个数有() 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE是厶ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;② 利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①I DE是厶ABC的中位线, 1 卄DE 1 二DE=2BC,即卩1C =2 ; 故①正确; ②??? DE是厶ABC的中位线, ??? DE// BC 故②错误; ③??? DE/ BC AD OE AB = OB , 、选择题 三角形的边与角 DE _ 1 BC = 2 DOE ② S^ COB ③ AB = ol ; S^ ODE S^ ADE 1. (2016 ?湖北咸宁)如图,在△ A. 1个 D. 4个 S^ DOE S^ COB=(iC 2=d)2=i, ? △ADE s^ ABC △DOE sA COB 皿 AB = DE =BC OE DE OB :=BC B. 2个 C.3个

故③正确; ④???△ ABC的中线BE与CD交于点0。 ???点0是厶ABC的重心, 根据重心性质,B0=20E, △ ABC的高=3A B0C的高, 且厶ABC与厶B0C同底(BC) ? - ABC =3S A B0C, 由②和③知, 1 1 S\ 0DE= 4 S A COB, S\ADE= ~4 S A B0C, S 0DE 1 …ADE = 3 . 故④正确? 综上,①③④正确? 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质?要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016 ?四川广安?3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有() A ? 1个 B ? 2个C. 3个D ? 4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判 定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、 平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外. ②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形 是矩形.

三角形中的边角关系

三角形基础知识 说明:△ABC中,角A,B,C的对边分别为a,b,c,p为三角形周长的一半,r为切圆半径,R为外接圆半径,)h a,h b,h c分别为a,b,c边上的高S△ABC表示面积。1.三角形的定义:三条线段首尾顺次连结所组成的图形,其中各条线段叫做三角形的边,每两条边组成的角叫做三角形的角(简称三角形的角). 2.三角形的元素:三角形的边、角、中线、高线、角平分线、周长、面积等都叫三角形的元素. 3.确定三角形的条件:在三角形的元素中,边和角叫做三角形的基本元素,其中角确定三角形的形状(定形),边确定三角形的大小(定量),三角形具有稳定性.确定三角形的条件是:已知三角形的三边(SSS)或两边及其夹角(SAS)或两角及其公共边(ASA)或两角与其中一角的对边(AAS),这也是判断两个三角形全等的主要方法,全等三角形的对应元素都相等.只知三角形的三角大小,不能确定三角形,具有相同大小的三个角的两个三角形是相似关系. 4.三角形的“线”与“心”: (1)高线、垂心. (2)中线、重心及其的性质、坐标公式、向量公式及其物理意义、中线长定理.(3)中垂线、外接圆、外心. (4)角平分线、切圆、心、角平分线定理. (5)外角平分线、旁切圆、旁心、外角平分线定理. (6)中位线、中位线定理、中点三角形及其性质. 5.三角形的分类: (1)按边的相等情况分:三边不等的三角形、等腰三角形、等边三角形。 (2)按最大角的情况分:锐角三角形、直角三角形、钝角三角形。 6.等腰三角形的判定与性质、四线合一 7.等边三角形的判定与性质、四心合一(中心) 8.三角形元素之间的关系: (1)角与角的关系: ①角和定理、 ②外角定理 ③角的性质:围、关系. ④最大角、最小角. ⑤锐角三角形中任两角的和 (2)边与边的关系:两边之和大于第三边,两边之差小于第三边.(“三胞胎”)(3)边与角的关系:(“三胞胎”) ①对边与对角的大小关系:在三角形中,大边所对的角也较大,相等两边所对 的角也相等,反之也真. ②正弦定理:在一个三角形中,各边和它所对角的正弦之比都相等,都等于该 三角形外接圆的直径.

相关主题