搜档网
当前位置:搜档网 › 电磁场与微波技术名词解释

电磁场与微波技术名词解释

电磁场与微波技术名词解释
电磁场与微波技术名词解释

电磁场与微波技术名词

解释

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1. 电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物

质。 2. 磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用

的物质。

3. 标量场:物理量是标量的场成为标量场。

4. 矢量场:物理量是矢量的场成为矢量场。

5. 静态场:场中各点对应的物理量不随时间变化的场。

6. 有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。

7. 通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通

量源。

8. 有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。 9. 方向导数:是函数u (M )在点 M0 处沿 l 方向对距离的变化率。

10. 梯度:在标量场 u (M ) 中的一点 M 处,其方向为函数 u (M )在M 点处变化率

最大的方向,其模又恰好等于此最大变化率的矢量 G ,称为标量场 u (M ) 在点 M 处的梯度,记作 grad u (M )。

11. 通量:矢量A 沿某一有向曲面S 的面积分为A 通过S 的通量。

12. 环量:矢量场 A 沿有向闭曲线 L 的线积分称为矢量 A 沿有向闭曲线 L 的

环量。

13. 亥姆霍兹定理:对于边界面为S 的有限区域V 内任何一个单值、导数连续有

界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。(前半部分又称唯一性定理)

dV dq V q V =??=→?0lim ρ

14.电荷体密度:,即某点处单位体积中的电量。

15.传导电流:带电粒子在中性煤质中定向运动形成的电流。

16.运流电流:带电煤质本身定向运动形成形成的电流。

17.位移电流:变化的电位移矢量产生的等效电流。

18.电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)

上的电流。

19.静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。

20.电偶极子:有两个相距很近的等值异号点电荷组成的系统。

21.磁偶极子:线度很小任意形状的电流环。

22.感应电荷:若对导体施加静电场,导体中的自由带电粒子将向反电场方向移

动并积累在导体表面形成某种电荷分布,称为感应电荷。

23.导体的静电平衡状态:把静电场中导体内部电场强度为零,所有带电粒子停

止定向运动的状态称为导体的静电平衡状态。

24.电壁:与电力线垂直相交的面称为电壁。

25.磁壁:与磁力线垂直相交的面称为磁壁。

26.介质:(或称电介质)一般指不导电的媒质。

27.介质的极化:当把介质放入静电场中后,电介质分子中的正负电荷会有微小

移动,并沿电场方向重新排列,但不能离开分子的范围,其作用中心不再重合,形成一个个小的电偶极子。这种现象称为介质的极化。

28.媒质的磁化:外加磁场使煤质分子形成与磁场方向相反的感应磁矩或使煤质

的固有分子磁矩都顺着磁场方向定向排列的现象。

29.极性介质:若介质分子内正负电荷分布不均匀,正负电荷的重心不重合的介

质。

30.极化强度:定量地描述介质的极化程度的物理量。

31.介质的击穿:若外加电场太大,可能使介质分子中的电子脱离分子的束缚而

成为自由电子,介质变成导电材料,这种现象称为介质的击穿。

32.击穿强度:介质能保持不被击穿的最大外加电场强度。

33.束缚电荷(极化电荷):被束缚在分子之内不能自由移动的电荷。

34.束缚电流(磁化电流):由束缚在分子内部的电荷移动形成的电流。

35.恒定电流场:电流密度J仅是空间位置的函数,而不随时间变化,则其形成

的电流场称为恒定电流场。

36.恒定电场:由恒定的电荷分布产生的电场是恒定的,由于它由运动电荷而非

静止电荷产生,因此被称为恒定电场。

37.局外电场:将局外力与电荷的比值类比为一种电场,称为局外电场。

38.恒定磁场:由恒定电流产生的磁场不随时间变化的磁场为恒定磁场。

39.电(磁)场能量:等于该电(磁)场建立过程中外力(电源)所做的总功。

40.镜像电荷:镜像法中假象的等效电荷称为镜像电荷。

41.感应电场:由磁场变化激励或者说感应出来的电场被称为感应电场,

42.时变电磁场的唯一性定理:设含有均匀、线性、各向同性媒质的区域V的边

界面为S,只要给定t=0时刻区域V中各点电场矢量和磁场矢量的初始值,并同时给定t>=0时边界面S上电场矢量的切向分量,或者磁场矢量的切向分量,或者一部分边界面上的电场矢量切向分量和其余边界面上的磁场矢量切向分量,则域V中的时变电磁场有唯一解。

43. 电磁场:时变电场会在周围空间中激发出时变磁场,时变磁场会在周围空间

中激发出时变电场,电场、磁场不再是孤立的,而是同时出现在同一时间的统一整体,成为电磁场。

44. 电磁波:电场磁场互相激励,往复不止,是的电磁场以波动的形式在周围空

间传播,所以电磁场也称为电磁波。

45. 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或泄

露的现象,叫电磁辐射。

46. 时谐电磁场:随时间做简谐变化的电磁场。

47. 坡印廷矢量(能流密度矢量):单位时间内穿过与能量流动方向垂直的单位截面的能量。 48. 坡印廷定理: 单位时间内流

入 V 的电磁能量一部分被损耗掉,另一部分就是 V 中增加的电磁能量。坡印廷定理体现了电磁场中的能量守恒关系。

49. 天线:专门用来辐射电磁波的装置。

50. 平面波:等相位面位平面的电磁波。

51. 均匀平面波:平面波的任何一个等相位面上的场矢量处处相等的波。 52. 理想介质:电导率б为零的媒质成为理想介质。

53. 理想导体:电导率б无穷大的导体为理想导体。

54. 时间相位:相位移以角频率随时间线性变化称为时间相位。

55. 空间相位:相位移随空间坐标线性变换称为空间相位。

56. 初始相位:θ在Z 等于零处,t 等于零时的相位为初始相位。

57. 传播常数K :也叫相移常数,表示单位距离内相位的变化量。

11()d d ()d 22

S V

V v v t ?-??=?+?+??????????E H s J E H B E D

58.周期:相位Φ相差2π的两个时间间隔为周期。

59.频率:单位时间内的时变周期数为频率。

60.电磁波波长:在任意固定时刻相位Φ相差2π的两个空间点的距离。

61.相速度:光波之等相面的传播速度。

62.波阻抗:定义平面波的波阻抗为Z=E/H。

63.电场的横向分量:垂直于传播方向的电场分量。

64.磁场的横向分量:垂直于传播方向的磁场分量。

65.自由空间:介电常数,磁导率与真空中相同,电导率б为零的空间。

66.极化:将空间任意固定点上场矢量的模值、方向随时间变化的方式成为电场

波的极化。

67.线极化:电场的水平分量与垂直分量的相位相同或相差180°时的正弦电磁

波。

68.圆极化:电场的水平分量与垂直分量的振幅相等,但相位相差90°或270°

时的正弦电磁波。

69.椭圆极化:当电场垂直分量和水平分量的振幅和相位具有任意值时(两分量

相等时例外)的电场波。

70.水平极化波:与地面平行放置的线天线的主方向远区场是与地面平行的线极

化波。

71.垂直极化波:与地面垂直放置的线天线的主方向远区场是与地面垂直的线极

化波。

72. 极化损耗:在具有复介电常数的介质中电磁波是变传播边损耗。振幅逐渐减

小,损耗的能量用于克服介质分子,原子的热运动,使其电偶极矩的方向随时谐电场的方向变化而变化,这种损耗称为极化损耗。

73. 色散:相速度与频率无关,不同频率的电磁波具有不同的相速度,这种现象

叫色散。

74. 非色散媒质:相速度与频率无关的煤质。

75. 色散媒质:使在其中传播的电磁波出现色散的煤质。

76. 良介质:媒质主要呈现出介质特性。

77. 良导体:媒质主要呈现出导体特性。

78. 驻波:理想介质中总场不具有波动传播特性,只随时间在原处作时谐振荡,

这种波称为驻波。

79. 行波:理想介质中某一物理量的空间分布形态随着时间的推移向一定的方向

行进所形成的波。

80. 反射定律:反射角等于入射角。 81. 折射定律:即斯涅尔定律, 82. 全透射:垂直与交界面的入射波功率将全部进入理想介质2,这是全透射现

象。

83. 全反射:垂直与交界面的入射波功率将全部反射回理想介质1,这种现象是

全反射。

84. 趋肤效应:进入良导体的电磁波及其引起的感应电流只能分布在良导体极薄

的表面层中,这种现象称为趋肤效应。

85. 横电磁波(TEM ):在传播方向上没有电场和磁场分量,称为横电磁波。 r i

θθ=1i 1r 2t

sin sin sin k k k θθθ==

86. TE 波:在传播方向上有磁场分量但无电场分量,称为横电波。

87. TM 波:在传播方向上有电场分量而无磁场分量,称为横磁波。

88. TE,TM 模的速度:

89. ①相速度:导行波的等相位面沿传输线轴向移动的速度。

90. ②群速度:由多个频率成分构成“波群”的速度。

91. ③能速度:电磁波能量在传输线中的传播速度。

92. 导波波长:传输线中,在波的传播方向上,某模式的两个相位相差2π的等

相位面间的距离。

93. 微带线:微波集成电路的主要组成部分,在微波集成电路中用来连接各种元

件和器件,并用来构成电感,电容,谐振器,滤波器,混合环,定向耦合器等无源元件。

94. 传输线:导行电磁波的装置称为传输线.

95. 分布参数:平行双导线作为传输线,其自身结构本身处处体现出电容、电

感、电阻、电导的效应,也就是说这些电路参数是均匀分布在传输线上的,因此称为分布参数。

96. 入射波:传输线上从电源流向负载的波叫入射波。

97. 反射波:传输线上从负载流向电源的波叫反射波。

98. 传输线的特性阻抗:

具有阻抗的量纲,称

为。。。

99. 电压驻波比:传输线上电压的最大振幅值与最小振幅值之比。

100. 电压反射系数:传输线上任意一点处的反射波电压与入射波电压之比。 101. 电长度:定义传输线上两点的间距与波长之比为这两点间的电长度。 c Z =

102.驻波系数:描述传输线上驻波的大小,是传输线上电压最大振幅值与电压最小振幅值之比,

103.短路线:终端被理想导体所短路的传输线称为短路线

104.负载阻抗匹配:指传输线与负载之间的匹配,是为了使传输线处于无反射的行波工作状态。

105.衰减器:在微波系统中控制功率大小的装置。

106.定向耦合器:是一种具有方向性的功率耦合/分配元件。

107.品质因数Q:描述了谐振器的频率选择性的优劣和谐振器中电磁能量的损耗程度。

108.模式:指能够单独在传输线中存在的电磁场结构。

109.网络参数:单口网络中阻抗值Z和导纳值Y称为网络参数。

110.膜片:导电性能很好,厚度远小于波导波长但又远大于电磁波趋肤深度的金属膜片。

111.基本电抗元件:表现为感性电抗或容性电抗的简单微波元器件。

112.分离变量法:将一个多元函数表示成几个单变量函数的乘积,从而将偏微分方程华为几个带分离常数的常微分方程的方法。

电磁场理论习题解读

思考与练习一 1.证明矢量3?2??z y x e e e -+=A 和z y x e e e ???++=B 相互垂直。 2. 已知矢量 1.55.8z y e ?e ?+=A 和4936z y e ?.e ?+-=B ,求两矢量的夹角。 3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。 4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。 5.根据算符?的与矢量性,推导下列公式: ()()()()B A B A A B A B B A ??+???+??+???=??)( ()()A A A A A 2??-?=???2 1 []H E E H H E ???-???=??? 6.设u 是空间坐标z ,y ,x 的函数,证明: u du df u f ?=?)(, ()du d u u A A ??=??, ()du d u u A A ??=??,()[]0=????z ,y ,x A 。 7.设222)()()(z z y y x x R '-+'-+'-='-=r r 为源点x '到场点x 的距离,R 的方向规定为从源点指向场点。证明下列结果, R R R R =?'-=?, 311R R R R -=?'-=?,03=??R R ,033=??'-=??R R R R )0(≠R (最后一式在0=R 点不成立)。 8. 求[])sin(0r k E ???及[])sin(0r k E ???,其中0E a ,为常矢量。 9. 应用高斯定理证明 ???=??v s d dV f s f ,应用斯克斯(Stokes )定理证明??=??s L dl dS ??。 10.证明Gauss 积分公式[]??????+???=??s V dv d ψφψφψφ2s 。 11.导出在任意正交曲线坐标系中()321q ,q ,q F ??、()[]321q ,q ,q F ???、()3212q ,q ,q f ?的表达式。 12. 从梯度、散度和旋度的定义出发,简述它们的意义,比较它们的差别,导出它们在正交曲线坐标系中的表达式。

电子信息工程专业“电磁场与微波技术”改革与实践

电子信息工程专业电磁场与微波技术改革与实践 电磁场与微波技术是我校电子信息工程专业主要专业基础课之一,随着通信技术的飞速发展,载波的频率不断提高,其基本理论、基本概念及分析方法在现代飞机通信系统、导航系统和雷达系统的应用越来越广泛。 2008年以来,为了适应宽口径人才培养的需要,这门课程的学时进行了大幅压缩,但工程教育改革和航空维修技术的发展对学生的知识和能力要求却不断提高。因此迫切需要对原电磁场与微波技术教学内容、教学方法和教学手段进行改革和建设,以有效解决学时压缩与知识、能力和素质培养之间的矛盾。 一、以需求为导向顶层设计一体化课程内容,优化知识结构 2008年以来,课程由原来的80学时减少到54学时。为解决知识面宽、学时少的问题,结合专业培养目标和航空电子系统专业课程需求进行顶层设计,明确课程在培养目标中的地位和要求,在此基础上,将课程涉及到的矢量分析与场论、电磁场与电磁波、微波技术基础、天线与电波等多门课程的教学内容结合前修课程普通物理、高等数学和后续课程雷达原理、通信系统、导航系统等课程内容进行一体化设计,整合教学内容,优化知识结构。加强课程内部及与相关课程教学内容的有机联系,使其相互支持。整合后的内容主要包括五大部分[1-2]。 1.电磁场理论的数学基础部分矢量分析与场论 主要讲授矢量的散度、旋度和标量的梯度等概念及运算。删除了与高等数学重复的推导和分析过程,重点讲授这些运算的物理概念及其在电磁场理论中的应用。实现了高等数学与矢量分析与场论的平滑过渡,也为学习电磁场理论奠定了基础。 2.电磁场理论基础 传统讲授方法是静电场、恒定电场、恒定磁场、时变电磁场、这样需要的学时较多。 对于航空电子系统,时变电磁场比静电场、恒定电场和恒定磁场更加重要。考虑到学生在大学物理中已有电磁学的基础,因此本章主要是在介绍电磁场中的基本场矢量,积分形式的麦克斯韦方程组的基础上,结合矢量分析重点阐述微分形式麦克斯韦方程组的各种场之间的共性和个性,重点分析理想介质中均匀平面波的传播特性、电磁波的极化、均匀平面波在理想介质中的传播和在不同媒质分界面上的垂直入射与斜入射,实现普通物理与电磁场理论基础内容的无缝对接。 3.微波技术基础 该部分是这门课程的核心内容,也是学习主要后续专业课程飞机通信系统、无电导航系统、雷达原理与系统的基础。讲授的内容主要包括传输线的分布参数、传输线的工作状态、圆图及其应用、阻抗匹配、矩形波导、微带线、微波网络和微波元件等内容。 该部分的内容克服了我国传统教材重理论轻应用的问题,大量实例结合机载电子系统和实际工程应用,从系统应用角度设计教学内容。 4.天线与电波传播 该部分内容是新增内容,在讲授天线和电波基本理论的基础上,将机载电子系统的相关知识融入教学中,如机载电子系统的各种天线的结构和辐射特性,各个系统的电波传播特性等,以便于后续专业课程的学习。 5.电磁场与微波实验 为加强对微波系统的认识,提高微波测试能力,开设了微波实验课程,实验项目主要有:微波系统的认识和调整,微波阻抗的测量与调配,电压驻波比测量,微波网络参量测量,定向耦合器的技术指标测量、电磁波的反射与折射等内容。尽管学时由原来的8学时压缩到6学时,但通过合理安排实验项目,实验项目却比原来增加了电磁场部分实验(电磁波的反射、折射),以及根据实验原理自主设计实验步骤的实验(定向耦合器性能指标的测量)。

电磁场与微波技术基础

天津市高等教育自学考试课程考试大纲 课程名称:电磁场与微波技术基础课程代码:0910 第一部分课程性质与目标 一、课程性质与特点 电磁场与微波技术基础是高等教育自学考试通信工程专业的一门专业基础课,是在完成高等数学和高频电子线路课程的学习后开设的必修课程之一,本课程在整个课程体系中是后续众多通信专业课的生长点和发展的基础。 本课程重点论述了工程电磁场的基本理论和技术,内容涵盖了电场、磁场、时变场、电磁波、传输线、波导和天线等。通过学习可以使考生较全面的了解电磁场及微波领域的基本理论和基本内容,为今后学习和工作打下坚实的基础。 二、课程目标与基本要求 本课程的目标是使学生通过本课程的学习和辅导考试,进行有关工程电磁场基础理论和技术方面的培养和训练,使学生对电磁场、微波和天线领域有相当程度的了解,为今后学习和工作创造一个知识面宽广的环境。 课程基本要求如下: 1、熟悉工程电磁场中数学分析方法。 2、掌握静电场中电场、电位和电能的计算,了解静电场基本性质。 3、掌握恒定磁场中磁场和磁能的计算,了解引入矢量磁位的必要性并熟悉恒定磁场的基本性质。 4、掌握时变场中法拉第电磁感应定律和麦克斯韦关于位移电流的概念。 5、熟悉麦克斯韦方程组数学表达式及其物理意义。 6、熟悉电磁场中的边界条件及其应用。 7、掌握坡印廷矢量概念。 8、学习电磁波在两种不同介质界面上的垂直入射和斜入射,掌握有关公式。 9、学习传输线基本理论,掌握分布参数、特性阻抗、输入阻抗、反射系数、电压驻波比基本概念及相关表达式,熟悉传输线阻抗匹配的意义和应用。 10、学习波导中波型(TE模和TM模)的概念,了解矩形波导中模的截止频率和主摸传输的概念。 11、学习天线有关知识,了解天线的基本参数。 三、与本专业其他课程的关系 本课程在通信工程专业的教学计划中被列为专业基础课,安排在学完高频电子线路之后和通信专业课之前时间内开设。本课程的学习是后续通信专业课程(如移动通信、通信技术等)的基础。 第二部分考核内容与考核目标 第一章矢量分析 一、学习目的与要求 通过本章学习,熟悉矢量分析中矢量符号表示法,矢量加减运算、两矢量点积和叉积运算规则,三种坐标系(笛卡尔、圆柱和球坐标)表示方法和相互间的转换。

电磁场考试试题及问题详解

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j=- dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽ x A) 7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为: (圆极化)(应该是 90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量D=ε E+P在真空中 P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化) 14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势) 15. 电源外媒质中电场强度的旋度为0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。 20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考 点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状

电磁场与微波技术专业(080904)研究生培养

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。 近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究; 国家重大科学研究计划:超导单光子探测器原理及制备研究; 国家重大科学研究计划:固体微结构的量子效应、调控及其应用研究; 科技部863课题:新型遥感器技术/THz频段高灵敏度超导探测/接收系统;

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

电磁场名词解释

电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物质。 磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用的物质。 标量场:物理量是标量的场成为标量场。 矢量场:物理量是矢量的场成为矢量场。 静态场:场中各点对应的物理量不随时间变化的场。 有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。 通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通量源。 有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。 方向导数:是函数u (M )在点 M0 处沿 l 方向对距离的变化率。 梯度:在标量场 u (M ) 中的一点 M 处,其方向为函数 u (M )在M 点处变化率最大的方向,其模又恰好等于此最大变化率的矢量 G ,称为标量场 u (M ) 在点 M 处的梯度,记作 grad u (M )。 通量:矢量A 沿某一有向曲面S 的面积分为A 通过S 的通量。 环量:矢量场 A 沿有向闭曲线 L 的线积分称为矢量 A 沿有向闭曲线 L 的环量。 亥姆霍兹定理:对于边界面为S 的有限区域V 内任何一个单值、导数连续有界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。(前半部分又称唯一性定理) 电荷体密度: ,即某点处单位体积中的电量。 传导电流:带电粒子在中性煤质中定向运动形成的电流。 运流电流:带电煤质本身定向运动形成形成的电流。 位移电流:变化的电位移矢量产生的等效电流。 电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)上的电流。 静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。 电偶极子:有两个相距很近的等值异号点电荷组成的系统。 磁偶极子:线度很小任意形状的电流环。 感应电荷:若对导体施加静电场,导体中的自由带电粒子将向反电场方向移动并积累在导体表面形成某种电荷分布,称为感应电荷。 导体的静电平衡状态:把静电场中导体内部电场强度为零,所有带电粒子停止定向运动的状态称为导体的静电平衡状态。 电壁:与电力线垂直相交的面称为电壁。 磁壁:与磁力线垂直相交的面称为磁壁。 介质:(或称电介质)一般指不导电的媒质。 介质的极化:当把介质放入静电场中后,电介质分子中的正负电荷会有微小移动,并沿电场方向重新排列,但不能离开分子的范围,其作用中心不再重合,形成一个个小的电偶极子。这种现象称为介质的极化。 媒质的磁化:外加磁场使煤质分子形成与磁场方向相反的感应磁矩 或使煤质的固有分子磁矩都顺着磁场方向定向排列的现象。 极性介质:若介质分子内正负电荷分布不均匀,正负电荷的重心不重合的介质。 极化强度:定量地描述介质的极化程度的物理量。 介质的击穿:若外加电场太大,可能使介质分子中的电子脱离分子的束缚而成为自由电子,介质变成导电材料,这种现象称为介质的击穿。 dV dq V q V =??=→?0lim ρ

电磁场与微波技术(第2版)黄玉兰-习题答案

电磁场与微波技术(第2版)黄玉兰-习题答案 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第一章 证: 941(6)(6)50=0 A B A B A B A B =?+?-+-?=∴?∴和相互垂直和相互平行 (1) 2 222 0.5 0.50.5 2222 0.5 0.5 0.5 2272(2)(2272)1 24 s Ax Ay Az A divA x y z x x y x y z Ads Ad dz dy x x y x y z dz ττ---????==++ ???=++=?=++=??? ??由高斯散度定理有

(1) 因为闭合路径在xoy 平面内, 故有: 222()()8(2) (22)()2()8 x y z x y x z x s A dl e x e x e y z e dx e dy xdx x dy A dl S XOY A ds e yz e x e dxdy xdxdy A ds → →→ → ?=+++=+∴?=??=+=??=∴??因为在面内, 所以,定理成立。 (1) 由梯度公式 (2,1,3) |410410x y z x y z x y z u u u u e e e x y z e e e e e e ????=++???=++=++1 方向:() (2) 最小值为0, 与梯度垂直

证明 00u A ???=??= 书上p10 第二章 3343 sin 3sin 4q a V e wr qwr J V e a ρρ ρπθ θ ρπ= ==?=

工程电磁场与电磁波名词解释大全

《电磁场与电磁波》 名词解释不完全归纳(By Hypo ) 第一章 矢量分析 1.场:场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。 2.标量:一个仅用大小就能够完整描述的物理量。标量场:标量函数所定出的场就称为标量场。(描述场的物理量是标量) 3.矢量:不仅有大小,而且有方向的物理量。矢量场:矢量场是由一个向量对应另一个向量的函数。(描述场的物理量是矢量) 4.矢线(场线):在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线称为矢线。 5.通量:如果在该矢量场中取一曲面S ,通过该曲面的矢线量称为通量。 6.拉梅系数:在正交曲线坐标系中,其坐标变量(u1 ,u2,u3)不一定都是长度, 可能是角度量,其矢量微分元,必然有一个修正系数,称为拉梅系数。 7.方向导数:函数在其特定方向上的变化率。 8.梯度:一个大小为标量场函数在某一点的方向导数的最大值,其方向为取得最大值方向导数的方向的矢量,称为场函数在该点的梯度,记作 9.散度:矢量场沿矢线方向上的导数(该点的通量密度称为该点的散度) 10.高斯散度定理:某一矢量散度的体积分等于该矢量穿过该体积的封闭表面的总通量。 11.环量:在矢量场中,任意取一闭合曲线 ,将矢量沿该曲线积分称之为环量。 12.旋度: 一矢量其大小等于某点最大环量密度,方向为该环的一个法线方向,那么该矢量称为该点矢量场的旋度。 13.斯托克斯定理:一个矢量场的旋度在一开放曲面上的曲面积分等于该矢量沿此曲面边界的曲线积分。 14.拉普拉斯算子:在场论研究中,定义一个标量函数梯度的散度的二阶微分算子,称为拉普拉斯算子。 第二章 电磁学基本理论 1.电场:存在于电荷周围,能对其他电荷产生作用力的特殊的物质称为电场。 2.电场强度:单位正试验电荷在电场中某点受到的作用力(电场力),称为该点的电场d grad d n a n φφ=

电磁场与微波技术

论文题目:无形科学-电磁场与微波 技术 姓名:陈超 专业:电子科学与技术 指导教师:葛幸 申报日期:2012.10.23

摘要 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 关键字:电磁场,微波技术,应用

无形的科学—— 电磁场与微波技术 目录 1.前言 (2) 2.研究方向 (2) 3.基本理论与分析方法 (3) 3.1 电磁场理论 (3) 3.1.1矢量分析 (3) 3.1.2静电场 (3) 3.1.3恒定电场 (4) 3.1.4静磁场 (4) 3.1.5时变电磁场 (5) 3.2 微波技术理论 (7) 3.2.1传输线理论 (7) 3.2.2集成传输系统 (9) 3.2.3微波谐凯腔 (9) 3.2.4微波网络基础 (9) 3.2.5微波无源元件 (11) 4.发展前景 (12)

1. 前言 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 2. 研究方向 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。

电磁场复习提纲09级

第一章矢量分析 1.理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线的概念; 2.矢量场的散度和旋度、标量场的梯度是矢量分析中最基本的重要概念,应深刻理解,掌握散度、旋度和梯度的计算公式和方法;理解矢量场的性质与散度、旋度的相互关系。注意矢量场的散度与旋度的对比和几个重要的矢量恒等式。注意哈密顿算符在散度、旋度、梯度中的应用。 3.散度定理和斯托克斯定理是矢量分析中的两个重要定理,应熟练掌握和应用。 4.熟悉亥姆霍兹定理,理解它的重要意义。 5.会计算给定矢量的散度、旋度。并能够验证散度定理。理解无旋场与无源场的条件和特点。(课件例题,课本习题1.16、1.18、1.20,1.27) 第二章电磁场的基本规律 1.电荷是产生电场的源,应理解电荷与电荷分布的概念,理解并掌握电流连续性方程的微分形式和积分形式;电流是产生磁场的源,应理解电流与电流密度的概念。 2.掌握真空中静电场的散度与旋度及其物理意义,真空中高斯定理的微分和积分形式。会计算一些典型电荷分布的电场强度。 3.熟悉掌握磁感应强度的表示及其特性。会计算一些典型电流分布的磁感应强度。掌握恒定磁场的散度和旋度及其物理意义;磁通连续性定理的微分、积分形式和安培环路定理的积分、微分形式。 4. 媒质的电磁特性有哪些现象?分别对应哪些物质?(1)电介质的极化有哪些分类?极化强度矢量与电介质内部极化电荷体密度、电介质表面上极化电荷面密度各有什么关系式?电介质中的高斯定理?电位移矢量的定义?电介质的本构关系?(2)磁化强度矢量与磁介质内磁化电流密度、磁介质表面磁化电流面密度之间各有什么关系式?磁化强度矢量的定义?磁介质中的安培环路定理?磁介质的本构关系?(3)导电媒质的本构关系?(式2.4.29),焦耳定律的微分形式、积分形式? 5. 电磁感应定律揭示了随时间变化的磁场产生电场这一重要的概念,应深刻理解电磁感应定律的意义,掌握感应电动势的计算。位移电流揭示了随时间变化的电场产生磁场这一重要的概念,应理解位移电流的概念及其特性。 6麦克斯韦方程组是描述宏观电磁现象的普遍规律,是分析、求解电磁场问题的基本方程。必须牢固掌握麦克斯韦方程组的微分形式和积分形式,复数形式和限定形式,深刻理解其物理意义,掌握媒质的本构关系。 7.电磁场的边界条件是麦克斯韦方程组在不同媒质分界面的表现形式,它在求解电磁场边值问题中起定解作用,应正确理解和使用边界条件。掌握3种不同情况下电磁场各场量的边界条件。 第三章静态电磁场及其边值问题的解 1.静电场的基本变量和基本方程揭示出静电场的基本性质,也是分析求解静电场问题的基础。应牢固掌握静电场的基本变量和基本方程和不同介质分界面上场量的边界条件,深刻理解静电场的基本性质,并熟练地运用高斯定律求解静电场问题。掌握静电场能量的计算公式。 2.电位是静电场中的一个重要概念,要理解其物理意义,掌握电位与电场强度的关系;掌握电位的微分方程(泊松方程和拉普拉斯方程),会计算点电荷系统和一些连续分布电荷系统(如线电荷、面电荷、体电荷)的电位。掌握不同介质分界面上电位的边界条件(分界面两侧)( 3.1.19,3.1.20),及导体表面电位的边界条件(3.1.22)。了解静电力计算一般采用

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

02349自考浙江省2009年1月电磁场与微波技术基础试题

超越60自考网 浙江省2009年1月高等教育自学考试 电磁场与微波技术基础试题 课程代码:02349 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.一个矢量A在另一个矢量B上的投影称为映射,用数学表示为( ) A.A·B B.A×B C.e A·(B·e A) D.e B·(A·e B) 2.安培力与电流的________有关。( ) A.位置 B.方向 C.大小 D.以上都是 3.电通量的大小与所包围的封闭曲面的________有关。( ) A.面积 B.体积 C.自由电荷 D.形状 4.可用镜像法求解的两个相交的导体平面的夹角为( ) A.180° B.90° C.45° D.180°/n(n是整数) 5.磁场满足的边界条件是( ) A.B1n-B2n=0,H1t-H2t=J s B.H1t-H2t=0,B1n-B2n=J s C.B1n-B2n=0,H1n-H2n=0 D.B1t-B2t=0,H1n-H2n=J s 6.电场强度E=(e x3+e y4)sin(ωt-kz)的电磁波,其传播方向是沿________方向。( ) A.e x B.e y C.e x3+e y4 D.e z 7.电磁波垂直入射到导体上,随电磁波的频率增高进入导体的深度( ) A.不变 B.变深 C.变浅 D.都有可能 8.导波装置方波导可以传播( ) A.TEM波 B.TM和TE波 C.驻波 D.平面波 02349#电磁场与微波技术基础试题第 1 页共3 页

9.天线的选择性与天线的带宽都是天线的重要参数,天线的选择性越好,则带宽( ) A.越窄 B.越宽 C.与选择性无关 D.不变 10.电磁能是一种能量,能通过无线输送,其输送的能流密度为( ) A.E×H B.1/2εΕ2 C.1/2μH2 D.1/2εΕ2+1/2μH2 二、名词解释及理解(本大题共5小题,每小题4分,共20分) 1.什么是保守场?并说明电位与路径的关系。 2.什么是体电荷密度?并指出什么情况下带均匀或非均匀电荷的球的球外电场与同等点电荷所产生的电场强度的关系。 3.什么是极化强度? 4.什么是电磁波的相速,电磁波的相速可以超过光速吗? 5.唯一性定理 三、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.力线的疏密表示场的大小,力线越________,场越小。 2.电位与电荷满足________关系,可以应用叠加原理。 3.理想导体内的电场为0,所以其电位也________。 4.自由空间的泊松(Poisson)方程,其边界条件有________类。 5.磁场的本质是________产生的。 6.电磁波的洛仑兹规范为________,它确立了运动电磁波之间的联系。 7.电磁波的衰减一般是由________损耗引起的。 8.短路线在传输线中可以等效为一个________。 9.电磁波的辐射装置称为________。 10.具有相同频率的模式场称为________场。 四、简答题(本大题共4小题,每小题5分,共20分) 1.写出点电荷q电场强度和电场能量,从能量看,其说明了什么问题。 2.什么是零电位,有什么意义,简答静电学中电位为零的几种情况。 3.说明什么是TEM波。TEM波没有色散,而TE或TM波有色散,为什么还使用波导这一类的导波装置? 02349#电磁场与微波技术基础试题第 2 页共3 页

电磁场与微波技术名词解释

1.电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物质 2.磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用的物质。 3.标量场:物理量是标量的场成为标量场。 4.矢量场:物理量是矢量的场成为矢量场。 5.静态场:场中各点对应的物理量不随时间变化的场。 6.有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。 7.通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通量源。 8.有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。 9.方向导数:是函数u (M在点M0处沿I方向对距离的变化率。 10.梯度:在标量场u(M中的一点M处,其方向为函数u(M在M点处变化率最大的方 向,其模又恰好等于此最大变化率的矢量G,称为标量场u(M在点M处的梯度, 记作grad u( M。 11.通量:矢量A沿某一有向曲面S的面积分为A通过S的通量。 12.环量:矢量场A沿有向闭曲线L的线积分称为矢量A沿有向闭曲线L的环量。 13.亥姆霍兹定理:对于边界面为S的有限区域V内任何一个单值、导数连续有界的矢量 场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。(前半部分又称唯一性定理)r 也q dq 14.电荷体密度= l im 0,即某点处单位体积中的电量。 V—■ L V dV 15.传导电流:带电粒子在中性煤质中定向运动形成的电流。 16.运流电流:带电煤质本身定向运动形成形成的电流。 17.位移电流:变化的电位移矢量产生的等效电流。 18.电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)上的电流。 19.静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。 20.电偶极子:有两个相距很近的等值异号点电荷组成的系统。 21.磁偶极子:线度很小任意形状的电流环。 22.感应电荷:若对导体施加静电场,导体中的自由带电粒子将向反电场方向移动并积累在导体表面 形成某种电荷分布,称为感应电荷。 23.导体的静电平衡状态:把静电场中导体内部电场强度为零,所有带电粒子停止定向运动的状态 称为导体的静电平衡状态。 24.电壁:与电力线垂直相交的面称为电壁。 25.磁壁:与磁力线垂直相交的面称为磁壁。 26.介质:(或称电介质)一般指不导电的媒质。 27.介质的极化:当把介质放入静电场中后,电介质分子中的正负电荷会有微小移动,并沿电场方向 重新排列,但不能离开分子的范围,其作用中心不再重合,形成一个个小的电偶极子。这种现象称为介质的极化。 28.媒质的磁化:外加磁场使煤质分子形成与磁场方向相反的感应磁矩或使煤质的固有分 子磁矩都顺着磁场方向定向排列的现象。 29.极性介质:若介质分子内正负电荷分布不均匀,正负电荷的重心不重合的介质。 30.极化强度:定量地描述介质的极化程度的物理量。 31.介质的击穿:若外加电场太大,可能使介质分子中的电子脱离分子的束缚而成为自由电子,介质 变成导电材料,这种现象称为介质的击穿。

电磁场理论与微波技术 试卷A

特别提示:请诚信应考,考试违纪或作弊将带来严重后果! 成都理工大学工程技术学院 2009 - 2010学年第2学期 《电磁场理论与微波技术》通信工程专业期末试卷A 注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷; 4. 本试卷共二大题,满分100分,考试时间120分钟。 一.简答题(第1题20分,第2--7题各5分,第8题各10分共60分)1,分别写出麦克斯韦方程组的微分和积分形式,并解释每个积分方程的含义。2,静电场的电力线是不闭合的,为什么?在什么情况下电力线可以构成闭合回路,它的激励源是什么? 3,试从产生的原因、存在的区域以及引起的效应等方面比较传导电流和位移电流。 4,“如果空间中某一点的电场强度为零,则该点的电位为零”,这种说法正确吗? 为什么?。 5,安培环路定理应用到时变场时会出现什么矛盾?这一矛盾又是如何解决的? 6,什么是坡印廷定理?它的物理意义是什么? 7,沿均匀波导传播的波有哪三种基本模式? 8,由电磁场理论知,当微波通过传输现时,会产生分布参数效应。那么什么是分布参数效应?

二.计算及证明题 (第1,2题各15分,第3题各10分, 共40分) 1,电荷Q 均匀分布于半径为a 的球体内,求空间各点的电场强度,并由此计算电场强度的散度。(计算中所用公式:30r r ??= ,3r ??= ) 2,在自由空间传播的均匀平面波的电场强度复矢量为: (20)42042??1010j z j z x y V E e e e e m πππ-----=+ 试求:(1)平面波的传播方向和频率; (2)波的极化方式; (3)磁场强度H 3,利用无源空间(电流密度0J =,电荷密度0ρ=)的麦克斯韦方程推到电场强度E 和磁场强度H 的的波动方程。 (计算中所用公式:2()()E E E ????=???-? )

10月自考电磁场与微波技术基础试题

2009年10月自考电磁场与微波技术基础试 题 浙江省2009年10月自考电磁场与微波技术基础试题 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知均匀平面波的电场为=x cos (ωt-βz)+y2sin (ωt-βz),则此波是() A.直线极化波 B.圆极化波 C.椭圆极化波 D.都不是 2.以下关于时变电磁场的叙述中,正确的是() A.电场是无旋场 B.电场和磁场相互激发 C.电场与磁场无关 D.磁场是有旋场 3.两个同频同方向传播,且极化方向相互垂直的线极化波合成一个圆极化波,则一定有() A.两者的相位差不为0和π B.两者振幅相同

C.两者的相位差不为?π/2 D.同时选择A和B 4.无耗媒质中均匀平面电磁波具有下列性质() A.TEM波 B.空间相同点电场与磁场具有相同的相位 C.无耗媒质是无色散媒质 D.同时选择A,B,C 5.传输线终端接不同负载时,传输线上的反射波不同,下列哪种情况满足传输线上无反射波。() A.终端负载开路 B.终端负载短路 C.终端负载阻抗与传输线特性阻抗相同 D.终端负载为纯电抗 6.偶极子天线辐射远场区,辐射电场的大小与距离的关系() A.反比 B.正比 C.平方反比 D.平方正比 7.镜像法依据是() A.唯一性定理 B.电荷连续性 C.电流连续性

D.均不是 8.波导具有_________滤波器的特性。() A.高通 B.低通 C.带通 D.均不是 9.两电流元的相互作用力,与距离平方成() A.正比 B.反比 C.无关 D.非线性 10.下列对磁力线和电力线描述正确的是() A.磁力线和电力线都是封闭的 B.磁力线是封闭的,电力线是不封闭的 C.磁力线和电力线都不是封闭的 D.电力线封闭,磁力线不封闭 二、名词解释及理解(本大题共5小题,每小题4分,共20分) 1.什么是色散,介质的色散对数字通信系统的误码率有什么影响? 2.什么是电流连续性原理?

电磁场与电磁波名词解释

学习必备欢迎下载 电磁场与电磁波名词解释: 1.亥姆赫兹定理(P26):在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,这就是亥姆赫兹定理的核心内容。 2.洛伦兹力(P40):当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。 3.传导电流(P48):自由电荷在导电媒质中作有规则运动而形成。 4.运流电流(P49):电荷在无阻力空间作有规则运动而形成。 5.位移电流(P49):电介质内部的分子束缚电荷作微观位移而形成。 6.电介质(P65):电介质实际上就是绝缘材料,其中不存在自由电荷,带电粒子是以束缚电荷形式存在的。 7.电介质的极化(P64):当把一块电介质放入电场中时,它会受到电场的作用,其分子或原子内的正、负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。 8.电介质的磁化(P64):当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会产生一个个小的磁偶极子,这种现象称为介质的磁化。 9.对偶原理(P105):如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。10.叠加原理(P106):若φ1和φ2分别满足拉普拉斯方程,即▽2φ1=0和▽2φ2=0,则φ1和φ2的线性组合φ=aφ1+bφ2也必然满足拉普拉斯方程,即▽2(aφ1+bφ2)=0。11.唯一性原理(P107):对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。 12.镜像法(P107):通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。 13.电磁波谱(P141):为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。 14.相速(P155):我们将速度v (介质中的波速)称为相速,即正弦波的最大速度。一般情况下,速度v 是恒定相位面在波中向前推进的速度,所以也可以根据电场极小值通过空间一固定点的速度来定义这个速度。 15.群速(P159):定义为Vg=dw/dk。 16.色散现象(P157):不同频率的波将以不同的速率在介质中传播的现象称为色散 17.耗散介质(P148):非理想介质是有损耗介质也称为耗散介质,在这里是指电导率,但仍然保持均匀、线性及各向同性等特性。 18.穿透深度(P165):将电磁波的振幅衰减到e^-1时它的导电介质的深度定义为趋肤深度(穿透深度) 19.等离子体(P175):是除气体、液体和固体以外的第四种物态,它是由电子、负离子、正离子和未电离的中性分子组成的混合体。 20.全折射(P195):当电磁波以某一入射角入射到两种媒质交界面上时,如果反射系数为0,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。 21.全反射(P195):当电磁波入射到两种媒质交界面上时,如果反射系数|R|=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。

相关主题