搜档网
当前位置:搜档网 › 软件无线电的主要原理及技术

软件无线电的主要原理及技术

软件无线电的主要原理及技术
软件无线电的主要原理及技术

软件无线电的主要原理及技术

嘉兆科技

本文主要介绍了软件无线电的概念、主要原理、关键技术及在生活中的广泛应用。它是以开放性、标准化、模块化、通用性、可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。首先介绍了软件无线电的理论基础,即带通采样理论,多速率处理信号技术,高效信号滤波,数字正交变换理论,这些都是软件无线电实现的理论基础,然后是其关键技术,宽带智能天线技术,A/D转换技术,数字上/下变频技术,数字信号处理部分,这些技术是实现软件无线电的关键和核心所在。最后,对其应用领域也进行了描述,指出其在个人移动通信,军事通信,电子站,雷达和信息加电中的巨大潜力。

软件无线电这个术语最早是美军为了解决海湾战争中多国部队各军种进行联合作战时遇到的互通互操作问题而提出的新概念。陆,海,空三军简单就工作频段来分,解决了互不干扰问题,但三军联合作战时互通,互联,互操作问题难以解决,于是1992年提出了软件无线电的最初设想,并于1995年美国国防高级研究计划局提出了SPEAKEASY计划,称之为易通话计划,其最终目的是开发一种能适应联合作战要求的三军统一的多频段,多模式电台,即MBMMR电台。进而实现联合战术无线电系统(简称JTRS),它是在MBMMR的基础上提出的一种战术通信系统。

软件无线电以开放性,标准化,模块化,通用性,可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,实现各种无线电功能,选用不同软件可实现不同功能,软件可以升级更新,硬件也可像计算机升级换代,可称为超级计算机。它是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。

理想软件无线电的结构框图:

一、软件无线电的理论基础

?采样理论:由于软件无线电所覆盖的频率范围一般都要求比较宽,例如从0.1MHZ到2.2GHZ,只有具有这么宽的频段才能具有广泛的适应性。对于如此宽的频带采用Nyquist低通采样所需的采样速率至少要大于4.4GHZ,在目前很不实际。所以无法使用Nyquist采样定理,而必须采用带通采样。一种接近理想化的软件无线电设计方案称为射频直接带通采样软件无线电体制,在天线与A/D间只存在跟踪滤波器和放大器,与软件无线电所要求的A/D 尽可能靠近天线的设计宗旨完全一致。

?多速率信号处理:带通采样定理大大降低了所需的射频采样速率,但从软件无线电的要求来看,带通采样带宽应越宽越好,对信号有更宽的适应性,这样就应当使采样速率尽可能地宽。然而又会导致后续的信号处理速度跟不上,因此要对A/D后的数据流进行降速处理。抽取和内插是最基本最重要的基本理论,对于软件无线电的研究及数字下/上变频器的实现有重大作用。

整数倍抽取是把原始采样速序列x(n)每隔(D-1)个数据抽取一个,形成一个新序列xD(m),即xD(m)=x(mD),这样经过抽取的数据流速率只有后者的D分之一,显然大大降低了对后处理速度的要求,也提高了频域分辨率。这是软件无线电接收机的理论基础。

整数倍内插是在两个原始抽样点之间插入(I-1)个零值,也形成一个新序列xI(m),即xI(m)=x(m/I),经过内插大大提高了时域分辨率,也可以用来提高输出信号的频率。显然内插器起到了上变频作用。它是软件无线电发射机的理论基础。

整数倍抽取和内插都只是频率变换的一种特殊情况,实际中往往用到分数倍变换,它可通过先进行I倍内插,再进行D倍抽取来实现。(注意必须内插在前,以免引起信号失真)。

?高效数字滤波:实现取样速率变换的主要问题是如何实现抽取前或内插后的数字滤波。FIR滤波器相对与IIR滤波器有许多独特优越性,线性相位,稳定性等。可采用窗函数法来设计,简单,直观,但滤波性能不是最佳。也可采用最佳滤波器的设计。半带滤波器适合于实现D=2的M幂次方倍的抽取或内插,计算效率也高实时性高。而在实际的抽取系统中抽取因子D往往不是2的M幂次方,此时可以积分梳状滤波器和半带滤波器结合起来使用。?数字正交变换理论:对一个实信号进行正交变换而用一个复解析信号来表示是因为从解析信号很容易获得三个特征参数:瞬时幅度,瞬时相位和瞬时频率,它们是信号分析,参数测量或识别解调的基础。窄带信号可用解析信号和基带信号表示,对于要满足高虚假抑制的要求,可采用数字正交混频的方法实现,即先对模拟信号x(t)通过A/D 采样数字化形成数字序列x(n),然后与两个正交本振序列cos(w0n)和sin(w0n)相乘,再通过数字低通滤波器来实现。在采样速率很高时,对后续的数字低通滤波实现较困难。还可以采用基于多相滤波的数字正交变换,需用到抽取和内插理论。

二、软件无线电中的关键技术

●宽频段智能天线技术

软件无线电要求接收机从天线接收的应该是宽频带信号,同时,由于射频信号的高频率,使得信号干扰成为严重问题,为获取宽带信号和减少干扰,使用宽带智能天线成为最好的选择。由于频谱资源的缺乏,提出了从空域来提高频谱利用率的想法,对位于不同空域的用户分配相同的时间,频率和伪码,通过电磁信号的空间隔离来消除用户之间的干扰。智能天线就是在这种想法下提出的一种新型天线系统通过对多个天线阵元输出的信号进行幅相加权获得所需的天线波束指向来实现空间分离。基于软件无线电的智能天线包括单信道智能天线,多信道智能天线和信道化智能天线。它们的核心和理论基础是波束形成法。

●A/D技术

软件无线电体系结构的一个重要特点是将A/D和D/A尽量靠近射频前端,为减少模拟环节,在较高的中频乃至射频信号进行数字化,要求A/D具有适中的采样速率和很高的工作带宽。A/D的工作过程大致可以分为采样,保持,量化,编码,输出等几个环节。在模数转换中,衡量A/D转换性能的指标有:A/D转换位数,位数越高,灵敏度越高;信噪比(SNR),提高采样频率或降低模拟信号带宽都可以提高A/D信噪比;无杂散动态(SFDR),反映

的是在A/D输入端存在大信号时,能检测出小信号的能力;有效转换位数(ENOB),信号越大,信号频率越低,所得到的转换位数越多;孔径误差,是由于模拟信号转换成数字信号需要一定的时间来完成采样,量化,编码等工作而引起的,可在其前加一个采样保持放大器,从而减少孔径误差。在软件无线电的设计中,A/D器件的选择应保证软件无线电功能和性能的实现,应遵循以下选取原则:

1、采样速率选择:若A/D之前的带通滤波器的矩形系数为r,为防止带外信号影响有用信号,应取采样速率fs≥2B’=2rB,允许过渡带混叠时,fs≥(r+1)B

2、采用分辨率好的A/D器件。分辨率主要取决于器件的转换位数和器件的信号输入范围,转换位数越高,信号输入范围越小,A/D的转换性能越好。

3、一般来说A/D转换位数越高越好。因为其转换位数越高,其动态范围越高。

4、根据环境条件选择A/D转换芯片的环境参数,其功耗尽可能的低。

5、根据接口特征考虑选择合适的A/D转换器输出状态。

●数字下/上变频器

数字下/上变频器主要是基于前面所述的抽取和内插理论。

数字下变频(DDC)和模拟下变频是一样的,就是输入信号与一个本地震荡信号的乘法运算。与模拟下变频相比,数字下变频的运算速度受DSP处理速度的限制,同时其运算速度决定了其输入信号数据流可达到的最高速率,相应也限定了ADC的最高采样率。数字下变频器的组成包括数字混频器,数字控制振荡器(NCO)和低通滤波器。NCO产生的本振信号输入到数字混频器与输入的信号进行混频。数字混频器就是一个乘法器,信号经混频后,输出到低通滤波器以滤除倍频分量和带外信号,然后进行抽取处理。由于下变频器工作原理较简单,可以很方便地利用FPGA或ASIC技术来设计实现。典型的数字下变频有功能强大的单信道DDC产品HSP50214B及四通道的HSP50216。

数字上变频(DUC)的主要功能是对输入数据进行各种调制和频率变换,即在数字域内实现调制和混频。典型的代表是只能进行单路数据调制的HSP50215和可进行四路数据调制的GC4114

●数字信号处理

数字信号处理器(DSP)是整个软件无线电方案的灵魂和核心所在。软件无线电的灵活性,开放性,兼容性等特点是通过以数字信号处理器为中心的通用硬件平台及DSP软件来实现的,从前端接收来的信号或将从功放发射出去的信号都要经过数字信号处理器的处理:或进行频谱分析,信号解调,信号类型识别,或进行信号的数字上下变频,或进行各种式样的数字调制,数字滤波,比特流的编码,译码,同步信号的获取等。软件无线电中的数字信号处理器除了能适应运算的高速度,高精度,大动态范围,大运算量外,还应具有高效率的结构和指令集,较大的内存容量,较低的功耗等特点。DSP的重要特点是其处理速度远远大于一般的微处理器,功能是快速实现各种运算,尤其在卷积,相关,滤波,FFT等应用要用到的乘法累加运算中更能发挥其作用。DSP的编程既可以用汇编语言又可以用C语言,极大地方便了其开发人员。目前的DSP在功能和性能上都还不能满足软件无线电的要求,可以采用多率信号处理技术对采样信号进行预处理后(即所谓的数字下变频器)然后再用DSP来完成各种功能,也可以用多个DSP芯片并行处理的方法来提高DSP的数据处理能力。

三、软件无线电的应用

●个人移动通信

软件无线电把硬件作为通信平台,使其尽可能脱离通信体制,信号波形以及通信功能,尽可能多地用软件来实现,可扩展性强,成为第三代移动通信的基石。把软件无线电技术应用到基站设计即软件无线电基站,它是一种多频段,多模式,多功能可扩展的“智能”基站,它根据不同时间,不同用户,选择最佳的工作频段,工作模式和与用户相适配的功能与用户进行信息交换,以极大地提高通信质量和服务质量。除此之外,它还可用于多频多模手机,这一技术具有极大地挑战性。

●军事通信

软件无线电最初是为了解决海湾战争中多国部队各军种进行联合作战时遇到的互通互操作问题而提出的新概念。1992年提出了软件无线电的最初设想,并于1995年美国国防高级研究计划局提出了SPEAKEASY计划,称之为易通话计划,其最终目的是开发一种能适应联合作战要求的三军统一的多频段,多模式电台,即MBMMR电台。进而实现联合战术无线电系统(简称JTRS),它是在MBMMR的基础上提出的一种战术通信系统。

●电子战

电子战的主要特点是频段宽,待处理的信号种类多,而目前的电子战系统往往是在已知或事先假设的几种信号样式下工作,一旦目标信号特征或通信方式发生变化,往往误失战机,所以研究一种工作频段宽,波形适应能力强,可扩展性好,既能适应通信信号,也能适应导航和敌我识别信号的综合电子战系统是现代信息战争的必然要求,软件无线电恰好是解决这一问题的最佳技术途径。软件化电子侦察接收机是基于软件无线电原理而实现的用于对目标信号进行分析识别,特征提取和参数测量,对通信信号还能解调信息的电子战侦察分析接收机,不仅能对各种通信信号侦察分析,也能对雷达信号,导航信号或是敌我识别信号进行侦察分析,是一种多频段,多模式,多功能的电子战接收机。

●雷达和信息加电

目前设计研究的雷达往往功能单一,体制单一,无法适应在不同的环境下对不同属性的目标进行智能化跟踪探测的需要。如果能把软件无线电的设计思想应用于雷达的设计研制,那么就能比较圆满地解决目前雷达设计所存在的问题。

进入20世纪90年代,以高清晰度电视(HDTV)为标志的第三代电视以其接近理想的视听效果和多功能,成为新一代数字电视的发展方向。但目前在信道编码(调制方式)上还没有统一的国际标准,而且随不同的传输媒介而不同。基于软件无线电的HDTV解决方案可以较好地解决HDTV面临的这些问题。

四、结束语

目前,人们对软件无线电的研究日趋深入细致,理论上已基本成熟,正处于实践阶段,由于软件无线电的灵活性,开放性等特点,它将成为未来通信乃至未来无线电的发展方向,不仅在军,民无线通信中获得应用,而且将在其他领域如电子战,雷达,信息化家电等领域得到推广。

软件无线电原理与应用思考题

《软件无线电原理与应用》思考题 第1章 概述 1. 软件无线电的关键思想 答:A/D 、D/A 尽量靠近天线 a) 用软件来完成尽可能多的功能 2. 软件无线电与软件控制的数字无线电的区别 答:软件无线电摆脱了硬件的束缚,在结构通用和稳定的情况下具有多功能,便于改进升级、互联和兼容。而软件控制的数字无线电对硬件是一种依赖关系。 3. 软件无线电的基本结构 答:书上第5页 第2章 软件无线电理论基础 1. 采样频率(fs)、信号中心频率(fo)、处理带宽(B)及信号的最低频率(f L )、最高频率(f H )之间的关系,最 低采样频率满足的条件 答:带通采样解决信号为(f L ~f H )上带限信号时,当f H 远远大于信号带宽B 时,若按奈奎斯特采样定理,其采样频率会很高,而采用带通信号则可以解决这一问题,其采样频率12n 4f 12n )f f (2f 0H L s +=++= ,n 取能满足2B f S ≥的最大正整数,B 2 12n f 0+=。 2. 频谱反折在什么情况下发生,盲采样频率的表达式 答:带通采样的结果是把位于(nB ,(n+1)B )不同频带上的信号都用位于(0,B )上相同的基带信号频谱来表示,在n 为奇数时,其频率对应关系是相对中心频率反折的,即奇数带上的高频分量对应基带上的低频分量,且低频高频对应高频分量。 盲区采样频率的表达式为: S Sm f 12n 22m f ++= m 取0,1,2,3……的盲区,当取n=m+1时,S Sm f )3 2m 11(f +-= 3. 画出抽取与内插的完整框图,所用滤波器带宽的选取,说明信号处理中为什么要采用抽取与内插, 抽取与内插有什么好处 答:抽取内插的框图见24页。其中抽取滤波器带宽D /π,内插滤波器带宽I /π。 图像

软件无线电技术

第四代移动通信技术之软件无线电技术 【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。 一、引言 软件无线电提供了一条满足未来个人通信需要的思路。软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。 图一、软件无线电原理框图 1 二、简介 软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。 1、WLAN与蓝牙融入广域网 近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。 日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。

无线控制授时技术(RCT)及其应用

无线控制授时技术(RCT) CT发射机及接收机技术原理、RCT编码技术以及RCT技术目前在各国的应用情况。给 关键词:无线控制授时 BPC WWCB MSF DFC JJY RCT 1C 情况正确的时间在人们日常生活中是不可或缺的。随着微处理器在家用电器、工业产品中的日益普及,许多产品中嵌入了时间处理、显示模块。目前多数产品中的时钟源由晶体振荡产生比较精确的时间。但是在许多场合,由于晶体振荡需要电源供给,在掉电或更换电池时,原有时间会丢失,系统时间被复位,此时必须依照广播、电视或电话公司提供的标准时间手工重新校对;另外在跨时区旅行时,也需要重新校对时间。这给人们带来许多不便。目前随着RCT技术的应用,使得需要标准时间的系统通过内嵌微型RCT接收装置自动设置标准时间,时间精度一般为秒级且与国家标准时间同步、无需手工调整。从而实现了计时装置计量时间和显示时间的精确性(与授时中心的标准时间同步)、统一性(所有接收该时间信号的计时装置都显示同一时间)。在RCT技术广泛应用之前,也有使用GPS(全球定位系统)接收标准时间的装置,但由于其电路复杂、成本高昂而没有得到普及。在北美及欧洲,由于RCT技术的普及,使得市场对具有自动接收时间功能的钟表及其它计时装置产生了很高的需求。不同的国家使用了不同的时间编码格式和发射频率。表1给出了目前已发射长波授时信号的几个主要国家的时间编码标准及其使用频率。表1 各国RCT技术使用的时间编码及发射频率国家名时间编码标准发射基站地点使用的频率发射功率接收半径中国BPC陕西西安68.6kHz100kW2000km美国WWVBFort Collins60kHz50kW2000km英国MSFRugby60kHz251200km 德国DFCFrankfurt77.5kHz50kW1500km日本JJY40JJY60本州福岛九州富网40kHz60kHz50kW50kW1000km1000km①中国的长波授时编码标准为BPC。目前该长波授时的时间编码还未正式公开,其专利由西安高华实业有限公司持有。同时该公司也是中国第一台长波授时电波钟的开发者。②美国的长波授时编码标准为WWVB,发射基站位于Colorado州的FortCollins。由于美国只建有一个长波授时的发射站,因而在距离发射站较远的地区信号较弱,对接收芯片的灵敏度要求比较高。③英国的长波授时编码标准为MSF,发射基站位于Teddington的Rugby。由于英国本土面积较小,一个长波授时发射站就可以覆盖英伦三岛,时间编码信号较强,对接收芯片的灵敏度要求不高。④德国的长波授时编码标准为DCF,与MSF类似。20世纪50年代末,德国就在Frankfurt建立了长波授时中心。德国国土面积较小,且DFC的长波授时信号发射站功率很强,是RCT技术中对接收芯片的灵敏度要求最低的,因而比较容易开发。⑤日本的长波授时编码标准为JJY。由于日本地形狭长,在本洲福岛的40kHz(JJY40)发射机不能覆盖日本全国。日本通信综合研究所于2001年10月在九州富冈新建了60kHz的授时发射站(JJY60)。[!--empirenews.page--]图2 MSF授时信号编码格式2RCT的技术原理无线控制授时系统由时间编码信号的长波授时发射台及其接收装置共同组成。最初的无线授时系统(包括短波授时和长波授时)只应用于军事目的,现已转为民用。2.1无线控制授时系统的授时信号发送原理RCT系统授时信号发送装置的系统构成如图1所示。首先,通过在标准授时中心内的铯(或铷)原子钟产生标准时间。例如,铯原 进行分频产生实时的标准时间信息,如年、月、日、时、分、秒、毫秒、微秒等。然后将标准时间信号传送给时间编码发生器编码,编码后的时间信号通过调制器调制到长波载波信号(40kHz~80kHz)上,经过功率放大器将信号沿传输线传送到天线塔发射出去。由于授时信号属于长波信号,以地波形式沿地球表面传播。2.2RCT技术系统授时信号的接收原理RCT接收机通过内置微型无线接收系统接收长波时间编码信号,由专用芯片

《软件无线电》作业总结资料讲解

《软件无线电》作业 总结

第一章 1、影响天线效率的因素有哪些(答出至少三条)? 答:工作频率,天线长度,天线形状,天线架设的高度等 2、语音频率范围是300~3400Hz,当取f=3000Hz时,天线长度为多少时, 天线效率最高? 3、如何解决最简结构中天线效率低和无法多路传输的问题? 答:在其他参数相同的条件下,输入激励电流的频率越高,基本振子天线的电磁波越强,即天线的效率越高。 实际的天线电系统都采用了调制/解调技术,即在发射端用一个可选择的高频率的正弦波信号去调制需要传输的频率较低的调制信号,这个高频正弦波信号成为载波;在接收端采用解调技术再将调制的信号从载波上解出来,从而完成了信号的无线传输过程。这也是解决不能多路传输的方法。 4、请画出无线电系统的实用结构。

5、常见的收/发双工技术 答:时分双工、频分双工和环形器双工 6、画出无线数字通信系统框图 发射端: 接收端: 7、画出无线电系统的实用结构图,并指出基带信号、中频信号和射频信号 的位置 答:同第4题 8、简述外差技术和超外差技术的概念,并画出超外差技术的框图: 答:外差技术:中频频率fIF固定不变,通过混频器本振频率fL和选频滤波器中心频率f0 = fRF同步改变来实现;超外差技术:当取中频频率fIF低于射频频率fRF且高于信号带宽B时

9、软件无线电的特点 答:功能的灵活性,结构的开放性,成本的集中性。多功能、多频带、多模式。具有可重编程、可重配置能力。 10、画出理想的软件无线电体系结构,并简述结构核心和构造思想 结构核心:使模拟信号转换为数字信号的部分尽可能接近天线 构造思想:不可能采用数字器件实现的部分放在模拟子系统中其他部分放在数字子系统中,例如载以获得最大程度的软件可编程性。 11、软件无线电的研究热点和难点 答:宽带/多频段天线、智能天线;灵活的射频前端设计;高速数模和模数变换器;高速信号处理器;软件无线电的信号处理算法;软件下载和软件重配置技术。

信道化技术在软件无线电接收机中的应用

信道化技术在软件无线电接收机中的应用 姚 澄!朱灿焰!杨会保 " 苏州大学电子信息学院江苏苏州 #$%&#$’ 摘 要(软件无线电是目前通信领域研究的热点!其关键技术之一的数字中频技术则是多速率信号处理理论的典型应用) 介绍了一种基于多相滤波的数字信道化技术在软件无线电接收机中的应用!利用离散傅里叶变换"*+,’的成熟理论和多相滤波的灵活处理!在接收机的数字中频段提出了一种高效的处理结构!对其原理-性能和特点进行了深入地探讨和研究!较好地解决了当前无线通信中硬件速度和高速数据流不匹配的问题)计算机模拟结果证明了处理结构的可行性和有效性) 关键词(软件无线电.信道化.多相滤波器组.离散傅里叶变换中图分类号(,/0 $$文献标识码(1 文章编号($&&23435" #&&%’&4&$4&367789:;<9=>=?@A ;>>B 89C B DE B :A >=8=F G 9>B DL ;D 9= M N O P Q R S T !U V W P X S Y X S !M N /Z V [\]X ^ "_‘Q ^^a ^b c a R ‘d e ^S \‘f S b ^e g X d \^S !_^^‘Q ^h W S \i R e j \d Y !_[k Q ^[!#$%&#$!P Q \S X ’l m n o p q r o (,Q R_^b d h X e R*R b \S R s t X s \^"_*t ’Q X j]R ‘X g Rd Q Rb ^‘[j^be R j R X e ‘Q \S ‘^g g [S \‘X d \^S j u *\T \d X af S d R e g R s \X d R +e R v [R S ‘Y "f +’X j ^S R^b \d j w R Yd R ‘Q S ^a ^T \R j !\j Xd Y x \‘X a X x x a \‘X d \^S^b g [a d \e X d Rj \T S X a x e ^‘R j j \S Td Q R ^e Y u ,Q RX x x a \‘X d \^S^b X s \T \d X a ‘Q X S S R a \k R sd R ‘Q S \v [Rb ^e_*t e R ‘R \i R e j\j\S d e ^s [‘R s\Sd Q \jx X x R e u 1X j R s^Sd Q Rg X d [e Rd Q R ^e Y^bd Q R*\j ‘e R d R+^[e \R e ,e X S j b ^e g "*+,’X S s d Q R b a R y \]\a \d Y ^b d Q R x ^a Y x Q X j R b \a d R e ]X S ws R ‘^g x ^j \d \^S !X SR b b \‘\R S d x e ^‘R j j \S T X e ‘Q \d R ‘d [e R \j x e R j R S d R s \Sd Q R s \T \d X a f +x X e d !\d j x e \S ‘\x a R !x R e b ^e g X S ‘R X S s‘Q X e X ‘d R e \j d \‘X e R s R R x a Ys \j ‘[j j R sX S sj d [s \R s u ,Q R g R d Q ^sT \i R j X]R d d R e j ^a [d \^S^b d Q Rg \j g X d ‘Q]R d h R R Sd Q Ra ^h R e Q X e s h X e Rj x R R sX S sQ \T Qs X d Xe X d R^b d ^s X Y z jh X e R a R j j‘^g g [S \‘X d \^S j u +\S X a a Yj \g [a X d \^Se R j [a d j j Q ^h d Q R R b b \‘\R S ‘Y^b d Q \j x e ^x ^j R sX e ‘Q \d R ‘d [e R u {|}~!p "n (_^b d h X e R *R b \S R st X s \^"_*t ’.‘Q X S S R a \k \S T .x a ^Y x Q X j R b \a d R e ]X S w .*\j ‘e R d R +^[e \R e ,e X S j b ^e g "*+,’ 收稿日期(#&&2$#$2#引 言 软件无线电是近些年来崭露头角的新技术!他代表包括无线通信在内的几乎所有的无线电电子信息系统的发展趋势)为适应其发展!有必要对基于滤波器组的信道化方法进行研究) 理想的软件无线电结构$ $% 在射频直接采样数字化!其核心思想就是将N &*!*&N 变换器尽量靠近天线!在对信号充分数字化的基础上依靠软件来实现无线电的各项功能)但是现阶段!由于受微电子技术水平的限制!直接对射频"t + ’进行采样还很难实现!成本上亦不合算)所以!在目前的软件无线电研究中!大部分都是首先将射频信号转换到中频!然后在中频对模拟信号进行数字化)数字中频软件无线电加上少量的高频模拟前端正逐渐成为理想 软件无线电的一种经济实用的选择$#%)中频软件无线电接 收机的结构如图$所示) 对于单一信道而言!使用宽带N &*!*_’和通用P ’W 的软件无线电方法比传统的使用硬件集成的技术要昂贵的多!而目前多通道接收机"数字下变频器’已有上市!如 f S d R e j \a 公司"原V X e e \j 公司的半导体部分’的V _’ %&#$(!Z e X Y P Q \x 公司的Z P 2&$(!N S X a ^T *R i \‘R j 公司的N *((#2和_^b d P R a a 等)但这些接收机的主要问题是!必须事先确知在哪个信道上有信号!或者用一个全景接收机对整个频 段进行搜索和监视以确定信号的位置$3%)然而!如果搜索 速度不够快! 就会产生漏警现象以至于无法进行全概率的信号截获)本文所讨论的基于滤波器组的信道化接收机就是能够完成全概率信号截获的接收机) 图$中频宽带接收机实现框图 )信道化接收机 信道化接收机瞬时频带宽-动态范围大!能实现超宽带侦察)传统的技术是采用模拟电路来实现信道化!即(用模拟滤波器组把侦察频率范围分割为许多邻接的信道!如图#所示) 显然!当瞬时频带很宽时!需要非常多的滤波器!接收机将变得非常庞大)而在软件无线电信道化技术中!则充分利用数字信号系统精确-灵活-造价低-速度快的优 4 $*现代电子技术+#&&%年第4期总第$0,期-通信与信息技术 . 万方数据

软件无线电(个人整理)

1. 软件无线电是什么
无线通信在现代通信中占据着极其重要的位置, 几乎任何领域都使用无线通信, 包括有 商业、气象、金融、军事、工业、民用等。我们可从通信系统、调制方式、多址方式等几方 面可看到无线通信系统种类的繁多。 类 别 通信系统 调制方式 多址方式 种 类
卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、 微波通信系统等 AM、FM、LSB、USB、ISB、FSK、PSK、MSK、GMSK、QAM 等 时分多址(TDMA) 、频分多址( FDMA)和码分多址(CDMA)等
各种通信系统由于自身的特点而适用于各种特定的场合,例如: 短波电台适合远距离,其所需的发射功率不大,传输的“中继系统” —电离层不会被 摧毁;卫星通信能传播高质量的信息,所能提供的频带很宽 微波通信抗干扰能力强,适合大量的数据传输,但只能在点与点之间传输,传输距离 又有一定的限制 由于无线通信的设备简单、便于携带、易于操作、架设方便等特点,在军事和民用通信领域 中都是不可缺的重要通信手段。 然而, 电台往往是根据某种特定的用途而设计的, 功能单一, 有些电台的基本结构相似,而信号特征差异很大。比如,工作的频段不同,调制方式不同, 波形结构不同,通信协议不同,数字信息的编码方式、加密方式不同等等。电台之间的这些 差异极大地限制了不同电台之间的互通互连。 经过几十年的发展, 无线通信已有很大的发展, 通信系统由模拟体制不断向数字化体制过渡, 因此是否可能在数字化体制础上一个电台能满足多调制方式和多址方式, 从而根椐需要构成 多种通信系统呢。 我们先看一下一个数字蜂窝网接收站, 显示在图 1 中。 (注意: 为了说明软件无线电的概念, 这里给出了无线电的接收装置部分) 。
图 1:窄带无线接收装置

无线电资料

***********通信原理书籍目录************* 《The ARRL Antenna Book(19th)》30页 《电磁场基本教程》319页 《电磁场与波》391页 《电信工程设计手册_短波通信.12》702页 《电子书籍》?121兆大小 《短波通信电路设计》328页 《高速通讯线路与系》14.8兆大小 《国外军用飞机通信设备手册》462页 《晶体管接收机电路的原理与设计》637页 《宽带匹配网络的理论与设计(增订本)》13.8兆《无线电波传播》1059页 《无线通信常用数据手册(修订本)[1].part1》680页《现代电信交换》396页 《dds9851频率合成器》 《大功率宽带射频脉冲功率放大器设计》 《电子设备中的隔离技术》 《分体中波超远程接受装置》 《全固态中波发射机的维护》 《衰减器原理》 《有源窄带晶体滤波器》 《1915的QST杂志》28页 《OFDM移动通信技术原理与应用》283页 《trk90电台外接单片机调节频率》 《WS430型无线收信机的维修》195页 《半导体无线电广播接收机理论与计算基础》395页《变容二极管的应用》333页 《参量放大器》65页 《超短波的传播》56页 《超短波调频广播》115页 《超短波无线通信》481页 《超高频电视调谐器设计与原理》318页 《超高频技术》355页 《超高频接收机》589页 《初级无线电技术》251页 《地球站微波收发信机》361页 《电报史话》84页 《电波的世界》225页? 《电话电报移动通信实用手册》291页 《电视和调频发射机》466页 《电信工程设计手册--短波通信》717页 《电子爱好者的金桥-业余无线电通信》187页 《电子调谐器原理与设计》723页 《电子工程师便携手册》451页

软件无线电技术的发展应用探究

软件无线电技术的发展应用探究 软件无线技术相对于传统的“纯硬件电路”具有非常大的优越性,以硬件为基础,软件在可以在此之上扩展更多的通信功能,使得设备的通信功能不再硬件锁限制,并且可以大大简化设备的硬件复杂程度,提升其可靠性、维护性,耐用性,并且由于软件的可升级性以及更加优良的兼容性,因此可以大大降低开发、生产、升级换代和维护成本。软件无线电技术是通信领域的第三次革命,前两次模拟通信和数字通信。目前新技术的发展重点基本都已开始转移软件之上。文章就软件无线电技术的发展和应用进行一些详细的探讨。 标签:软件无线电;软件无线电发展;软件无线电应用 1 软件无线电各个系统的作用 1.1 软件无线电技术与传统无线电技术的区别 软件无线电与软件控制无线电的区别在于软件无线电是开放并且标准化的,因此研究更加容易也更加灵活,设备具有的功能不再主要依赖系统的构架和硬件,转而开始依赖软件环境,通过改变软件来改变功能,使得系统、功能的升级或是不同系统间的兼容变得更加简单,升级换代所需要的时间大大缩短。而数字无线电主要依赖于硬件和系统结构的发展,使得环境更加封闭,不利于推广交流,一旦出现问题,需要花费相当多的人力、物力以及时间。 1.2 软件无线电技术硬件平台解析 软件无线电是一个标准化、开放式的平台,以硬件作为基础,将编写好的指令预先录入,用以操纵硬件进而实现尽可能多的无线通信功能,可以通过改变软件的方式改变软件无线电所具有的功能,并可因此减少硬件模块的数量和复杂程度,所具备的灵活性、集中性、维护性无可比拟。一个典型的软件无线电需要以下的硬件系统:射频、中频、基带、信源、信令,软件部分则为数字信号处理器(DSP),DSP通过录入程序,可以对带宽、频率、调制模式、信源解码等进行控制,因此DSP处理性能的强弱直接影响通信功能的数量和质量。通过录入程序,DSP控制各个系统,实现无线电软件具体化。 1.2.1 天线 天线是保证信号的基础,理论上天线最好应该能覆盖全部的通信频段,但在实际应用中,并不能做到覆盖如此多的频段,更多的时候需要能保证完美适配软件所需的、线性性能较好的频段,使用组合式多频段天线,通过测试自动寻找干扰较小,流量宽松的频段,因此就有多频段天线和宽带天线,其二者都可以为软件无线电技术提供信号的保障,而区别主要在于多频段可在分离的不同频段上工作,而宽带则意味着是连续的宽频。而调频、信号接收、算法优化仍然是天线在无线电技术中的关键。

FPGA在软件无线电中的应用

Altera中文资料 FPGA在软件无线电中的应用 介绍 软件无线电(SDR)是具有可重配置硬件平台的无线设备,可以跨多种通信标准。它们因为更低的成本、更大的灵活性和更高的性能,迅速称为军事、公共安全和商用无线领域的事实标准。SDR成为商用流行的主要原因之一是它能够对多种波形进行基带处理和数字中频(IF)处理。IF处理将数字信号处理的领域从基带扩展到RF。支持基带和中频处理的能力增加了系统灵活性,同时减小了制造成本。 基带处理 无线标准不断地发展,通过先进的基带处理技术如自适应调制编码、空时编码(STC)、波束赋形和多入多出(MIMO)天线技术,支持更高的数据速率。基带信号处理器件需要巨大的处理带宽,以支持这些技术计算量的算法。例如,美国军事联合战术无线系统(JTRS)定义了军事无线中20多种不同的无线波形。一些更复杂的波形所需的计算能力在标准处理器上是每秒数百万条指令(MIPS),或者如果在FPGA实现是数千个逻辑单元。 协处理器特性 SDR基带处理通常需要处理器和FPGA。在这类应用中,处理器处理系统控制和配置功能,而FPGA实现大计算量的信号处理数据通道和控制,让系统延迟最小。当需要从一种标准切换至另一种标准时,处理器能够动态地在软件的主要部分间切换,而FPGA 能够根据需要完全重新配置,实现特定标准的数据通道。 FPGA可以作为协处理器同DSP和通用处理相连,这样具有更高的系统性能和更低的系统成本。自由地选择在哪实现基带处理算法为实现SDR算法提供了另一种方式的灵活性。 基带部件也需要足够灵活让所需的SDR功能支持在同一种标准增强版本之间的移植,

并能够支持完全不同的标准。可编程逻辑结合软核处理器和IP,具有了提供在现场远程升级的能力。图1 是一个框图,其中FPGA能够通过IP功能如Turbo编码器、Reed-Solomon编码器、符号交织器、符号映射器和IFFT,很容易地重配置支持WCDMA/HSPDA或802.16a标准的基带发送功能。 图1. 两种无线信号的SDR基带数据通道重配置例子 数字IF处理 数字频率变化具有比传统模拟无线处理方式更高的性能。FPGA提供了一种高度灵活和集成的平台,在这之上以合理的功率实现大计算量的数字IF功能,这在便携系统中是一个关键的因素。能够在FPGA实现的IF功能包括数字上变频器(DUC)和下变频器(DDC),以及数字预畸变(DPD)和波峰系数削减(CFR),帮助降低功放的成本和功率(见图2)

软件无线电的应用

软件无线电的应用 软件无线电的应用 摘要:软件无线电技术正日益广泛地应用于现代通信的各个领域。 关键词:软件无线电;数字信号处理;调制解调;数字广播;世界数字广播 软件无线电是随着计算机技术、高速数字处理技术的迅速发展而发展起来的,其基本思想就是将宽带A/D/A变换器尽可能地靠近天线,将电台的各种功能尽量在一个开放性、模块化的平台上由软件来确定和实现。该平台的调制方式、码速率、载波频率、指令数据格式、调制码型等系统工作参数具有完全的可编程性 1 用软件无线电技术实现卫星控制平台 传统的卫星测控平台存在着性能不完善,调制方式、副载波、码速率组态不灵活,体积偏大等问题。研制和开发通用化、综合化、智能化的测控平台,通过注入不同的软件,实现对调制载频、调制方式、传输码速率等参数的改变,应用于各种轨道卫星平台的遥测遥控任务。 软件无线电技术正日益广泛地应用于现代通信的各个领域。随着A/D/A器件与DSP处理器的迅速发展,使得软件无线电技术广泛地应用于陆上移动通信、卫星移动通信与全球定位系统等。 用软件无线电技术实现卫星控制平台包括软件无线电通用平台 的DSP技术和DSP实现信号调制和解调。其中软件无线电通用平台的DSP技术又包括 TMS320C6701 DSP芯片,DSP技术在软件平台中的应用,调制器与解调器。DSP实现信号调制和解调又包括信号调制,信号解调。 软件无线电通用测控平台是卫星测控平台发展的方向,可以很好地解决原来平台开发成本高、周期长、通用性差的问题。以新一代DSP芯片TMS320C6000作为软件无线电平台的核心,可以很好地满足需要,且有较大的冗余度,利用升级。

从软件无线电到认知无线电_走向终极无线电_无线通信发展展望_杨小牛

第1期2008年2月 中国电子科学研究院学报 J o u r n a l o f C A E I T V o l .3N o .1 F e b .2008   收稿日期:2007-10-14 修订日期:2007-11-15 综 述 从软件无线电到认知无线电,走向终极无线电 ———无线通信发展展望 杨小牛 (中国电子科技集团公司第36研究所,浙江嘉兴 314033) 摘 要:介绍软件无线电三种基本结构及认知无线电基本概念的基础上,提出了基于电子侦察原理的一种新的认知无线电实现架构及其对应的认知循环过程。同时,针对认知无线电存在的问题,提 出了基于盲源分离的认知无线电———终极无线电(u l t i m a t e r a d i o )的新概念,并对其实现的可行性进行了初步的分析讨论。 关键词:软件无线电;认知无线电;终极无线电中图分类号:T N 91 文献标识码:A 文章编号:1673-5692(2008)01-001-07 S o f t w a r e R a d i o ,C o g n i t i v e R a d i o a n d U l t i m a t e R a d i o —AP r o s p e c t o f Wi r e l e s s C o m m u n i c a t i o n Y A N GX i a o -n i u (T h e 36t hR e s e a r c hI n s t i t u t e o f C E T C ,Z h e j i a n g J i a x i n g 314033,C h i n a ) A b s t r a c t :T h r o u g h a r e v i e wa n d o u t l o o k o f t h r e e b a s i c s t r u c t u r e s o f s o f t w a r e r a d i o (S R )p r o p o s e d b y t h e a u t h o r a n d t h e f u n d a m e n t a l c o n c e p t o f C o g n i t i v e R a d i o (C R ),t h e p a p e r p r e s e n t s a n e wf r a m e w o r k o f C R a n d i t s c o r r e s p o n d i n g c o g n i t i v e c y c l e b a s e do nt h e p r i n c i p l e o f e l e c t r o n i c r e c o n n a i s s a n c e .F u r t h e r m o r e ,f a c e d w i t h t h e e x i s t i n g p r o b l e m s o f C R ,t h e a u t h o r p u t s f o r w a r dan e w c o n c e p t o f S R -U l t i m a t e R a d i o (U R )b a s e d o n t h e t h e o r y o f b l i n d s o u r c e s e p a r a t i o n (B S S ).T h e f e a s i b i l i t y o f r e a l i z i n g U Ri s a l s o d i s -c u s s e d .K e y w o r d s :s o f t w a r e r a d i o ;c o g n i t i v e r a d i o ;u l t i m a t e r a d i o 0 引 言 信息化社会发展到今天,人类社会已离不开通信,尤其是无线移动通信(如G S M 、C D M A 手机)的普及程度在几年前是不可想像的,各种新的通信手段、通信体制的出现为人们的生活、工作带来了极大的便利。随着各种新标准、新协议的不断发布,无线系统制造商和通信服务提供商不得不做出响应,通过系统升级,以保持其技术的先进性,不断为用户提供高质量的通信服务(1G ※2G ※3G ※4G )。但是,如此反复的重新设计和硬件的不断更新换代,不仅成本高,浪费资源,而且给最终用户也带来诸多不便。所以,无论是服务提供商还是最终用户都越来 越关注能经得起时间考验的无线通信系统,而不是 像现在的系统,随着技术的发展,不断地面临被淘汰、废弃的尴尬境地。软件无线电就是在这样的背 景下诞生的、能经得起时间考验的无线通信系统。简单而言,软件无线电是指采用固定不变的硬件平台,通过软件重构(升级)来实现灵活多变的通信体制和通信功能的无线电系统。软件无线电硬件平台的特点是通用化、标准化、模块化,以及对信号波形的广泛适应性;软件无线电的核心是其驻留在D S P 和/或F P G A 和/或A S I C 内部的功能软件,这些软件是可升级、可重构的,以适应不同的技术标准、接口协议和信号波形。近几年,软件无线电在微电子技术的带动下,取得了前所未有的快速发展。 无线通信中的另一个重要问题是频谱资源的有

软件无线电的现状和发展趋势

□潘子欣刘毅 一、引言 移动通信在过去几十年中获得了飞速发展,成为现代通信中的一个亮点。同时由于移动通信的迅速发展和高收益,带来了激烈的竞争,从而造就了移动通信技术和系统的多样性,而各技术标准和系统之间差别很大又不能互相兼容。特别是新业务的巨大吸引力又给用户和移动业务提供商造成了很大的压力,迫使他们不断更新设备,可是这通常要造成设备和投资的浪费。问题的关键在于目前的绝大多数移动通信设备是完全基于专用硬件设计的,给移动通信系统的兼容和并联,以及快速、灵活的升级带来了很大的约束。此外通信设备制造商在研制新产品时,由于种种因素的制约,其设置的产品可能会存在缺陷,以致在产品售出后不得不重新召回,增加了产品的制造成本和设计周期。而软件无线电确能很好解决这些问题。 二、软件无线电的概念及其特点 软件无线电(SoftwareDefinedRadio,SDR)是二十世纪90年代初提出的通信新技术,它的基本思想是将标准化、模块化的硬件功能单元,通过高速总线或高速网络等连接形成一个通用的数字式硬件平台,再通过软件加载的方式来实现各种类型无线通信系统的开放式体系结构,用软件方式实现各种通信功能。并且能通过对软件的重新编程来实现系统的升级更新和适应不同的通信标准和协议。 由于软件无线电技术具有通用性广、可移植性好、适应性强等优点,在军用电台方面得到迅速的发展和应用。近些年,随着第三代移动通信(3G)系统的发展,软件无线电在民用领域也开始崭露头角。人们期待这种新技术能兼容现在所有的3G标准,从而制成通用的移动通信设备。软件无线电已经成为无线通信领域继固定到移动、模拟到数字之后的第三次革命。 软件无线电具有灵活性和集中性两大优点。 灵活性即可以任意地转换信道接入方式,改变调制方式或接收不同系统的信号等。当前蜂窝通信标准不断地发展变化,这种灵活性对移动通信系统来说就显得尤为重要。例如:基站可以通过承载不同的软件来适应不同的标准,而不用对硬件平台进行改动;基站间可由软件算法协调动态地分配信道与容量以优化性能;移动台可以自动检测接收到的信号的工作方式,以接入不同的网络(GSM、DAMPS等)。 集中性即多个信道享有共同的射频前端与宽带模/数、数/模转换器,以获取每一信道相对廉价的信号处理性能。尽管软件无线电要比传统的接收机贵很多,但每一信道的费用则低得多。在移动通信系统中,一般一个基站能容纳20个甚至更多的无线接收器,这样软件无线电技术就显得很吸引人。 软件无线电硬件采用模块化结构宽带模/数和数/模转换及高速DSP,建立公共硬件平台,支持并行、流水线及异种多处理机。软件采用基于OSI参考模型的分层软件体系,支持开放式的模块化设计。灵活应用软件无线电的基本硬软件模块,可使软件无线电设备对传播条件具有多种自适应能力,多种抗干扰能力,灵活可变的多址方式、用户需要的多种业务及多种组网与接口能力等。 随着计算机硬件的迅速发展,软件无线电技术日益广泛地应用于陆上移动通信、卫星移动通信与全球定位系统等。对于不同的新标准(GSM、DCS1800、IS-54、IS-95等),软件无线电提供了灵活的解决方案—— —在通用的硬件平台上由可变换的应用软件模块提供对不同新标准的兼容性。由于在移动通信领域中,用户对新业务的要求不断变化,空中接口标准不断发展,传统的数字系统会很快被淘汰,而软件无线电这种由软件的变化、升级实现增强业务功能的能力使得由软件无线电技术构筑的系统的生命周期要长的多,很有竞争力。 三、软件无线电的发展历史 为了解决军用无线电台多频段、多制式的互通问题,1992年5月,MITRE公司的JeoMitola在美国电信系统会议上首次提出软件无线电的概念。其基本思想是:构造一个标准化、模块化、开放性的通用硬件平台,将通信中的各种功能,如设定数据格式、确定载波频率、信道编码、信道调制、加密、通信协议等用软件来完成。在这一构想中,宽带模/数转换器尽可能地靠近射频天线,最大限度地通过数字的方式来实现电台的各种功能。这样的软件无线电台不仅可以与普通电台进行通信,还能在两种不同制式的电台系统间充当“转接器”的作用,使两者能够互通互连。 在软件无线电概念产生不久后,美军提出了“易通话”(SPEAKEASY)科研计划,其主要任务是研制多频段多模式无线电台(Multi—BandMulti—ModeRadio,MBMMR)。这种电台的工作频率为2~2000MHz,能同时处理4种不同的信号波形,兼容美军当时的15种电台,并适用于不同频段和不同调制方式下的通信互联。 1995年5月,IEEE《通信杂志》出版了软件无线电专刊,全 软件无线电的现状和发展趋势 科学管理商界 33 广东科技2008.03.总第183期

一个变态的无线电爱好者要看这么多书 精品

一个变态的无线电爱好者要看这么多书! ***********通信原理书籍目录************* 《The ARRL Antenna Book(19th)》30页 《电磁场基本教程》319页 《电磁场与波》391页 《电信工程设计手册_短波通信.12》702页 《电子书籍》?121兆大小 《短波通信电路设计》328页 《高速通讯线路与系》14.8兆大小 《国外军用飞机通信设备手册》462页 《晶体管接收机电路的原理与设计》637页 《宽带匹配网络的理论与设计(增订本)》13.8兆《无线电波传播》1059页 《无线通信常用数据手册(修订本)[1].part1》680页《现代电信交换》396页 《dds9851频率合成器》 《大功率宽带射频脉冲功率放大器设计》 《电子设备中的隔离技术》 《分体中波超远程接受装置》 《全固态中波发射机的维护》 《衰减器原理》 《有源窄带晶体滤波器》 《1915的QST杂志》28页 《OFDM移动通信技术原理与应用》283页 《trk90电台外接单片机调节频率》 《WS430型无线收信机的维修》195页 《半导体无线电广播接收机理论与计算基础》395页《变容二极管的应用》333页 《参量放大器》65页 《超短波的传播》56页 《超短波调频广播》115页 《超短波无线通信》481页 《超高频电视调谐器设计与原理》318页 《超高频技术》355页 《超高频接收机》589页

《初级无线电技术》251页 《地球站微波收发信机》361页 《电报史话》84页 《电波的世界》225页? 《电话电报移动通信实用手册》291页 《电视和调频发射机》466页 《电信工程设计手册--短波通信》717页 《电子爱好者的金桥-业余无线电通信》187页 《电子调谐器原理与设计》723页 《电子工程师便携手册》451页 《电子学与无线电原理上册》559页 《电子学与无线电原理下册》567页 《调频广播用发射机与接收机》182页 《调频及其应用》311页 《调频立体声广播发射机》319页 《调频袖珍电台的设计与制造》431页 《短波单边带小型台维护手册(XDD-D2B及IC-M700TY电台)》269页《短波电台电力设备维护手册》157页 《短波数字通信自适应选频技术》327页 《短波通信电路设计》335页 《短波中小型收发信机维护手册》302页 《发射测量-英文》 《范氏基本图解无线电学》301页 《峰窝式移动电话原理-使用-检修》178页 《高频电路基础》364页 《高频电路设计技术》195页 《高频电路设计与制作》259页 《高频电路原理》270页 《高频调谐器原理与维修》500页 《各种发射类别的无线电接收机的测量方法》85页 《广播发射新技术》239页 《广播发送技术》338页 《简单无线电装置》91页 《简明无线电爱好者实用资料手册》530页 《简明无线电原理》218页 《简易无线电测试》82页?

软件无线电技术简介及特点应用

软件无线电技术简介及特点应用 发表时间:2019-09-10T10:31:29.547Z 来源:《科学与技术》2019年第08期作者:刘建新[导读] 软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 海南三亚92823部队 软件无线电技术,顾名思义是用现代化软件来操纵、控制传统的"纯硬件电路"的无线通信。软件无线电技术的重要价值在于:传统的硬件无线电通信设备只是作为无线通信的基本平台,而许多的通信功能则是由软件来实现,打破了有史以来设备的通信功能的实现仅仅依赖于硬件发展的格局。软件无线电技术的出现是通信领域继摸拟通信到数字通信,固定通信到移动通信之后第三次革命。 1.起源 软件无线电最初起源于军事通信。军用电台一般是根据某种特定用途设计的,功能单一。虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。同样,民用通信也存在互通性问题,如现有移动通信系统的制式、频率各不相同,不能互通和兼容,给人们从事跨国经商、旅游等活动带来极大不便。为解决无线通信的互通性问题,各国军方进行了积极探索。完整的软件无线电 (Software Definition Radio)概念和结构体系是由美国的Joe.Mitola首次于1992年5月明确提出的。其基本思想是 :将宽带A/D 变换尽可能地靠近射频天线 ,即尽可能早地将接收到的模拟信号数字化 ,最大程度地通过软件来实现电台的各种功能。通过运行不同的算法 ,软件无线电可以实时地配置信号波形 ,使其能够提供各种语音编码、信道调制、载波频率、加密算法等无线电通信业务。软件无线电台不仅可与现有的其它电台进行通信 ,还能在两种不同的电台系统间充当“无线电网关”的作用 ,使两者能够互通互连。 软件无线电充分利用嵌入通信设备里的单片微机和专用芯片的可编程能力 ,提供一种通用的无线电台硬件平台 ,这样既能保持无线电台硬件结构的简单化 ,又能解决由于拥有电台类型、性能不同带来的无线电联系的困难。 2.软件无线电台的功能结构 图1给出了典型的软件无线电系统的结构简图 ,包括天线、多频段射频变换器、含有A/D 和D/A变换器的芯片以及片上通用处理器和存储器等部件 ,可以有效地实现无线电台功能及其所需的接口功能。 其关键思想以及与传统结构的主要区别在于 : (1)将A/D 和D/A向RF端靠近 ,由基带到中频对整个系统频带进行采样。 (2)用高速DSP/CPU代替传统的专用数字电路与低速DSP/CPU做A/D 后的一系列处理。A/D 和D/A移向RF端只为软件无线电的实现提供了必不可少的条件 ,而真正关键的步骤是采用通用的可编程能力强的器件 (DSP和CPU等 )代替专用的数字电路 ,由此带来的一系列好处才是软件无线电的真正目的所在。 典型的软件无线电台的工作模块主要包括实时信道处理、环境管理以及在线和离线的软件工具三部分。 1)实时信道处理 实时信道处理包括天线、射频变换、A/D 和D/A变换器、中频处理、基带与比特流处理及信源编码。其中射频变换包括输出功率的产生、前置放大、射频信号变换为标准中频或由标准中频变换为射频信号 ,以适应宽带A/D和D/A变换。中频处理部分变换调制基带和中频之间的发射和接收信号。比特流部分数字复用由多个用户产生的信源编码比特流 ,而且相反的使它们成帧或多路分解。还提供信令、控制和操作、管理和维护功能。实时信道处理部分最合适的结构是多指令多数据 (MIMD)多处理器的结构 ,即将多处理器组成一个流水线 ,来实现模块分配给内部连接在一起的各个处理器的不同的功能序列。 2)环境管理 在准实时环境管理模块中持续地使用频率、时间和空间特征来表征无线电环境 ,这些特征包括信道识别和估计其它参数。环境管理模块使用操作的块结构很容易用一台MIMD并行处理器来实现。这种高度的并行环境管理模块和流水线工作方式的实时信道处理模块之间的接口必须使环境管理的参数和信道处理模块同步。 3)在线和离线的软件工具

相关主题