搜档网
当前位置:搜档网 › 土木工程专业英语翻译(含中英)

土木工程专业英语翻译(含中英)

土木工程专业英语翻译(含中英)
土木工程专业英语翻译(含中英)

Structural behavior of low- and normal-strength interface mortar of masonry

Thomas Zimmermann1 , Alfred Strauss1 and Konrad Bergmeister1

(1) Institute for Structural Engineering, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, 1190 Vienna, Austria

ThomasZimmermann(Corresponding

author)

Email:Zimmermann.Thomas@boku.ac.at

AlfredStrauss

Email:Alfred.Strauss@boku.ac.a

t

KonradBergmeister

Email:Konrad.Bergmeister@boku.ac.

at

Received:12 April 2011 Accepted:29 August 2011 Published online:8 November 2011 Abstract Building with masonry is based on the experience of many centuries. Although this design is used worldwide, knowledge about the material behaviour of masonry is still subject to uncertainties. The determination of safety of these structures against earthquakes is a complex challenge. For instance it depends on the resistance of the structure, the seismic action and on many uncertain structural details. One of the key parameters regarding the resistance is the shear strength of the masonry. A series of tests on mortar prisms according to EN 1015-11 was performed in which the mortar properties were varied in order to measure bending and compressive strength. In a second test program, the shear strength of the masonry was tested according to EN 1052-3. Shear triplets were made to establish the shear strength variation due to deliberate variation of the mortar properties. In addition, for both tests on mortar prisms and tests on shear triplets, descriptive statistical parameters were calculated and an attempt was made to describe the datasets with probabilistic distributions for further dimensioning and stochastic assessments. Keywords Shear strength – Coefficient of friction – Old masonry

1Introduction

Masonry is a typical construction material which can withstand compression, but has low shear and bending resistance. This makes unreinforced masonry buildings highly interesting: (a) to gather mechanical properties and their wide scatter, which is characteristic for old masonry, and, (b) to obtain appropriate tools for assessment, analysis and retrofit methods.

General rules and design aspects are stated in specific Eurocodes (EC). For masonry structures, rules and design aspects are regulated in EC 6 [1]. The ultimate limit state distinguishes between three major conditions: (a) masonry under vertical loading, (b) masonry under shear, and, (c) masonry under bending. The most critical loading conditions are cases (b) and (c), especially in the case of unreinforced masonry. Thereby the inappropriate horizontal loading situation is caused by wind loads or by seismic actions.

Regarding the material behaviour under horizontal loading, two types of material parameters could be distinguished. The first type directly affects the stress side e.g. energy dissipation and behaviour factor. The second type directly affects the resistant side e.g. shear resistance, tensile strength and shear modulus. According to EC 6, the design value of shear strength depends on initial shear strength and the coefficient of friction as well as on geometrical parameters. With a testing program according to EN 1052-3 [2] it is possible to characterize these two material parameters for masonry. Further it is possible to define the shear resistance if sliding shear failure takes place. Therefore an extensive study can be found in Tomazevic [3], but it is focused on new brick material and mortar respectively.

The procedure described in EN 1052-3 is the state of the art testing method to evaluate masonry shear strength without distinguishing between old and new masonry. Thereby two specimen layouts can be used. The smallest practical specimen consists of two brick units and one mortar layer while the second layout consists of three brick units and two mortar layers. In the case of testing old masonry the second specimen layout is more appropriate because the normative requirements can be easier achieved and further a symmetric loading situation occurs.

The testing program presented in this paper is focused on old masonry and was carried out with different mortar properties. The results of this testing program, as well as a stochastic approach to describe the material strength in combination with an extensive literature review, are presented in this paper.

2Material properties

2.1Bricks

The shear specimens were made with only one type of old, solid masonry bricks, see Fig. 1. This type of brick is typical for houses from the nineteenth century in Vienna. The mean dimensions of bricks were L/B/H = 29.12/14.13/7.05 cm. The dimensions were measured according to EN 772-16 [4]. Based on the obtained minimum dimensions in length and width, the bricks were cut to provide a consistent interface between the bricks and the mortar layer. The final dimensions of bricks were L = 25 cm and B = 12 cm. The height of bricks remained unchanged. The mean value of the dry density of bricks was ρ = 1,467 kg/m3.

Fig. 1 Old, solid bricks used for shear tests

The compressive strength f b was obtained according to EN 772-1 [5] whereby the mean value of compressive strength resulted in f b = 19.28 MPa.

2.2Mortar

To determine the initial and shear strength between brick and mortar, a mortar mixture was chosen which was of low strength and a simple composition. Two mortar compositions out of four mixtures were chosen such that (a) the mortar had almost the same characteristics as the mortar for shear tests on masonry walls to provide comparability and (b) it was a very low strength mortar. These shear tests on masonry walls have already been carried out and are documented in [6]. In a testing program, consisting of four different mixtures, mortar prisms with dimensions of 40 × 40 × 160 mm were tested to obtain the compressive strength, f m and flexural strength, f m,fl. Table 1 shows the composition of all four mortar mixtures.

Table 1 Investigated mortar mixtures, units in gram

Mix. I Mix. II Mix. III Mix. IV

CEM 32.5 1,000 1,500 2,000 0

Lime 400 400 400 400

Rock flour 1,200 1,200 1,200 0

Fine sand 0–1 4,650 4,650 4,650 4,650

Course sand 0–4 12,445 12,445 12,445 12,445

Water 3,500 3,500 3,500 3,250

Compressive strength and flexural strength were obtained according to EN 1015-11 [7] after a curing time of 28 days. Table 2 shows the results of the testing program.

Table 2 Material parameters of investigated mortar mixtures, units in MPa

Mix. I Mix. II Mix. III Mix. IV

Flexural strength 0.58 1.02 1.39 –

Compressive strength 1.50 3.58 4.06 0.22

Based on these results mortar mixture II was chosen for a first triplet shear test group

because its characteristics are closest to the mortar characteristics of the mortar which was used in the shear tests on masonry walls. Mortar mixture IV was chosen for a second triplet shear test group.

2.3Masonry specimens

Specimens for the triplet shear tests were built which consisted of three brick units with two mortar joints. The cut bricks provide a smooth surface for the bearings as well as for the load application area. The upper and lower surfaces of the specimens were confined with a cement mortar. After the specimens were built, each one was loaded with a compression load of about 3.0 × 10?3 MPa until testing. Simultaneously, while building the specimens for the triplet shear tests, additional mortar specimens of both mixtures were built for further mortar tests.

3Testing methods

The general problem in testing the shear behaviour along mortar joints and brick units is in applying a uniform distribution of both shear stress and normal stress. To avoid additional moments, the shear load should be applied as close as possible to the mortar joints, see [8]. There should also be no tensile stresses along the joint because these stresses could affect the failure load. However, some stress concentrations occur around the load introduction area and also some moment is introduced at the joint, which means that it is nearly impossible to introduce a pure shear stress distribution. The shear strength of masonry is dependent on the shear bond properties of the mortar joints, the vertical compression level and the friction angle. To obtain these properties different types of specimens can be used. Figure 2 shows a variety of different testing methods.

Fig. 2 Various test arrangements for shear tests, a triplet test according to EN 1052-3, b Hoffmann and Stoeckl [9], c Riddington et al. [10], d Van der Pluijm [11], e Hamid et al. [12], f Abdou et al. [13] and g Popal and Lissel [14]

These test methods consist of either two, three or four bricks. A review can be found in Jukes et al. [15] and additional experimental investigations are presented by Abdou et al. [13]. Further, several test arrangements have been investigated via FEM. Results are proposed by Stoeckl et al. [16]. Hence, it could be shown that peaks of both shear and normal stresses occur in all arrangements. There are also some approaches to combine the advantages of different test methods, e.g. [14].

However, all the mentioned methods have it in common that they require very complex equipment and they are not a standard test method, expect triplet shear tests according to EN 1052-3.

4Investigation of the shear behavior

Previously mentioned test methods are designed so that the bricks only partially overlap. It does not matter with new bricks with more or less even surfaces. In the case of old bricks, a complete overlap is more advantageous because possible influences from uneven surfaces and imprints are taken into account. Thus the triplet test method according to EN 1052-3 was used for the investigations presented in this paper.

According to EN 1052-3, two different test procedures are possible. In procedure (a) specimens have to be tested under at least three different normal stress levels with at least three specimens for each level. Procedure (b) is performed without any pre-compression with at least six specimens. In order to avoid normal tensile stresses along the mortar bed joints, procedure (a) was chosen. This normal stress is undesirable since the results for the shear strength can be affected by the tensile strength of the mortar bed joints.

Two groups of specimens were tested. Table 3shows the properties of shear specimens. The bricks for both groups are the same, but the mortar mixtures differ. Mortar mixture II was used for group A while mortar mixture IV was used for group B.

Table 3 Characteristics of masonry specimens, units in MPa

Compressive strength of

Bricks f b Mortar f m Masonry f k

Group A 19.28 3.58 5.65

Group B 19.28 0.22 2.81

Based on the compressive strengths of both bricks f b, and mortar f m, the compressive strength of masonry f k was calculated according to EC 6, National Annex B 1996-1-1 [17].

(1)

Shear strength was measured using the set up shown in Fig. 3. The brick in the middle is sheared and the upper and lower bricks are supported. The horizontal shear load was applied with a hydraulic jack. The varying pre-compression load was applied perpendicular to the shear surface.

Fig. 3 Triplet shear test set up

In the case of group A, five vertical stress levels (3, 7, 15, 25 and 40% of f k) were applied and five tests were performed at each level for statistical evaluation. This resulted in a total number of 25 specimens for group A. In the case of group B, three vertical stress levels (13, 28 and 48% of f k) were applied. Hence, three tests were performed at each level. This resulted in a total number of nine specimens for group B.

Each test took about 5 min until shear failure occurred. When the specimen cracks and pure shearing starts, the pre-compression load fluctuates. This was adjusted manually in order to keep it constant. During testing, the shear load and the applied pre-compression load were measured simultaneously.

The evaluation of shear tests was based on the maximum horizontal force H max obtained during testing. Since the middle brick was loaded, the horizontal force had to be divided by two times the corresponding shear area (250 × 120 mm = 30,000 mm2). Hence, i the shear strength for each specimen f v,i could be calculated as:

(2)

The applied normal stress level σd was calculated with the applied pre-compression

force with respect to the corresponding shear area of the specimen i.

(3)

The shear strength of masonry depends on the applicable friction forces in the horizontal joints, the tensile strength of the bricks, the compressive strength of masonry and the bond strength between bricks and mortar. The shear strength is essentially determined by the normal stress level. According to EC 6 it can be calculated as:

(4)

where f vko is the initial shear strength without any vertical stresses; σd the normal stress level perpendicular to the shear force and μk the coefficient of friction (both characteristic values).

The evaluation of the shear test results was done (a) based on mean values, (b) based on a statistical approach using 5% fractiles of a Lognormal distribution and (c) according to EN 1052-3. Finally both evaluations were compared to each other, see Table 4.

Table 4 Mean values of initial shear strenght and coefficient of friction and comparison of characteristic values

Initial shear strength (MPa) Coefficient of friction (–)

Mean EC 6 5% fractile EN 1052-3 Mean EC 6 5% fractil EN 1052-3

f vo f vko f vko,5%f vkoμμkμk,5%μk

Group A 0.210 0.200 0.174 0.168a0.709 0.400 0.624 0.566 Group B 0.027 0.100 0.014 0.010b0.643 0.400 0.623 0.514

a Calculated from mean value by multiplying with 0.8;

b smallest single value of testdata

4.1Failure modes

Generally, four failure modes during shear tests can appear. Mode (a) is a fracture plane localised at one brick mortar interface. Mode (b) is a fracture plane at each brick mortar interface combined with a vertical crack in the mortar layer. Mode (c) is a pure shear failure in the mortar layer and mode (d) is a fracture plane through both mortar and bricks, see Fig. 4. For the shear tests presented in this paper, only the failure modes (a) and (b) were observed during testing.

Fig. 4 Failure modes of masonry specimens during shear testing

4.2Results group A

Figure 5shows the shear strength with respect to the corresponding normal stress level for the tested specimens of group A. For each stress level the mean value, the 5% fractile based on a Lognormal distribution and characteristic value according to

EN 1052-3 were calculated. Linear best fits through (a) and (b) values were carried out using the least square method. Thereby, for case (a) a Mohr–Coulomb relationship was obtained as:

(5)

and for case (b) as:

(6)

Fig. 5 Shear strength with respect to vertical stress, group A

Case (c), the determination of characteristic value according to EN 1052-3, can be directly calculated from mean values by multiplying with 0.8 or it corresponds to the smallest single value of the testdata. The smaller value is decisive:

(7)

Further, the normative relationship (norm) is plotted in Fig. 5. Due to the mortar properties, the corresponding mortar class, according to EC 6, is M2.5–M9. Hence the initial shear strength f vko norm= 0.20 MPa and the coefficient of friction μk norm = 0.4. Table 5 summarizes the test results and descriptive statistical parameters.

Table 5 Test results of shear strength f v, i (MPa) with respect to normal stress level

Symbol Normal force level (kN)

5.0 11.0 24.0 40.5 65.0

Group A

Mean 0.3

04

0.479

6

0.8104 1.1500

1.7436

Standard deviation s

0.0

48

9

0.049

2

0.0634 0.0890 0.1413

Coefficient of variation cov

0.1

60

9

0.102

5

0.0783 0.0774 0.0810

5% fractile x5

0.1

12

5

0.399

1

0.7057 1.0036 1.5116

Group B

Mean –

0.261

0.5440 0.8933 –

Standard deviation s–

0.012

5

0.0092 0.0302 –

Coefficient of variation cov–

0.047

6

0.0169 0.0338 –

5% fractile x5–

0.241

0.5291 0.8445 –

4.3Results group B

Figure 6shows the shear strength with respect to the corresponding normal stress level for the tested specimens of group B. Again, linear best fits through (a) the mean values and (b) the fractile values were carried out using the least square method.

Fig. 6 Shear strength with respect to vertical stress, group B

Thereby for case (a), a Mohr–Coulomb relationship was obtained as:

(8)

and for case (c) as:

(9)

Again, case (c), the determination of characteristic value according to EN 1052-3, can be directly calculated from mean values by multiplying with 0.8 or it corresponds to the smallest single value of the testdata. The smaller value is decisive:

(10)

Also the normative relationship (norm) is plotted in Fig. 6. Due to the mortar properties, the corresponding mortar class according to EC 6 is M1 – M2. Hence the

initial shear strength f vko norm= 0.10 MPa and the coefficient of friction μk norm = 0.4. Table 5 summarizes the test results and descriptive statistical parameters.

5Probabilistic models

This section provides an overview of the investigated probabilistic models which were considered here to describe test results and literature data of the coefficient of friction of masonry. Depending on the distribution function, different procedures were used for estimating the unknown parameters e.g. Method of Moments and Method of Maximum Likelihood. Detailed studies regarding parameter estimation can be found in [18–20] and other sources. The functions of the investigated distributions relate to the two and three parameter function respectively.

The investigated probabilistic models are the usual distribution functions like Normal and Lognormal, and also common distribution functions to describe material strength, such as Gamma and Weibull. Different methods have been used for choosing the best fit model to a given data set. These methods are the Kolmogrorv Smirnov (KS), the χ2 and the Anderson Darling (AD) test. The last method was chosen for this study as it is more sensitive to the tail behaviour. The sensitivity to the tail behaviour is particularly useful in structural engineering applications, where the tail is important in computing the structural reliability.

The KS procedure involves the comparison between the assumed hypothetical and the empirical cumulative distribution function. For computing models, it is natural to choose a particular model for a given sample whereby the discrepancy is low. Otherwise, if the discrepancy is large with respect to what is normally expected from a given sample, the hypothetical model is rejected.

The χ2-test is used to determine if a sample comes from a population with a specific

distribution. It compares the observed frequencies in k intervals of the

variate with the corresponding frequencies from an assumed hypothetical distribution.

Finally, the AD-procedure is a general test to compare the fit of an empirical cumulative distribution function to a hypothetical cumulative distribution function. This test gives more weight to the tails than the KS-test.

The various probabilistic models were applied to a data set consisting of values from an extensive literature review as well as of values from laboratory tests, as described in Sect. 4. A total number of n = 2,028 values were used. Table 6 shows the mean and characteristic values of the coefficient of friction from literature.

Table 6 Mean and characteristic values of coefficient of friction, form literature

Name Ref. Coef. of friction

μk

Abdou et al. [13] 0.886 0.709

Amadio and Rajgelj [21] 0.700 0.560

Benjamin and Williams [22] 1.100 0.880

Chin [23] 0.750 0.600

Ghazali and Riddington [24] 0.778 0.622

Hegemioer et al. [25] 0.941 0.753

Jukes [26] 0.797 0.638

Khalaf [27] 0.793 0.635

Page [28] 0.700 0.560

Sinha and Hendry [29] 0.700 0.560

Van der Pluijm [11, 30, 31] 0.850 0.680

Vermeltfoort [32, 33] 0.747 0.598

Min 0.700 0.560

Max 1.100 0.880

Figure 7shows proportion–proportion plots (PP-plots) for some investigated distribution functions. The empirical cumulative proportion is plotted against the hypothetical cumulative proportion. The straight line is added as a reference line. The further the points vary from this line, the greater the indication of departures from the designated distribution. Table 7shows the results of the goodness of fit tests for different distribution functions.

Fig. 7 PP-plots of different distribution functions

Table 7 KS-distances, AD-values and χ2-values for different distribution functions

PDF KS AD χ2

Normal 0.05884 1.6669 16.827

Lognormal 0.07429 2.3188 26.802

Gamma 0.06551 1.8732 22.899

Weibull 0.07256 4.4672 10.128

Gumbel max 0.11476 6.147 39.993

All probabilistic models can represent the lower and upper tail behaviour of the observed data, except Weibull where the points of lower tail are above the reference line. This indicates shorter than Weibull tails, i.e. less variance than expected. Further, a comparison between the median area and the remaining distributions shows that the slightest deviations arise for Normal and Lognormal distributions. This is in correlation with the applied goodness of fit tests.

6Conclusions

As a part of the SEISMID research project, several tests on masonry were carried out. In this case, the focus was on testing the shear behaviour of masonry triplets under different conditions according to EN 1052-3. Additional tests on bricks and mortar were carried out to determine the basic material properties.

To estimate possible influences on the shear behaviour of masonry, two different groups of shear triplets were built and tested under different normal stress levels. The two groups (A and B) differed in terms of compressive strength of mortar (f m,A = 3.58 MPa and f m,B= 0.22 MPa). The evaluation of the test results show that the shear behaviour can be described by the Mohr–Coulomb friction law. Hence, the initial shear strength f vko and the coefficient of friction μk were determined. When compared to the values according to EC 6, some agreement can be seen, but also some values which are not in agreement.

In the case of specimen group A, the mean value of the initial shear strength from testing (0.210 MPa) is very consistent with the suggested normative value (0.200 MPa). In case of group B, there is no consistency between the values from testing (0.027 MPa) and EC 6 (0.100 MPa). This inconsistency is mainly due to the mortar mixture in that the mortar of group B contains no cement and just a small amount of lime (compare Table 1). Hence, no significant initial shear strength between mortar joints and bricks can be developed.

The evaluation of the characteristic value of initial shear strength according to EN 1052-3 results in f vko= 0.168 MPa for mortar group A and f vko= 0.010 MPa for mortar group B. If the evaluation is based on 5% fractiles of a Lognormal distribution the values results in f vko = 0.174 MPa for mortar group A and f vko = 0.014 MPa for mortar group B. As can be seen there are no significant differences of the calculated values. This indicates that both evaluation procedures are suitable to derive characteristic values from experimental test results.

The comparison of the coefficient of friction shows a gap between the test results and

the value according to EC 6. The normative value for the coefficient of friction is suggested to be 0.400. The experimental data show that the percentage of normal stress on the shear strength amounts μ = 0.709 in case of group A and μ = 0.643 in case of group B, based on mean values. The evaluation of the characteristic value of coefficient of friction according to EN 1052-3 results in μk = 0.566 for mortar group A and μk= 0.514 for mortar group B. If the evaluation is based on 5% fractiles of a Lognormal distribution the values results in μk= 0.624 for mortar group A and μk = 0.623 for mortar group B. As can be seen there are differences of the calculated values. This indicates that the evaluation procedure according to EN 1052-3 procedure is more conservative because mean values are multiplied by the factor 0.8 to derive characteristic values but any additional information of test results are neglected. These additional information are accounted by the statistical approach. In addition, the literature review shows that the normative value for the coefficient of friction is too low.

The choice of a probabilistic model plays an important role for a probabilistic based design approach and reliability assessment. In this work different statistical distribution functions were considered in order to critically analyze the coefficient of friction of masonry. Hence, two- and three-parameter distributions were used. The data set for the statistical distribution fitting was collected from both literature and laboratory tests.

Based on the set of strength data and using several statistical criteria, like KS-test, χ2-test and AD-procedure, the Normal and Lognormal distributions appear to be more appropriate than the others. A further result is that all distributions, except Weibull, show an accurate tail behaviour in the lower as well as the upper bound. It is also reflected in the PP-plots. This is important since the sensitivity to the tail behaviour is particularly useful in structural engineering approaches and reliability.

The overall conclusion from these investigations it is that the friction property of bricks should be characterized using a Lognormal distribution. Since the coefficient of friction is a low value (close to 0), the Lognormal distribution should be preferred over the Normal because its domain is limited to zero or a certain bound (γ > 0) wh ile the domain of a Normal distribution is between and

The assessment of existing structures is becoming more and more important for social and economical reasons, while most codes deal explicitly only with design situations of new structures. The assessment of an existing structure may, however, differ much from the design of a new one. In general, the safety assessment of an existing structure differs from that of a new one in a number of aspects, see Diamantidis [34] and Vrouwenvelder [35]. The main differences are: (1) Increasing safety levels usually involves more costs for an existing structure than for structures that are still in the design phase. The safety provisions embodied in safety standards have also to be set off against the cost of providing them, and on this basis improvements are more difficult to justify for existing structures. For this reason and under certain circumstances, a lower safety level is acceptable. (2) The remaining lifetime of an existing building is often less than the standard reference period of 50 or 100 years

that applies to new structures. The reduction of the reference period may lead to reductions in the values of representative loads as for instance indicated in the Eurocode for Actions.

Therefore the safety philosophy for existing structures must be discussed with respect to the reliability levels in terms of the β-values for (a) new structures, and (b) for existing structures and with respect to monitoring and inverse analysis concepts [36, 37].

Required β-values must be derived for masonry structures and anchored in code specifications such as ISO 13822 ―Assessment of existing structures‖ [38] or EC 8 part 3 ―Assessment and retrofitting of buildings‖ [39].

Acknowledgments Research results discussed in this paper were carried out within the European research project SEISMID, supported and financed in cooperation with the Centre for Innovation and Technology (ZIT). We also wish to thank Mr. Walter Brusatti (Brusatti GmbH) for providing bricks and further Mr. Johann Lang from the College of Civil Engineering (HTBL Krems) Austria, for his efficient help during testing in the laboratory.

References

1. EN-1996-1-1 (2006) Eurocode 6: Design of masonry structures—part 1-1: common rules for reinforced and unreinforced masonry structures

2. EN-1052-3 (2007) Methods of test for masonry—part 3: determination of initial shear strength

3. Tomazevic M (2008) Shear resistance of masonry walls and eurocode 6: shear versus tensile strength of masonry. Mater Struct 42:889–907

4. EN-772-16 (2005) Methods of test for masonry units—part 1: determination of dimensions

5. EN-772-1 (2000) Methods of test for masonry units—part 1: determination of compressive strength

6. Zimmermann T, Strauss A, Bergmeister K (2010) Numerical investigations of historic masonry walls under normal and shear load. Constr Build Mater 24:1385–1391

7. EN-1015-11 (2007) Methods of test for mortar for masonry—part 11: determination of flexural and compressive strength of hardened mortar

8. Edgell G (2005) Testing of ceramics in construction. Whittles Publishing Ltd.,

Stoke-on-Trent

9. Hofmann P, Stoeckl S (1986) Tests on the shear-bond behaviour in the bed-joints of masonry. Mason Int 9:1–15

10 . Riddington J, Fong K, Jukes P (1997) Numerical study of failure initiation in different joint shear tests. Mason Int 11:44–50

11 . Van der Pluijm R (1993) Shear behavior of bed joints. In: Proceedings of 6th North American masonry conference, 7–9 June 1993

12 . Hamid A, Drysdale R, Heidebrecht A (1979) Shear strength of concrete masonry joints. J Struct Div ASCE 105:1227–1240

13 . Abdou L, Ami Saada R, Meftha F (2006) Experimental investigations of the joint mortar behavior. Mech Res Commun 33:370–384

14 . Popal R, Lissel S (2010) Numerical evaluation of existing mortar joint shear tests and a new test method. In: Proceedings of 8th international masonry conference, 4–7 July 2010

15 . Jukes P, Riddington J (1997) A review of masonry joint shear strength test methods. Bull Br Mason Soc Mason Int 11:37–43

16 . Stoeckl S, Hofmann P, Mainz J (1990) A comparative finite element evaluation of mortar joint shear tests. Mason Int 3:101–104

17 . B-1996-1-1 (2006) Eurocode 6: design of masonry structures—part 1-1: common rules for reinforced and unreinforced masonry structures; national annex

18 . Kundu D, Raqab M (2005) Generalized rayleigh distribution: different methods of estimations. Comput Stat Data Anal 49:187–

200

19 . Kundu D, Raqab M (2009) Estimation of r= p(y< x) for three-parameter weibull distribution. Stat Probab Lett 79:1839

–1846

20 . Misra N, Choudhary PK, Dhariyal ID, Kundu D (2002) Smooth estimators for estimating order restricted scale parameters of two gamma distributions. Metrika 56:143

–161

21

.

Amadio C, Rajgelj S (1991) Shear behaviour of brick-mortar joints. Mason Int 5:19–22

22 . Benjamin J, Williams H (1958) The behaviour of one-story brick shear walls. J Struct Div ASCE 84:1–30

23

.

Chin WJ (1972) Shear resistance of masonry walls. PhD thesis, University of London

24 . Ghazali M, Riddington J (1986) Shear strength of brickwork. In: Proceedings of 1st East Asian conference on structural engineering and construction

25 . Hegemeir G, Arya S, Krishnamoorthy G, Nachbar W, Furgerson R (1978) On the behaviour of joints on concrete masonry. In: Proceedings of North American masonry conference

26 . Jukes P (1997) An investigation into the shear strength of masonry joints. PhD thesis, University of Sussex

27 . Khalaf F (1995) Simple bending test for the determination of masonry bond shear strength. In: Proceedings of 4th international masonry conference, London

28 . Page A (1988) Influence of material properties on the behaviour of brick masonry shear walls. In: Proceedings of 8th international brick/block masonry conference, Dublin, Ireland

29 . Sinha B, Hendry A (1966) Further investigations of bond tension, bond shear and the effect of precompression on shear strength of model brick masonry couplets. The British Ceramic Reasearch Association, note 40

30 . Van der Pluijm R (1992) Material properties of masonry and its components under tension and shear. In: Proceedings of 6th Canadian masonry conference, 15–17 June 1992

31 . Van der Pluijm R (1995) Numerical evaluation of bond tests on masonry. Mason Int 9:16–24

32 . Vermeltfoort A (2010) Variation in shear properties of masonry. In: Proceedings of 8th international masonry conference, 4–7 July 2010

33 . Vermeltfoort A, Martens D (2009) Variation in mechanical properties of mortar and masonry. In: Proceedings of 11th Canadian masonry symposium, 31 May–3 June 2009

34 . RILEM-TC (2001) Reliability analysis principles. In: Diamantidis D (ed) Report rep032: probabilistic assessment of existing structures—JCSS Report. RILEM Publications SARL, Bagneux, pp 133–162

35 . Vrouwenvelder A (1996) Evaluation of existing structures, item codification. In: IABSE congress, Copenhagen, June

36

.

Strauss A, Frangopol D, Kim S (2008) Use of monitoring extreme data for the performance prediction of structures: Bayesian updating. Eng Struct 30:3654–3666

37

.

Hoffmann S, Wendner R, Strauss A, Steinhauser W (2009) Aifit —user oriented identification for engineering structures —field test. Beton- und Stahlbetonbau 104:113–

120

38

.

ISO-13822 (2010) Bases for design of structures —assessment of existing structures

39

. EN-1998-3 (2005) Eurocode 8: design of structures for earthquake resistance —part 3: assessment and retrofitting of buildings 砌体表面的低强度与普通强度的砂浆面的结构性能 托马斯·齐默尔曼 1 ,阿尔弗雷德·施特劳斯 1

和康拉德·Bergmeister 1 (1)

大学结构工程研究所,自然资源和生命科学,彼得-乔丹82大街,奥地利维也纳,

1190

ThomasZimmermann (通讯作者)

电子邮件:Zimmermann.Thomas @ boku.ac.at

KonradBergmeister

电子邮件: Konrad.Bergmeister @ boku.ac.at

收稿日期:2011 年4月12日 接受日期:2011 年8月29日 线上发表于:2011 年11月8日 摘要 砌体建筑物是基于许多世纪以来的经验。尽管这一设计被广泛使用,但是了解到的关于砌体材料的性能依然存在不确定性。这些结构在抗震中的安全性更是一个复杂的挑战。比如,它取决于结构的抗力、地震活动和许多不确定的细部结构。其中最关键的受力因素便是砌体的剪力。按照EN 1015 - 11对砂浆棱柱进行一系列的试验,在不同强度的砂浆下,测得砌体的抗弯和抗压强度。在接下的试验中,按照EN1052-3测得砌体的标准抗剪强度。进行三轴剪切试验,得出在AlfredStrauss 电子邮件:Alfred.Strauss @ boku.ac.at

不同砂浆强度下砌体的抗剪强度。此外,对于砂浆棱柱试验和三轴剪切试验,都采用了描述性统计参数进行计算。更有人企图作进一步的尺寸和随机评估的概率分布描述来进行数据收集。

关键词剪切强度-摩擦系数-旧砖石

1引言

砌体是一种典型的承压型建筑材料,但其剪切强度和抗弯承载力较低。这使得无筋砌体建筑十分有必要进行力学性能的分析,特别是对老旧的砌体建筑,以及进行合适的评估、分析和改造。

通常的设计和规范都特定采用欧洲标准(EC)。对于砌体结构,规范和设计方面的规定采用EC6[1]。极限状态分为三种情况:1.砌体竖向承载极限状态,2砌体剪切承载极限状态;3砌体抗弯承载极限状态。其中起控制因素的是抗剪承载力和抗弯承载力,尤其是在无筋砌体结构中。而主要的水平荷载是由风荷载或地震作用引起的。

关于材料在水平荷载下的参数可以分为两种:第一类直接影响的是应力,例如能量耗散和人为因素。第二种类型直接影响的是抗侧,例如抗剪、抗拉强度、剪切模量。根据欧共6规范知,抗剪强度设计值取决于初始抗剪强度、摩擦系数以及几何参数。按照EN 1052 - 3[2]进行试验得出,用这两种材料参数表征砌体性能是可行的。进一步的可以定义剪切强度:砌体发生剪切破坏时的强度。因此,在广泛的研究的基础上可以发现(在Tomazevic[3]),破坏集中发生在砖和砂浆材料的分界面上。

在试验的过程中采用的是先进的EN 1052 - 3试验方法,测得的砌体的抗剪强度没有区分砌体的新旧。因此两个样本布局都可以使用,最小的实际样本由两个砖单元和一个砂浆层组成,而第二样本有三个砖单位和两个砂浆层。在试验老砌体的试验中,第二样本布局比较合适,因为进一步采用了对称在加载的方式,更加容易实现规范要求。

本文中阐述的试验过程重点针在不同性质的砂浆对老旧的砌体结构的影响。试验的结果在采用了假设的材料强度,并结合广泛文献资料的基础上,进行了阐述。2材料特性

2.1砖

剪切试样只采用一种古老的、固体砌体砖,见图1。这种砖是从十九世纪维也

纳典型的房子采集的。砖块的平均尺寸是L / B / H = 29.12 / 14.13/7.05厘米。根据EN 772 - 16[4]测量尺寸。基于获得最小的长度和宽度尺寸,砖被切割以为砖和砂浆提供一致的界面层。砖块的最后的维度是L = 25厘米,B = 12厘米。砖的高度保持不变。砖的干密度是q= 1467公斤/立方米。

压缩强度 f B是获得符合EN 772-1 [ 5 ]抗压强度平均值,即在F B = 19.28MPa。

图1旧实心粘土砖,用于剪切试验

2.2砂浆

要确定砖和砂浆之间的初始抗剪强度,而采用一种由低强度的、纯净的砂组成的混合砂浆。选择两组由四组几乎有相同的特点的砂浆组成的砌体,为砌体墙的抗剪试验提供可比性,这是一个非常低的强度砂浆。这些砌体墙的剪切试验已经进行了记录[ 6]。在一个试验中,对包含了四种不同的混合砂浆的砂浆棱柱(尺寸为40×40×160毫米)进行了试验,获得抗压强度,F m和抗弯强度,F米,

表1显示了所有四种砂浆混合物的成分。

FL。

表1调查砂浆混合物,单位:克

混合一混合二混合三混合四

CEM32.5 1000 1500 2000 0

石灰400 400 400 400

岩粉1200 1200 1200 0

《土木工程专业英语》段兵延第二版全书文章翻译精编版

第一课 土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。他们建造供水和废水处理厂,设计空气净化器和其他设备以最小化甚至消除由工业加工、焚化及其他产烟生产活动引起的空气污染。他们也采用建造特殊倾倒地点或使用有毒有害物中和剂的措施来控制有毒有害废弃物。此外,工程师还对垃圾掩埋进行设计和管理以预防其对周围环境造成污染。

土木工程专业英语词汇(整理版)

第一部分必须掌握,第二部分尽量掌握 第一部分: 1 Finite Element Method 有限单元法 2 专业英语Specialty English 3 水利工程Hydraulic Engineering 4 土木工程Civil Engineering 5 地下工程Underground Engineering 6 岩土工程Geotechnical Engineering 7 道路工程Road (Highway) Engineering 8 桥梁工程Bridge Engineering 9 隧道工程Tunnel Engineering 10 工程力学Engineering Mechanics 11 交通工程Traffic Engineering 12 港口工程Port Engineering 13 安全性safety 17木结构timber structure 18 砌体结构masonry structure 19 混凝土结构concrete structure 20 钢结构steelstructure 21 钢-混凝土复合结构steel and concrete composite structure 22 素混凝土plain concrete 23 钢筋混凝土reinforced concrete 24 钢筋rebar 25 预应力混凝土pre-stressed concrete 26 静定结构statically determinate structure 27 超静定结构statically indeterminate structure 28 桁架结构truss structure 29 空间网架结构spatial grid structure 30 近海工程offshore engineering 31 静力学statics 32运动学kinematics 33 动力学dynamics 34 简支梁simply supported beam 35 固定支座fixed bearing 36弹性力学elasticity 37 塑性力学plasticity 38 弹塑性力学elaso-plasticity 39 断裂力学fracture Mechanics 40 土力学soil mechanics 41 水力学hydraulics 42 流体力学fluid mechanics 43 固体力学solid mechanics 44 集中力concentrated force 45 压力pressure 46 静水压力hydrostatic pressure 47 均布压力uniform pressure 48 体力body force 49 重力gravity 50 线荷载line load 51 弯矩bending moment 52 torque 扭矩 53 应力stress 54 应变stain 55 正应力normal stress 56 剪应力shearing stress 57 主应力principal stress 58 变形deformation 59 内力internal force 60 偏移量挠度deflection 61 settlement 沉降 62 屈曲失稳buckle 63 轴力axial force 64 允许应力allowable stress 65 疲劳分析fatigue analysis 66 梁beam 67 壳shell 68 板plate 69 桥bridge 70 桩pile 71 主动土压力active earth pressure 72 被动土压力passive earth pressure 73 承载力load-bearing capacity 74 水位water Height 75 位移displacement 76 结构力学structural mechanics 77 材料力学material mechanics 78 经纬仪altometer 79 水准仪level 80 学科discipline 81 子学科sub-discipline 82 期刊journal ,periodical 83文献literature 84 ISSN International Standard Serial Number 国际标准刊号 85 ISBN International Standard Book Number 国际标准书号 86 卷volume 87 期number 88 专著monograph 89 会议论文集Proceeding 90 学位论文thesis, dissertation 91 专利patent 92 档案档案室archive 93 国际学术会议conference 94 导师advisor 95 学位论文答辩defense of thesis 96 博士研究生doctorate student 97 研究生postgraduate 98 EI Engineering Index 工程索引 99 SCI Science Citation Index 科学引文索引

土木工程专业英语论文.doc

Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword: Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and

土木工程专业英语原文及翻译

土木工程专业英语原文 及翻译 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

08 级土木(1) 班课程考试试卷 考试科目专业英语 考试时间 学生姓名 所在院系土木学院 任课教师 徐州工程学院印制 Stability of Slopes Introduction Translational slips tend to occur where the adjacent stratum is at a relatively shallow depth below the surface of the slope:the failure surface tends to be plane and roughly parallel to the slips usually occur where the adjacent stratum is at greater depth,the failure surface consisting of curved and plane sections. In practice, limiting equilibrium methods are used in the analysis of slope stability. It is considered that failure is on the point of occurring along an assumed or a known failure surface.The shear strength required to maintain a condition of limiting equilibrium is compared with the available shear strength of the soil,giving the average factor of safety along the failure surface.The problem is considered in two dimensions,conditions of plane strain being assumed.It has been shown that a two-dimensional analysis gives a conservative result for a failure on a three-dimensional(dish-shaped) surface. Analysis for the Case of φu =0 This analysis, in terms of total stress,covers the case of a fully saturated clay under undrained conditions, . For the condition immediately after construction.Only moment equilibrium is considered in the analysis.In section, the potential failure surface is assumed to be a circular arc. A trial failure surface(centre O,radius r and length L a where F is the factor of safety with respect to shear strength.Equating moments about O:

(完整版)土木工程专业英语常用词汇

Part IV:Commonly Used Professional Terms of Civil Engineering development organization 建设单位 design organization 设计单位 construction organization 施工单位 reinforced concrete 钢筋混凝土 pile 桩 steel structure 钢结构 aluminium alloy 铝合金 masonry 砌体(工程)reinforced ~ 配筋砌体load-bearing ~ 承重砌体unreinforced ~非配筋砌体 permissible stress (allowable stress) 容许应力plywood 胶合板 retaining wall 挡土墙 finish 装修 finishing material装修材料 ventilation 通风 natural ~ 自然通风 mechanical ~ 机械通风 diaphragm wall (continuous concrete wall) 地下连续墙 villa 别墅 moment of inertia 惯性矩 torque 扭矩 stress 应力normal ~ 法向应力shear ~ 剪应力 strain 应变 age hardening 时效硬化 air-conditioning system空调系统 (air) void ration(土)空隙比 albery壁厨,壁龛 a l mery壁厨,贮藏室 anchorage length锚固长度 antiseismic joint 防震缝 architectural appearance 建筑外观 architectural area 建筑面积 architectural design 建筑设计 fiashing 泛水 workability (placeability) 和易性 safety glass安全玻璃 tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃 asphalt沥青 felt (malthoid) 油毡 riveted connection 铆接 welding焊接 screwed connection 螺栓连接 oakum 麻刀,麻丝 tee三通管 tap存水弯 esthetics美学 formwork 模板(工程) shoring 支撑 batching 配料 slipform construction (slipforming) 滑模施工 lfit-slab construction 升板法施工 mass concrete 大体积混凝土 terrazzo水磨石 construction joint 施工缝 honeycomb蜂窝,空洞,麻面 piled foundation桩基 deep foundation 深基础 shallow foundation浅基础 foundation depth基础埋深 pad foundation独立基础 strip foundation 条形基础 raft foundation筏基 box foundation箱形基础 BSMT=basement 地下室 lift 电梯electric elevator lift well电梯井 escalator 自动扶梯 Poisson’s ratio 泊松比μ Young’s modulus , modulus of elasticity 杨氏模量,弹性模量E safety coefficient 安全系数 fatigue failure 疲劳破坏 bearing capacity of foundations 地基承载力bearing capacity of a pile 单桩承载力 two-way-reinforcement 双向配筋 reinforced concrete two-way slabs钢筋混凝土双向板 single way slab单向板 window blind 窗帘sun blind wind load 风荷载 curing 养护 watertight concrete 防水混凝土 white cement白水泥 separating of concrete混凝土离折segregation of concrete mortar 砂浆~ joint 灰缝 pilaster 壁柱 fire rating耐火等级 fire brick 耐火砖 standard brick标准砖

土木工程专业英语正文课文翻译

第一课土木工程学 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。

土木工程专业英语

non-destructive test 非破损检验 non-load—bearingwall 非承重墙 non—uniform cross—section beam 变截面粱 non—uniformly distributed strain coefficient of longitudinal tensile reinforcement 纵向受拉钢筋应变不均匀系数 normal concrete 普通混凝土 normal section 正截面 notch and tooth joint 齿连接 number of sampling 抽样数量 O obligue section 斜截面 oblique—angle fillet weld 斜角角焊缝 one—way reinforced(or prestressed)concrete slab “单向板” open web roof truss 空腹屋架, ordinary concrete 普通混凝土(28) ordinary steel bar 普通钢筋(29) orthogonal fillet weld 直角角焊缝(61) outstanding width of flange 翼缘板外伸宽度(57) outstanding width of stiffener 加劲肋外伸宽度(57) over-all stability reduction coefficient of steel beam·钢梁整体稳定系数(58) overlap 焊瘤(62) overturning or slip resistance analysis 抗倾覆、滑移验算(10) P padding plate 垫板(52) partial penetrated butt weld 不焊透对接焊缝(61) partition 非承重墙(7) penetrated butt weld 透焊对接焊缝(60) percentage of reinforcement 配筋率(34) perforated brick 多孔砖(43) pilastered wall 带壁柱墙(42) pit·凹坑(62) pith 髓心(?o) plain concrete structure 素混凝土结构(24) plane hypothesis 平截面假定(32) plane structure 平面结构(11) plane trussed lattice grids 平面桁架系网架(5) plank 板材(65) plastic adaption coefficient of cross—section 截面塑性发展系数(58) plastic design of steel structure 钢结构塑性设计(56) plastic hinge·塑性铰(13) plastlcity coefficient of reinforced concrete member in tensile zone 受拉区混凝土塑性影响系数

土木工程专业英语常用词汇

土木工程专业英语常用 词汇 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Part IV:Commonly Used Professional Terms of Civil Engineering development organization 建设单位 design organization 设计单位 construction organization 施工单位 reinforced concrete 钢筋混凝土 pile 桩 steel structure 钢结构 aluminium alloy 铝合金 masonry 砌体(工程) reinforced ~ 配筋砌体load-bearing ~ 承重砌体 unreinforced ~非配筋砌体 permissible stress (allowable stress) 容许应力plywood 胶合板 retaining wall 挡土墙 finish 装修 finishing material装修材料 ventilation 通风 natural ~ 自然通风 mechanical ~ 机械通风 diaphragm wall (continuous concrete wall) 地下连续墙 villa 别墅 moment of inertia 惯性矩torque 扭矩 stress 应力 normal ~ 法向应力 shear ~ 剪应力strain 应变 age hardening 时效硬化 air-conditioning system空调系统 (air) void ration(土)空隙比 albery壁厨,壁龛 a l mery壁厨,贮藏室 anchorage length锚固长度 antiseismic joint 防震缝 architectural appearance 建筑外观architectural area 建筑面积 architectural design 建筑设计 fiashing 泛水 workability (placeability) 和易性 safety glass安全玻璃 tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃 asphalt沥青 felt (malthoid) 油毡 riveted connection 铆接 welding焊接 screwed connection 螺栓连接

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原 文及对照翻译 Newly compiled on November 23, 2020

Civil Engineering Civil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities. 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities. 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 The word civil derives from the Latin for citizen. In 1782, Englishman John Smeaton used the term to differentiate his nonmilitary engineering work from that of the military engineers who predominated at the time. Since then, the term civil engineering has often been used to refer to engineers who build public facilities, although the field is much broader 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 Scope. Because it is so broad, civil engineering is subdivided into a number of technical specialties. Depending on the type of project, the skills of many kinds of civil engineer specialists may be needed. When a project begins, the site is surveyed and mapped by civil engineers who locate utility placement—water, sewer, and power lines. Geotechnical specialists perform soil experiments to determine if the earth can bear the weight of the project. Environmental specialists study the project’s impact on the local area: the potential for air and

土木工程专业英语词汇汇总

A Type Wooden Ladder A字木梯 A-frame A型骨架 A-truss A型构架 Abandon 废弃 Abandoned well 废井 Aberration of needle 磁针偏差Abnormal pressure 异常压力abnormally high pressure 异常高压Abort 中止 abrasion 磨损 Abrasion surface 浪蚀面 abrasive cut-off machine 磨切机Abrasive Cutting Wheel 拮碟abrasive grinding machine 研磨机Abrasive Grinding Wheel 磨碟abrasive particle 磨料颗粒 Absolute address 绝对地址Absolute altitude 绝对高度Absolute damping 绝对阻尼Absolute deviation 绝对偏差Absolute flying height 绝对航高Absolute gravity 绝对重力 absolute permeability 绝对渗透率absolute porosity 绝对孔隙率absolute temperature 绝对温度absorbability 吸收性;吸附性absorption 吸收 abutment 桥墩 abutting end 邻接端 acceleration 加速 acceleration lane 加速车道Acceleration of gravity 重力加速度acceleration pedal 加速器踏板accelerator 催凝剂;加速器;催化剂acceptance criteria 接受准则 access 通路;通道 access door 检修门;通道门access lane 进出路径 access panel 检修门 access point 入口处;出入通道处access ramp 入口坡道;斜通道access road 通路;通道 access shaft 竖井通道 access spiral loop 螺旋式回旋通道access staircase 通道楼梯 access step 出入口踏步 access tunnel 隧道通道 accessible roof 可到达的屋顶accessory 附件;配件accident 事故;意外 accidental collapse 意外坍塌 accommodate 装设;容纳 accredited private laboratory 认可的私 人实验室 accumulator 储压器;蓄电池 accuracy limit 精度限制 acetylene cylinder 乙炔圆筒 Acetylene Hose 煤喉 Acetylene Regulator 煤表 acid plant 酸洗设备;酸洗机 acid pump 酸液泵 acid tank 酸液缸 acidic rock 酸性岩 acoustic couplant 声耦合剂 acoustic coupler 声音藕合器;音效藕 合器 acoustic lining 隔音板 acoustic screen 隔声屏 Acoustic wave 声波 acrylic paint 丙烯漆料(压克力的油漆) acrylic sheet 丙烯胶片(压克力的胶片) active corrosion 活性腐蚀 active earth pressure 主动土压力 active fault 活断层 active oxidation 活性氧化 actual plot ratio 实际地积比率 actuator 促动器;唧筒;激发器 adapt 改装 adaptor 适配器;承接器;转接器; addition 增设;加建 additional building works 增补建筑工 程 additional horizontal force 额外横向力 additional plan 增补图则(附加的平面 图) additional vent 加设通风口 additive 添加剂 Address 地址 adhesive 黏结剂;胶黏剂 adhesive force 附着力 Adhesive Glue 万能胶 Adhesive Reflective Warning Tape 反 光警告贴纸 adit 入口;通路;坑道口 adjacent construction 相邻建造物 adjacent level 相邻水平 adjacent site 相邻基地 adjacent street 相邻街道 adjoining area 毗邻地区 adjoining building 毗邻建筑物 adjoining land 毗邻土地 adjoining structure 毗邻构筑物 adjustable 可调校 Adjustable Wrench Spanner 昔士 adjuster 调节器 adjustment 调校;调整 Administrative Lawsuit 行政诉讼 Administrative Remedy 行政救济 admixture 掺合剂;外加剂 advance directional sign 前置指路标 志;方向预告标志 advance earthworks 前期土方工程 advance warning sign 前置警告标志 advance works 前期工程 aeration 曝气 aeration tank 曝气池 aerial 天线 Aerial mapping 航空测图 aerial photograph 航测照片 Aerial photography 航照定位 aerial rapid transit system 高架快速运 输系统 aerial ropeway 高架缆车系统 aerial view 鸟瞰图 aerofoil 翼型 aerosol 悬浮微粒;喷雾 aerosphere 大气圈 affix 贴附 aftercooler 后冷却器 afterfilter 后过滤器 aftershock 余震 agent 作用剂;代理人 aggradation 堆积 aggregate 骨材;集料;碎石 aggregate area 总面积 aggregate grading 骨材级配 aggregate superficial area 表面总面积 aggregate usable floor space 总楼地板 空间 agitator 搅拌器;搅动机 air bleeding 放气(空气渗出) air blower 鼓风机 air brake 气压制动器 Air chambor 气室 air circuit 空气回路 air circuit breaker 空气断路器 air cleaner 空气滤清器

土木工程专业英语(苏小卒版)翻译.

第一单元 Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration. 从根本上,工程是一个以最终产品为导向的行业,它具有创新、成本意识,同时也注意到人为因素。它与创建新的实体、设备或解决方案有关:新工艺、新材料、一个改进的动力来源、任务的一项更有效地安排,用以完成所需的目标或创建一个新的结构。工程是也不仅仅关心获得经济的解决方案。最终,人类安全才是一个最重要的考虑因素。 Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process. 工程关心的是,使用抽象的科学方法思考和定义现实世界的问题。理想化的使用和发展建立可以确定行为的边界的程序,是过程的一部分。 Many problems, by their very nature, can’t be fully described—even after the fact, much less at the outset. Yet acceptable engineering solutions to these problems must be found which satisfy the defined needs. Engineering, then, frequently concerns the determination of possible solutions within a context of limited data. Intuition or judgment is a key factor in establishing possible alternative strategies, processes, or solutions. And this, too, is all a part of engineering. 很多的问题,就其本身的性质而言,不能完全被描述——即使这一事实,在其开始之前。然而还必须找到对于这些问题可接受的工程解决方案,来满足预定的需求。直觉或判断是建立可能的替代策略、流程或解决方案的关键因素。。而这也是工程的一部分。 Civil engineering is one of the most diverse branches of engineering. The civil engineer plans, designs, constructs, and maintains a large variety of structures and facilities for public, commercial and industrial use. These structures include residential, office, and factory buildings; highways, railways, airports, tunnels, bridges, harbors, channels, and pipelines. They also include many other facilities that are a part of the transportation systems of most countries, as well as sewage and waste disposal systems that add to our convenience and safeguard our health. 土木工程是工程的最多样化的分支机构之一。土木工程师计划、设计、施工,和维护大量的结构和公共、商业和工业使用的设施。这些结构包括住宅,办公室和工厂大厦;公路、铁路、机场、隧道、桥梁、港口、渠道和管道。在其他大多数的国家它们还包括运输系统许多其他设施,以及将为我们的生活带来便利的和维护我们的健康污水及废物处理系统。 The term “civil engineer” did not come into use until about 1750, when John

相关主题