搜档网
当前位置:搜档网 › 半固态金属加工成形

半固态金属加工成形

半固态金属加工成形
半固态金属加工成形

半固态金属加工成形

s2*******材料国重

摘要:半固态金属成形技术是现代工业发展的一个新领域。本文主要对半固态金属成形技术进行了简单的分析、归纳和论述。然后根据半固态金属加工成形技术的特点展望半固态金属加工的发展趋势及应用前景。

关键词:半固态成形,加工技术,趋势及前景

1.前言

半固态成形工艺,泛指对温度处于固相线温度与液相线温度之间的半固态金属坯料进行的成形工艺。该工艺的基本理念及工艺于20世纪70年代由美国麻省理工学院的弗莱明斯教授以及他的科研团队所提出和创立。其工艺特征是对正在凝固的金属进行强烈搅拌或通过控制凝固条件,抑制树枝晶的生成或破碎所生成的树枝晶,制备具有等轴、均匀、细小的初生相均匀分布于液相中的悬浮半固态浆料。此种浆料在外力的作用下,即使固相率达到60%。仍具有较好的触变流动性,可以利用压铸、挤压、模锻、铸轧等工艺进行加工成形。

目前,大部分金属构件的制造依赖于传统的铸造和锻造工艺,然而,在全球倡导“节能减排”、“绿色制造”的今天,传统的铸造和锻造工艺在材料质量利用率和材料性能利用率的双重标准的考量下,都显示出了一定的局限性。

2.半固态金属加工的特点

2.1半固态金属的特点

半固态金属(合金)的内部特征是固液相混合共存,在晶粒边界存在金属液体,根据固相分数不同,其状态不同。

在高固相分数时,液相成分仅限于部分晶界;在低固相分数时,固相颗粒游离在液相成分之中。半固态金属的金属学和力学主要有以下几个特点:(1)由于固液共存,在两者界面熔化、凝固不断发生,产生活跃的扩散现象。因此溶质元素的局部浓度不断变化

(2)由于晶粒间或固相粒子间夹有液相成分,固相粒子间几乎没有结合力,因此,其宏观流动变形抗力很低

(3)随着固相分数的降低,呈现黏性流体特征,在微笑外力作用下即可很容易变形流动。

(4)当固相分数在极限值(约75%)以下时,浆料可以进行搅拌,并可很容易混入异种材料的粉末、纤维

(5)由于固相粒子间几乎无结合力,在特定部位虽然容易分离,但由于液相成分的存在,又可很容易地将分离的部位连接形成一体,特别是液相成分很活跃,不仅半固态金属间的结合,而且与一般固态金属材料也很容易形成很好的结合。

(6)即使是含有陶瓷颗粒、纤维等难加工性材料,也可通过半熔融状态在低加工力下进行成形加工。

(7)当施加外力时,液相成分和固相成分存在分别流动的情况。虽然施加外力的方法和当时的边界约束条件可能不同,但一般来说,存在液相成分先行流动的倾向或可能性

(8)上述现象在固相分数很高或很低的情况下都很难发生,主要是在中间

固相分数范围或低加工速度情况下显著。

2.2半固态金属加工的优点

半固态金属相比固态金属有较低的流动应力,相比液态金属有较高的私度和较低的热容量,因此半固态金属成形相比传统的固态、液态成形,具有以下优点:

(1)半固态金属的成形应力显著降低,可以进行复杂形状成形,成形速度提高,加工周期缩短,机械加工少,材料利用率高,可以实现近净成形,成本降低,性能与固态金属锻件相当。

(2)半固态金属充型平稳,降低了气孔率凝固收缩小,不易出现疏松、缩孔,提高了致密性凝固过程中不易发生长程枝晶间液体流动,形成宏观偏析较少,组织更加均匀。

(3)半固态金属充型温度低,减轻了对模具和设备的热冲击,有利于模具工作条件的改善和模具寿命的提高。

(4)半固态金属粘度较高,可以方便地加人增强材料(颗粒或纤维)而制备复合材料,同时可以解决制备复合材料时非金属材料的飘浮、偏析以及与金属基体不润湿等技术难题,为复合材料的廉价生产开辟了一个新途径。

半固态金属成形也有其局限性,例如:对温度、固相率等工艺参数控制严格,对实现自动化生产不利二次重熔和加热处理要求较高,需要较好的加工设备和控制系统。

3.半固态金属加工技术

3.1半固态加工的基本工艺方法

根据半固态成形之前坯料不同的加热流程,半固态成形又可以进一步划分为泥态成形(Mushy process)、流变成形(Rheo-process)、触变成形

(Thixo-process)。

(1)泥态成形(Mushy process)是通过对液态合金进行电磁搅拌并冷却至室温,获得具有球状晶粒的金属坯料,再将该坯料加热至半固态温度区间完成最终变形。

(2)流变成形(Rheo-process)则是省去了冷却至室温这一工序,对已冷却至半固态温度区间的完成球化处理的金属浆料直接进行成形

(3)触变成形(Thixo-process)是一种将半固态坯料加热到有50%左右体积液相的半固态状态,然后置放在具有略高预热热温度的模具型槽内进行一次模锻成形,获得与所需成品零件接近尺寸产品的工艺。

3.2半固态坯料或浆料的制备方法

(1)液相法,如机械搅拌法和电磁搅拌法

(2)控制凝固法,即通过控制液态金属生成枝晶的外部条件或加入某种添加剂,以细化晶粒,从而有利于二次重熔过程中组织的球化

(3)固相法,如喷射沉积法,再结晶重熔法(RAP)、应变诱导熔化激活法(SIMA)和粉末冶金法

(4)其他方法,倾斜冷却板制备方法、液态异步熔化激活法、超声振动法、粉末冶金法、低过热度铸造法等等

3.半固态金属加工技术的发展趋势及前景

(1)有色金属及其合金的低熔点材料半固态成形研究

20世界70年代以来,美国、日本等国针对铝、镁、铅、铜等的合金进行了

研究,其重点主要放在成形工艺的开发上。半固态加工实验方面的研究主要集中在浆料制备和半固态加工材料的成形。理论上的研究主要是围绕与工艺实现和试样组织、性能等有关方面进行。

(2)高熔点黑色金属的半固态成形研究

高熔点黑色金属材料半固态浆料制备方法、成形的研究现状和发展趋势:高熔点黑色金属半固态浆料或坯料的制备方法研究(机械搅拌法电磁搅拌法);黑色金属半固态成形加工方法研究(压铸、锻造、轧制)。

德国亚琛工业大学的Puttgen等人之出若要实现钢铁材料的半固态成形产业化应用,必须解决以下三个问题,第一,适于半固态成形钢铁材料的选择与设计,第二,适用于钢铁材料半固态成形的模具、工具材料的选择和设计,第三,半固态成形前后钢铁材料的热处理工艺开发与设计

(3)从已经举办过的多届半固态国际会议(S2P)的学术文章看,各国学者的研究工作多是集中在半固态坯料的制备方法、二次重熔、流变压铸和触变压铸。其研究目的旨在寻找更简单、更有效的半固态制坯方法和降低半固态加工成本,从而促进半固态加工在工业上推广和应用,但对如何提高半固态加工制件的性能研究,尤其是半固态制件在成形过程中,由于凝固不均匀和成形应力分布不均匀性导致制件各部性能的不均匀性,甚至产生内部缺陷的研究少有报道。

实际上,目前半固态成形工艺主要应用在汽车、电子产品、仪表等行业。4.结语

半固态金属成形技术是工业发展的一个新领域,尤其是航天航空"军工和汽车工业等行业向着轻量"节能"优质"安全的方向发展,给半固态金属成形技术带来了广阔的市场,福建瑞奥麦特轻金属公司已成功地把半固态成形技术运用在汽车部件及电子等领域。发挥半固态成形技术的优点,加强半固态成形技术的基础理论和工艺控制的研究,是未来半固态成形技术的发展方向。

目前世界各国正在对半固态成形技术进行更为深人的研究,着重于优质坯料的制备、成形工序的简单流程化、先进设备的研发、工艺参数的精确控制等,其发展前景较为乐观。

参考文献:

[1]谢建新.材料加工新技术与新工艺.冶金工业出版社,2004.3

[2]徐研.半固态材料成形技术的研究和应用.科技经济导刊,2016.04

[3]孟毅.半固态成形工艺特点及发展现状.精密成形工程,2016.07

[4]唐晓龙.浅析半固态金属材料的制备技术.世界有色金属,2016.3

[5]罗晓强.李正阳.燕青芝.半固态金属成形技术的研究发展.材料热处理.2015.6:(135-137)

[6]赵祖德.罗守靖.轻合金半固态成形技术.化学工业出版社.2007.6

金属半固态成型技术发展详解

4 金属半固态加工 4.1概述 4.1.1半固态加工的概念与特点 4.1.1.1半固态加工的概念 传统的金属成形主要分为两类:一类是金属的液态成形,如铸造、液态模锻、液态轧制、连铸等;另一类是金属的固态成形,如轧制、拉拔、挤压、锻造、冲压等。在20世纪70年代美国麻省理工学院的Flemimgs教授等提出了一种金属成形的新方法,即半固态加工技术。金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形(rheoforming);如果将流变浆料凝固成锭,接需要将此金属锭切成一定大小,然后重新加热(即坯料的二次加热)至金属的半固态温度区,这时的金属锭一般称为半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形(thixoforming)。半固态金属的上述两种成形方法合称为金属的半固态成形或半固态加工(semi-solid forming or processing of metals),目前在国际上,通常将半固态加工简称为SSM(semi-solid metallurgy)。 就金属材料而言,半固态是其从液态向固态转变或从固态向液态转变的中间阶段,特别对于结晶温度区间宽的合金,半固态阶段较长。金属材料在液态、固态和半固态三个阶段均呈现出明显不同的物理特性,利用这些特性,产生了凝固加工、塑性加工和半固态加工等多种金属热加工成形方法。 凝固加工利用液态金属的良好流动性,以完成成形过程中的充填、补缩直至凝固结束。其发展趋势是采用机械压力替代重力充填,从而改善成形件内部质量和尺寸精度.但从凝固机理角度看,凝固加工要想完全消除成形件内部缺陷是极其困难的,甚至是不可能的。 塑性加工利用固态金属在高温下呈现的良好塑性流动性,以完成成形过程中的形变和组织转变。与凝固加工相比,采用塑性加工成形的产品质量明显好,但由于固态金属变形抗力高,所需变形力大,设备也很庞大,因此要消耗大量能源,对于复杂零件往往需要多道成形工序才能完成。因此,塑性加工的发展方向是降低加工能耗和成本、减小变形阻力、提高成形件尺寸精度和表面与内部质量。由此出现了精密模锻、等温锻造和超塑性加工等现代塑性加工方法。 半固态加工是利用金属从液态向固态转变或从固态向液态转变(即液固共存)过程中所具有的特性进行成形的方法。这一新的成形加工方法综合了凝固加工和塑性加工的长处。即加工温度比液态低、变形抗力比固 态小,可一次大变形量加工成形形 状复杂且精度和性能质量要求较高 的零件。所以,国外有的专家将半 固态加工称为21世纪最有前途的材 料成形加工方法。 图4-l表示金属在高温下 三态成形加工方法的相互关系。

半固态镁合金成形技术概述

重庆科技学院 课程结业考试(论文)题目半固态镁合金成形技术概论 院(系)冶金与材料工程学院 专业班级材料工程技术08-02 学生姓名刘明强学号2008630578 任课教师孙建春职称讲师 评定成绩___ _ __ 评语: 年月日

半固态镁合金成形技术概述 姓名:刘明强学号:2008630578 摘要:半固态镁合金制备是在20世纪末新起的最新制备镁合金的技术,半固态技术被认为是21世纪最具发展前途的近终成形技术之一[1]。本文旨在为大家阐述半固态镁合金成形技术的基本概论,包括镁合金的相关阐述(性能、应用、加工技术等);半固态成形技术的概念,半固态金属浆料的制备,以及半固态加工材料的制备技术等;重点是镁合金与半固态成形技术的结合,包括半固态镁合金浆料的制备,半固态镁合金材料的制备,半固态镁合金材料的热处理,半固态镁合金成形技术的国内国外现状和未来展望,同时阐述半固态镁合金制备的优缺点。 关键词:半固态、镁合金、浆料、半固态成形、流变成形 前言:镁及镁合金作为一种新型的应用材料,近年来已广泛应用于军用、民用领域,如在航空航天、航海、通信、医疗、广播电视、音响影像器材、微电子技术、光学仪器等领域内,在汽车、摩托车、工具、家电电器、手机、计算机及电子设备等制品中都可看到镁合金的终极,在炼钢脱硫、铝合金生产、防腐工程中都离不开镁原料。在汽车行业,上海汽车集团公司、一汽集团、东风汽车集团、江铃汽车公司等国内大的汽车公司均开始使用镁制零部件。根据相关研究,汽车单车自重没减轻100Kg,每百公里耗油可减少0.7L左右,每节省1L燃料可减少二氧化碳排放量 2.5g。而通过镁合金零部件的使用可有效的实现汽车轻量化目标。镁合金应用于交通工具,除减中和降低油耗,还可以提高整车加速、制动性能,还能降低行驶振动和噪声,提高舒适度,可以加快散热,使发动机的综合性能提高一个档次,具有良好的经济效益。 镁合金的半固态成形目前是各国研究的热点:Ya-no Ei ji等利用余热的冷却斜槽近液相线铸造或得了半固态AZ91D镁合金组织;J M Kim等利用两步加热法得到了半固态AZ91镁合金浆料;Czerwinski F开发了半固态加工与挤压、喷射成形结合在一起的心的镁合金加工技术,一Mg-9% Al-1%Zn为例分析力组织性能变化规律;Chen J Y和Fan Z研究了半固态浆料的流变模型;Koren Z等研究了AZ91和AM503镁合金半固态热压铸和冷压铸成形。[2] 可以看到镁合金半固态的研究虽然很多,但主要之中在浆料制备、二次加热重熔、触变成形几个方面,仅有几个流变成形研究也只是在实验室,工艺还不成

半固态成型技术

半固态成形技术及其应用 【摘要】本文介绍了半固态成形技术的基本原理、技术优点,重点论述了搅拌、非搅拌浆料制备方法的优缺点及触变、流变、注射成形工艺的特点,并阐述了半固态成形技术工业化应用的现状和发展前景. 【关键词】半固态成形技术原理浆料制备成形方法应用 1前言 20世纪70年代,美国麻省理工学院的Flemimgs提出了金属半固态成形技术(SSM),就是金属在凝固过程中,进行剧烈搅拌,或控制固一液态温度区间,得到一种液态金属母液中均匀地悬浮着一定固相组分的固液混合浆料(固相组分甚至可高达60%),这种半固态金属浆料具有流变特性,即半固态金属浆料具有很好的流动性,易于通过普通加工方法制成产品,采用这种即非完全液态,又非完全固态的金属浆料加工成形的方法,就称为半固态成形技术。 2半固态成形工艺的基本原理 2.1半固态组织的形成机理 2.1.1枝晶断裂机制 在合金的凝固过程中,当结晶开始时晶核是以枝晶方式生长的。在较低温度下结晶时,经搅拌的作用,晶粒之间将产生相互碰撞,由于剪切作用致使枝晶臂被打断,这些被打断的枝晶臂将促进形核,形成许多细小的晶粒。随着温度的降低,这些小晶粒从蔷薇形结构将逐渐演化成更简单的球形结构。 2.1.2 枝晶熔断机制 在剧烈的搅拌下,晶粒被卷入高温区后,较长的枝晶臂容易被热流熔断,这是由于枝晶臂根部的直径要比其它部分小一些,而且二次枝晶臂根部的溶质含量要比它表面稍微高一些,因此枝晶臂根部的熔点要低一些,所以搅拌引起的热扰动容易使枝晶臂根部发生熔断。枝晶碎片在对流作用下,被带入熔体内部,作为新的长大核心而保存下来,晶粒逐渐转变为近球形。 2.1.3 晶粒漂移、混合—抑制机制 在搅拌的作用下,熔体内将产生强烈的混合对流,凝固过程是就在激烈运动的条件下进行,因而是一种动态的凝固过程。结晶过程是晶体的形核与长大的过程,强烈的对流使熔体温度均匀,在较短的时间内大部分熔体温度都降到

半固态流变铸造和触变铸造

半固态流变铸造和触变铸造 所谓流变铸造(压铸)是将液态金属制备成半固态浆糊料然后将其压铸成形的方法,主要设备由一台流变浆液连续制备器和一台压铸机组成。 所谓触变铸造(压铸),是将由浆液连续制备器出来的浆液不直接压铸成形,而先制成料锭,并将料锭熔成一定的尺寸,可作为商品出售,用户在使用时先将其加热,并送入压铸机内压铸成型的方法。整个系统包括压铸机、感应炉和刚玉质的料锭软度指示计组成。 1970年,美国马萨诸塞州技术研究所在研究部分凝固合金的流动性时,意外地发现了应用半凝固金属糊状浆料进行压铸的可能性。这种糊状浆料的初生固体颗粒包含有粗化的树枝晶或是球形的团块。它们彼此不连结,并且冷在液态基质中,其固相体积比可高达80%,可以在任意长的搅拌时间内阻止这些固相颗粒进行接触,得到具有流变性和触变性的半固态糊浆料(其粘度随剪切速率或随时间的增加而减小,并有可逆性)。近30年来,有关流变铸造和触变铸造压铸专利技术的报道不断涌现。 由于二次加热能耗大,工艺过程较复杂,加之具有触变性的金属材料种类不多。因此,半固态金属铸造的工业应用受到限制。近年来,世界各国的研究人员们在研究新的半固态金属压铸工艺技术时,将塑料的注射成形原理应用于固态金属铸造工艺中,形成了流变注射成形(1theo.moulding)和触变注射成形(1~ixomoulding)新工艺,它们集半固态金属浆料的制备、输送、成形等过程于一体,较好地解决了半固态金属浆料的保存、输送、成形控制困难等问题,使得半固态金属铸造技术的大量工业应用出现了光明的前景。 (一)触变注射成形 由美国’Fhixomat公司提出的半固态金属触变注射成形工艺(‘rhixomoulding),采用了塑料注射成型的方法和原理,它由给料器、驱动及注射系统、剪切螺旋、加热剪切镁合金的粒料或屑料可变成含固相率在60%以上的半固态浆料,剪切螺旋的平移速度为380cra/s。 其成形过程为:被制成粒料、屑料或细块料的镁合金原料从料斗中加入;一定量的半固态金属液在螺旋的前端累积;最后在注射缸的作用下,半固态金属液被注射入模具成形。 (二)流变注射成形 美国(~onell大学的K.K.Wang等,首先将半固态金属流变铸造(sSM.Rheocasting)结合起来,形成了一种 称之为“流变注射成形”(]Rheomoulding)的半固态金属成形新工艺。 流变注射成形的工作原理是:液态金属依靠重力从熔化保温炉中进入搅拌筒体,然后在螺旋的搅拌作用下(螺旋没有向下的推压力)冷却至半固态,积累至一定量的半固态金属液后,由注射装置注射成形。上述过程全在保护气体下进行。 温度控制精度是半固态金属成形的关键因素之一。

第六章半固态金属加工

第六章半固态金属加工技术 6.1半固态金属加工技术概论 20世纪70年代初,美国麻省理工学院(MIT)的Flemings教授等研究者们提出了一种金属成型新方法,即半固态加工技术(Semi-Solid Metal or Semi-Solid Forming,简称SSM 或SSF)。所谓半固态加工是指金属在凝固过程中,对其施以剧烈的搅拌或扰动作用,得到一种均匀悬浮着一定量的球状初生固相或退化的枝晶固相的固-液混合浆料,进而进行加工成型的一种新技术。这种固-液混合浆料具有很好的流变性能,因此称为流变浆料。依据流变料浆是否直接用于金属件的加工成形,半固态加工又分为半固态流变成型和半固态触变成型两类。前者是将制备好的半固态浆料直接用于成型,后者是将流变浆料凝固成锭,在成形时,重新加热至金属的半固态温度区,恢复其流变特性,实现加工成型。流变料浆凝固成的金属锭一般称为半固态金属坯料。 金属材料从形态来分,主要有两种状态,液态和固态。相应地传统的金属成形主要分为两类,金属液态凝固成形,如铸造、液态模锻、液态轧制、连铸等,和金属塑性加工成形,如轧制、拉拔、挤压、锻造、冲压等。凝固成形利用了液态金属的良好流动性,实现成形过程中的充填、补缩,并且可以借助机械压力充填型腔,改善成形件内部质量和尺寸精度。但从凝固机理知道,凝固加工要想完全消除成型件内部的缺陷是极其困难的,甚至是不可能的。塑性加工成形是利用固态金属在高温下呈现的良好塑性流动性,在外力的作用下,完成成形过程中的形变和组织转变。与凝固加工相比,采用塑性加工成形的产品质量明显提高,但由于固态金属变形抗力高,所需变形力大,因此要消耗大量能源,对于复杂零件需要多道工序才能完成。 半固态是金属介于液态和固态的中间态,是金属从液态向固态转变或从固态向液态转变的中间阶段,即金属固相和液相共存的一种状态,对于结晶温度区间宽的合金,半固态阶段较长。金属在半固态呈现出与液态金属、固态金属明显不同的物理特性,半固态加工技术正是利用这些特性,而发明的一种不同于传统的

半固态金属成形应用的新进展与前景展望

半固态金属成形应用的新进展与前景展望 毛卫民赵爱民钟雪友 摘要论述了半固态金属坯料制备工艺、成形工艺、半固态金属成形件的性能和半固态金属成形在一些发达国家应用的最新进展,并展望了半固态金属成形在我国应用的前景及意义。 关键词:半固态金属流变成形触变成形力学性能 在传统的铸造中,浇注的金属都是过热的金属液,如压铸、挤压铸造(液态模锻);而在传统的金属锻造中,坯料都是固态金属。但从70年代至今,国外研究开发出一种崭新的零件成形工艺,称为金属的半固态加工。所谓的金属半固态加工就是在金属凝固过程中,对其施以剧烈地搅拌作用,充分打碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%),即流变浆料,利用这种流变浆料直接进行成形加工,这种方法称之为半固态金属的流变成形(rheoforming);如果将流变浆料凝固成铸锭,再按需要将此金属铸锭分切成一定大小,使其重新加热(坯料的二次加热)至金属的半固态区,这时的金属铸锭一般称为半固态金属坯料,利用金属的半固态坯料进行成形加工,这种方法称之为触变成形(thixoforming)。半固态金属的上述两种成形方法合称为金属的半固态成形或半固态加工(semi-solid forming or processing of metals)[1~3]。 半固态金属成形具有许多独特的优点:铸件凝固收缩减少,成形不易裹气,因此铸件致密,可以热处理强化;铸件晶粒细小,不存在宏观偏析,性能更均匀;半固态金属成形速度高,且易于近终化(net-shape)成形,机加工量减少;模具寿命长,所以半固态金属成形技术在国外获得了广泛的应用。 1半固态金属坯料的生产 半固态金属坯料的制备是金属半固态成形的基础,目前进入工业应用的制备工艺主要有电磁搅拌、应变激活方法。 1.1电磁搅拌工艺 电磁搅拌方法则利用电磁感应在凝固的金属液中产生感应电流,感应电流在外加磁场的作用下促使金属固液浆料激烈地搅动,使传统的枝晶组织转变为非枝晶的搅拌组织。电磁搅拌不

(工艺技术)半固态金属铸造工艺

半固态金属铸造工艺 3.1 概述 自1971 年美国麻省理工学院的D.B.Spencer 和M.C.Flemings 发明了一种搅动铸造(stir cast )新工艺,即用旋转双桶机械搅拌法制备出Sr15% Pb 流变浆料以来,半固态金 属(SSM铸造工艺技术经历了20余年的研究与发展。搅动铸造制备的合金一般称为非枝晶 组织合金或称部分凝固铸造合金(Partially Solidified Casting Alloys )。由于采用该 技术的产品具有高质量、高性能和高合金化的特点,因此具有强大的生命力。除军事装备上的应用外,开始主要集中用于自动车的关键部件上,例如,用于汽车轮毂,可提高性能、减轻重量、降低废品率。此后,逐渐在其它领域获得应用,生产高性能和近净成形的部件。半固态金属铸造工艺的成形机械也相继推出。目前已研制生产出从600吨到2000吨的半固态 铸造用压铸机,成形件重量可达7kg 以上。当前,在美国和欧洲,该项工艺技术的应用较为广泛。半固态金属铸造工艺被认为是21 世纪最具发展前途的近净成形和新材料制备技术之 一。 3.2 工艺原理 在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2 左右时,枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5-0.6 时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。 3.3 合金制备 制备半固态合金的方法很多,除机械搅拌法外,近几年又开发了电磁搅拌法,电磁脉冲加载法、超声振动搅拌法、外力作用下合金液沿弯曲通道强迫流动法、应变诱发熔化激活法 (SIMA)、喷射沉积法(Spray)、控制合金浇注温度法等。其中,电磁搅拌法、控制合金浇注温度法和SIMA法,是最具工业应用潜力的方法。 3.3.1 机械搅拌法 机械搅拌是制备半固态合金最早使用的方法。Flemings 等人用一套由同心带齿内外筒组成的搅拌装置(外筒旋转,内筒静止),成功地制备了锡- 铅合金半固态浆液;H.Lehuy 等人用搅拌桨制备了铝-铜合金、锌- 铝合金和铝- 硅合金半固态浆液。后人又对搅拌器进行了改进,采用螺旋式搅拌器制备了ZA-22合金半固态浆液。通过改进,改善了浆液的搅拌效 果,强化了型内金属液的整体流动强度,并使金属液产生向下压力,促进浇注,提高了铸锭的力学性能。 3.3.2 电磁搅拌法电磁搅拌是利用旋转电磁场在金属液中产生感应电流,金属液在洛伦磁力的作用 下产生 运动,从而达到对金属液搅拌的目的。目前,主要有两种方法产生旋转磁场:一种是在感应线圈内通交变电流的传统方法;另一种是1993 年由法国的C.Vives 推出的旋转永磁体法,其优点是电磁感应器由高性能的永磁材料组成,其内部产生的磁场强度高,通过改变永磁体的排列方式,可使金属液产生明显的三维流动,提高了搅拌效果,减少了搅拌时的气体卷入。 3.3.3 应变诱发熔化激活法(SIMA) 应变诱发熔化激活法(SIMA是将常规铸锭经过预变形,如进行挤压、滚压等热加工制成半成品棒料,这时的显微组织具有强烈的拉长形变结构,然后加热到固液两相区等温一定时间,被拉长的晶粒变成了细小的颗粒,随后快速冷却获得非枝晶组织铸锭。 SIMA工艺效果主要取决于较低温度的热加工和重熔两个阶段,或者在两者之间再加一

金属半固态加工技术的研究进展

金属半固态加工技术的研究进展3 赵艳君,李逸泰,胡治流 (广西大学材料科学与工程学院,广西南宁530004) 摘 要:金属半固态加工技术是21世纪前沿性金属加工技术,具有高效、节能、近终型生产和成型件性能高等许多优点。本文从金属半固态浆料和坯料制备、半固态金属及合金坯料的二次加热以及半固态成型3个方面论述了半固态加工技术的现状,并指出了当前金属半固态加工技术的研究重点和发展前景。 关键词:半固态浆料;二次加热;触变成型;流变成型 中图分类号:T G146 文献标志码:A R esearch and Development of Semi2solid Metal Processing T echnology ZHAO Yanjun,L I Y itai,HU Zhiliu (College of Materials Science and Engineering,Guangxi University,Nanning530004,China) Abstract:The Semi2solid metal processing technology is an advanced processing technology in21st century,it has mang aolvantages such as saving energy,high efficiency,and net2shaped processing.Research and development of semi2solid form2 ing were described systematically in this paper f rom the following respects:the preparation of semi2solid slurry,remelting technique and semi2solid metal processing technology.Finally,f urthermore research emphasises and prospects are introduced for the semi2solid metal forming at present. K ey w ords:Semi2solid slurry,Remelting,Thixoforming,Rheoforming 1 金属半固态加工技术简介 20世纪70年代初,美国麻省理工学院(M IT)的Flemings等研究者们提出了一种金属成型新方法,即半固态加工技术(Semi2Solid Metal or Semi2 Solid Forming,简称SSM或SSF)。所谓半固态加工是指金属在凝固过程中,对其施以剧烈的搅拌作用或扰动作用,得到一种液态金属母液,其中均匀悬浮着一定量的球状初生固相或退化的枝晶固相的固2液混合浆料(也称流变浆料),对这种浆料进行的加工成型的方法。半固态成型包括半固态流变成型和半固态触变成型两类,前者是将制备好的半固态浆料直接用于成型,如压铸成型(称为半固态流变压铸成型);后者是对制备好的半固态坯料进行重新加热使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压)[1]。 半固态成型方法打破了传统的枝晶凝固模式,开辟了强制均匀凝固的先河,与以往的金属成型方法相比,半固态金属成型在获得均匀细晶组织、提高力学性能、缩短加工工序、节约能源及成型件性能等方面具有明显的优势。目前已有包括中国在内的二十多个国家和地区开展了半固态成型研究。研究对象主要集中在铝合金和镁合金材料的成型。铝合金半固态成型方法主要有流变压铸、触变压铸、触变锻造等;而镁合金半固态成型的成熟技术目前主要有半固态触变注射成型技术[2]。半固态成型技术在美国、日本和欧洲等国已进入规模工业生产阶段,主要应用于汽车、摩托车、通信、电器、兵器、航空航天和医疗器械等领域。近几年,我国的研究者在国家自然科学基金、国家“863”、“973”计划等的支持下,已经在铝合金半固态加工技术开发和应用方面具备了较好的基础。对铝合金半固态加工的关键技术,包括半固态材料制备技术、二次加热技术和半固态压铸技术等方面,具备了向产业化转化的技术基础。 与铝合金、镁合金相比,钢铁材料的半固态成型加工技术无论在基础研究方面,还是在应用技术开发方面都存在很大的差距。由于高温半固态浆料制备、半固态浆料的输送和保温、半固态成型工模具材料的耐高温性能等技术方面的难点,采用半固态加工方法所研究的钢铁材料仅涉及D2、HS62522高速工具钢、100Cr6钢、60Si2Mn弹簧钢、A ISI304 (Cr18Ni8)不锈钢、C80工具钢、铸铁等钢铁材料,半固态加工方法涉及触变压铸、触变锻压、触变挤压和流变轧制、流变锻造及喷铸成型等[3]。 2 金属半固态浆料和坯料制备方法的进展 从经济角度和过程稳定性角度看,半固态金属及合金浆料或坯料的生产都处于非常重要的地位。目前,已研究开发出多种半固态金属浆料或坯料的制备方法,主要有机械搅拌法、电磁搅拌法、应变诱导熔体激活法、低过热度浇注方法、紊流效应方法、

半固态成形技术及应用

半固态成形技术及应用 摘要 介绍了半固态成形技术的工艺原理,分析了机械搅拌、电磁搅拌、应变诱导、冷却斜 坡等浆料制备方法和流变加工、触变加工、注射加工等成形方法。分析了各种计算机模拟技术和模拟方法在半固态成形方面的应用,论述了目前国内外半固态成形技术的应用状况和发展趋势。随着半固态成形技术研究水平的不断提高,成形产品及应用不断增多,发展前景广阔。 关键词: 半固态加工; 浆料制备; 成形工艺; 计算机模拟 0引言 20世纪70年代初,美国麻省理工学院D.B.Sepcner等研究人员在自制的高温粘度计中测量Sn-15Pb合金高温粘度时,发现了金属在凝固过程中的特殊力学行为图,即金属在凝固过程中进行强力搅拌,使枝晶破碎,得到一种液态金属母液中均匀地悬浮着一定固相组分的固液混合浆料(固相率甚至可高达60%),具有很好的流动性,易于通过普通加工方法制成产品,并冠以半固态加工[1],人们一直沿用至今。 半固态成形技术与其它的成行技术的区别在于:①半同态浆料具有流变性和触变性,变形抗力小,可提高成形速度,进行复杂件成形,缩短加工周期,利于节能节材,也可进行连续形状的高速成形;②与液态金属加工相比,半固态浆料随着同相分数的降低,呈现粘性流体特性,在微小外力作用下可发生变形流动,但粘度比液态金属高,容易控制;③当固相分数在极限值(约75%)以下时,浆料可以进行搅拌,并可很容易混入异种材料的粉末、纤维,完成复合材料制备和成形;④应用广泛,凡具有固液两相区的合金均可实现半固态加工,适用于多种加工工艺,如铸造、轧制、挤压和锻压,也正是这个优点,才产生了多种金属半固态成形工艺[2],所以被誉为2l世纪最有发展前景的现代加工新技术。 半固态金属成形过程的模拟仿真,如半同态材料的二次加热过程、凝固过程的温度场的模拟仿真,充型过程流动场的模拟仿真,触变成形过程工件应力应变场的模拟仿真和组织变化的模拟仿真等,通过对这些单一或复合过程的模拟仿真技术的研究,可以对SSM过程中产生的诸如裂纹、气孔缺陷等各种品质问题进行分析,对工艺方案进行优化,对产品品质和性能进行预测,从而达到改善产品品质、提高生产率和降低成本的目的。 半固态金属成形技术在许多发达国家如美国、意大利、瑞士、法国、德国、日本等已进入了工业应用阶段。半固态金属成形制品的主要市场是汽车工业,如空压机、制动器、发动机、燃料供给装置、悬挂装置及汽车轮毂等。由于制品质量优异,大量用于安全性能要求较高的地方。另外,在电子、军事和娱乐设施等方面也有着广泛的用途。而我国的半固态金属加工技术起步较晚,开始于20世

铝合金半固态锻造工艺研究

铝合金半固态锻造工艺研究

————————————————————————————————作者:————————————————————————————————日期:

轻金属半固态模锻工艺研究 1、前言 20世纪70年代初,美国麻省理工学院研究人员发现,金属材料在凝固过程中施加强烈的搅拌,可以打破传统的枝晶凝固模式,形成近球状的组织,从而得到一种液态金属母液中均匀悬浮着一定球状或类球状初生固相的固—液混合浆料,即半固态浆料,这种浆料具有良好的流变性和触变性,采用这种既非液态又非完全固态的金属浆料跟常规加工方法如压铸、挤压、模锻等结合实现成形加工的方法称为半固态金属加工(Semi-Solid MetalProcessing,简称SSM)。从理论上讲,凡具有两相区的合金及其复合材料均可以实现半固态成形加工。该方法之所以能够发展成为一种先进的成形加工技术,完全基于半固态金属材料所具有的特殊流变学性能,即触变性:当半固态金属坯料所受的剪切力不大时,坯料具有很高的粘度近似固态,可以方便地放置和搬运;而当受到较大剪切变形时,坯料便表现出较小的粘度可以像液态一样随意流动成形。但是采用具有枝晶状初生相组织的固—液混合体成形加工时,由于枝晶状组织的相互搭结、缠绕,变形阻力大,流动性很差,固液相极易分离,产生严重的热裂与宏观偏析。因此,半固态金属成形具有多方面的优点:相对于普通液态成形(如压力铸造或挤压铸造),由于半固态浆料中已有一半左右的固相存在而且温度低于液态金属近100℃,因此可以消除常规铸件固有的皮下气孔和疏松等缺陷,而且模具寿命成倍提高;相对于常规固态成形(如模锻或挤压),由于半固态浆料具有很好的流动性,因此变形抗力极低,可以一次加工成形复杂的零件,减少了成形道次、模具投入及后续机加工量,而力学性能则与固态锻造相当。正是半固态金属锻造技术具有高效、优质、节能和近终成形等突出优点,可以满足现代汽车制造业对有色合金铸件高致密度、高强度、高可靠性、高生产率和低成本等要求,因此倍受汽车制造厂商以及零部件配套生产厂商的重视。 半固态金属锻造与半固态金属触变压铸实质上并无明显差别,其主要不同之处在于前者是用半固态金属在锻造设备上加工成形。锻造半固态金属可以在较低的压力下进行,这使得一些传统锻造无法成形的形状复杂构件可以在半固态金属锻造方法来生产,其锻造设备可分为立式和卧式压力机两种。半固态锻造是将加热到半固态的坯料,在锻模中进行以压缩变形为主的模锻以获得所需形状、性能制品的加工方法。半固态锻造可以成形变形力较大的高固相率的半固态材料,并

半固态金属加工成形

半固态金属加工成形 s2*******材料国重 摘要:半固态金属成形技术是现代工业发展的一个新领域。本文主要对半固态金属成形技术进行了简单的分析、归纳和论述。然后根据半固态金属加工成形技术的特点展望半固态金属加工的发展趋势及应用前景。 关键词:半固态成形,加工技术,趋势及前景 1.前言 半固态成形工艺,泛指对温度处于固相线温度与液相线温度之间的半固态金属坯料进行的成形工艺。该工艺的基本理念及工艺于20世纪70年代由美国麻省理工学院的弗莱明斯教授以及他的科研团队所提出和创立。其工艺特征是对正在凝固的金属进行强烈搅拌或通过控制凝固条件,抑制树枝晶的生成或破碎所生成的树枝晶,制备具有等轴、均匀、细小的初生相均匀分布于液相中的悬浮半固态浆料。此种浆料在外力的作用下,即使固相率达到60%。仍具有较好的触变流动性,可以利用压铸、挤压、模锻、铸轧等工艺进行加工成形。 目前,大部分金属构件的制造依赖于传统的铸造和锻造工艺,然而,在全球倡导“节能减排”、“绿色制造”的今天,传统的铸造和锻造工艺在材料质量利用率和材料性能利用率的双重标准的考量下,都显示出了一定的局限性。 2.半固态金属加工的特点 2.1半固态金属的特点 半固态金属(合金)的内部特征是固液相混合共存,在晶粒边界存在金属液体,根据固相分数不同,其状态不同。 在高固相分数时,液相成分仅限于部分晶界;在低固相分数时,固相颗粒游离在液相成分之中。半固态金属的金属学和力学主要有以下几个特点:(1)由于固液共存,在两者界面熔化、凝固不断发生,产生活跃的扩散现象。因此溶质元素的局部浓度不断变化 (2)由于晶粒间或固相粒子间夹有液相成分,固相粒子间几乎没有结合力,因此,其宏观流动变形抗力很低 (3)随着固相分数的降低,呈现黏性流体特征,在微笑外力作用下即可很容易变形流动。 (4)当固相分数在极限值(约75%)以下时,浆料可以进行搅拌,并可很容易混入异种材料的粉末、纤维 (5)由于固相粒子间几乎无结合力,在特定部位虽然容易分离,但由于液相成分的存在,又可很容易地将分离的部位连接形成一体,特别是液相成分很活跃,不仅半固态金属间的结合,而且与一般固态金属材料也很容易形成很好的结合。 (6)即使是含有陶瓷颗粒、纤维等难加工性材料,也可通过半熔融状态在低加工力下进行成形加工。 (7)当施加外力时,液相成分和固相成分存在分别流动的情况。虽然施加外力的方法和当时的边界约束条件可能不同,但一般来说,存在液相成分先行流动的倾向或可能性 (8)上述现象在固相分数很高或很低的情况下都很难发生,主要是在中间

半固态金属铸造工艺

精心整理 半固态金属铸造工艺 3.1概述 3.2工艺原理 在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2左右时,枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5-0.6时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。 3.3合金制备 制备半固态合金的方法很多,除机械搅拌法外,近几年又开发了电磁搅拌法,电磁脉冲加载法、超声振动搅 -铝合金和铝-1993SIMA 状组织。该方法的特点是,不需要加入合金元素也无需搅拌。V.Dobatkin 等人提出了在液态金属中加细化剂,并进行超声处理后获得半固态铸锭的方法,称之为超声波处理法,如图1所示。 图1超声波处理法示意图 3.4成形方法 半固态合金成形方法很多,主要有: (1)流变铸造(Rheoforming,Rheocast ) 图2触变铸造工艺示意图 1压铸合金2连续供给合金液3感应加热器4冷却器5流变铸锭6压射室7压铸模 在金属液从液相到固相冷却过程中进行强烈搅动,在一定固相分数下,直接将所得到的半固态金属浆液压铸或挤压成形,见图2。

如R.Shibata等人曾将用电磁搅拌方法制备的半固态合金浆液直接送入压铸机射室中成形。该方法生产的铝合金铸件的力学性能较挤压铸件高,与半固态触变铸件的性能相当。问题是,半固态金属浆液的保存和输送难度较大,故实际投入应用的不多。 (2)触变铸造(Thixoforming,Thixocast) 将已制备的非枝晶组织锭坯重新加热到固液两相区达到适宜粘度后,进行压铸或挤压成形,如图3所示。 图3触变铸造工艺示意图 1坯料2软度指示计3坯料重新加热装置4压射室5压铸模 美国的EOPCO、HPMCorp.、PrinceMachine、THTPresses以及瑞士的Buhler公司、意大利的IDRAUSA、ItalpresseofAmerica、加拿大的ProducerUSA、日本的ToshibaMachineCorp和UBEMachineryServices等均已能生产半固态铝合金触变成形专用设备。该方法对坯料的加热、输送易于实现自动化,故是当今半固态铸造的主要工艺方法。 (3 (4 4所示。 (5 (1) 1 2 3 4 5 6 7 (2) 1)铸件质量高。因晶粒细化、组织分布均匀、体收缩减少、热裂倾向下降,基体上消除了缩松倾向,力学性能大幅度提高。 2)凝固收缩小,故成形后尺寸精度高,加工余量小,近净成形。 3)成形合金范围广。非铁合金有铝、镁、锌、锡、铜、镍基合金;铁基合金有不锈钢、低合金钢等。 4)制造金属基复合材料。利用半固态金属的高粘度,可使密度差大、固溶度小的金属制成合金,也可有效地使用不同材料混合,制成新的复合材料。 3.6半固态铸造技术的最新发展 3.6.1镁合金半固态温度区间扰动和浇温对铸态组织的影响 AZ91HP镁合金在不锈钢坩埚电阻炉中升温至720℃保温10分进行精炼处理后,在液相线附近进行短时保温处理,可减小枝晶组织形成趋势;降低处理温度、对熔体进行扰动均加速晶粒向等轴形乃至球形发展;在半固态温度区间对熔体吹氩(Ar)处理,使熔体扰动,提高了形核率,加速了

浅谈金属半固态成形技术

江苏理工学院 JIANGSU UNIVERSITY OF TECHNOLOGY 材料先进制备与成形加工技术 课程论文 学院名称:材料工程学院 专业:机械工程 2013年04 月 浅谈金属半固态成形技术 摘要本文综述了半固态成形技术,介绍了半固态成形技术的定义及其成形工 艺,研究现状及发展应用,半固态浆料的制备方式及浆料的特点,最后对半固态技术进行了展望。 关键词半固态成形触变成形流变成形 1.半固态成形技术定义

金属半固态加工就是在金属凝固过程中,对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固-液混合浆料(固相组分一般为50%左右),即流变浆料,利用这种流变浆料直接进行成形加工的方法称之为半固态金属的流变成形;如果将流变浆料凝固成锭,接需要将此金属锭切成一定大小,然后重新加热(即坯料的二次加热)至金属的半固态温度区,这时的金属锭一般称为半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形。半固态金属的上述两种成形方法合称为金属的半固态成形技术。如下图一所示。 图一半固态成形技术 2、半固态加工的成形工艺 目前,金属半固态成形的工艺路线主要有两种:一种是触变成形,把制浆与成形结合在一起;另一种是流变成形,将制坯和成形结合在一起。 2.1 触变成形 触变成形的工艺路线是将半固态合金浆料铸造成锭坯,根据产品尺寸需要进行下料,经二次加热后,在半固态温度下进行压力加工成形。由于半固态坯料的加热、输送工艺较为方便,并易于实现自动化操作,因而触变成形工艺在得到了广泛应用。如半固态金属触变压铸、触变锻造、触变挤压工艺目前都已成熟,并进入实际应用。随着触变成形工艺的推广和应用,生产实践中发现触变成形工艺也存在一些不足,如成本高,坯料损耗过多,坯料重熔时固相率难以精确控制。工艺图如图二所示。 2.2 流变成形 流变成形是将制备的半固态合金熔体直接转移到成形设备进行成形的工艺方法。Flemings在20纪70年代通过间歇式或连续式机械搅拌制备半固态金属浆料,通过流变铸造,在制备半固态浆料的同时也直接进行了流变压铸成形各种零件。由于直接获得的半固态金属浆料的保存和输送很不方便,因而流变成形技术进展很缓慢。但与触变成形相比,流变成形有工艺流程短、生产效率高等优点,近年来引起了人们的关注,从而出现了一些流变成形新技术。

半固态加工技术

半固态金属加工技术 摘要: 半固态加工技术是一种新的材料成形技术。作者综述了半固态金属的成形工艺、坯料制备工艺、微观组织、国内外研究应用情况, 展望了半固态金属加工技术的前景, 并提出了应对措施。 关键词: 半固态; 成形工艺; 浆料; 加工技术 Abstract: Semi-solid metal forming is a new process for metal form ing.The forming process, block preparation, mi-crostructure and its internal and external application are described in the paper.The prospect of semi-solid metal forming is displayed. Key words: semi-solid; forming process; serous material; forming 引言:半固态金属加工技术(semi- solid metal forming ), 简称SSM。它是利用半固态金属相当低的剪切应力以及很好流动性的特点, 将这种既非完全液态, 又非固态的金属浆料加工成型的一种新型加工方法。SSM应用范围广, 存在固液两相区的合金均可实现, 并能适用于铸造、挤压、锻压、焊接等多种加工工艺。其充型平稳, 加工温度低, 凝固收缩小, 因而铸件尺寸精度高, 表面平整光滑, 铸件内部组织致密, 气孔、偏析等缺陷少, 晶粒细小, 力学性能高。另外, 半固态合金流动应力低, 成形速度快, 由于成形温度低, 对模具的热冲击低, 因而铸模寿命大幅提高, 并且与普通铸造相比可节约能源。因此, 半固态金属成形技术得到了国际上的普遍重视, 成为材科学科的研究热点。 一、半固态成形工艺

半固态金属铸造工艺

半固态金属铸造工艺(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

半固态金属铸造工艺 3.1 概述 3.2 工艺原理 在普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2左右时,枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌,则使普通铸造成形时易于形成的树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5-0.6时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形。 3.3 合金制备 制备半固态合金的方法很多,除机械搅拌法外,近几年又开发了电磁搅拌法,电磁脉冲加载法、超声振动搅拌法、外力作用下合金液沿弯曲通道强迫流动法、应变诱发熔化激活法(SIMA)、喷射沉积法(Spray)、控制合金浇注温度法等。其中,电磁搅拌法、控制合金浇注温度法和SIMA法,是最具工业应用潜力的方法。 3.3.1机械搅拌法 机械搅拌是制备半固态合金最早使用的方法。Flemings等人用一套由同心带齿内外筒组成的搅拌装置(外筒旋转,内筒静止),成功地制备了锡-铅合金半固态浆液;H.Lehuy等人用搅拌桨制备了铝-铜合金、锌-铝合金和铝-硅合金半固态浆液。后人又对搅拌器进行了改进,采用螺旋式搅拌器制备了ZA-22合金半固态浆液。通过改进,改善了浆液的搅拌效果,强化了型内金属液的整体流动强度,并使金属液产生向下压力,促进浇注,提高了铸锭的力学性能。 3.3.2 电磁搅拌法 电磁搅拌是利用旋转电磁场在金属液中产生感应电流,金属液在洛伦磁力的作用下产生运动,从而达到对金属液搅拌的目的。目前,主要有两种方法产生旋转磁场:一种是在感应线圈内通交变电流的传统方法;另一种是1993年由法国的C.Vives推出的旋转永磁体法,其优点是电磁感应器由高性能的永磁材料组成,其内部产生的磁场强度高,通过改变永磁体的排列方式,可使金属液产生明显的三维流动,提高了搅拌效果,减少了搅拌时的气体卷入。 3.3.3 应变诱发熔化激活法(SIMA) 应变诱发熔化激活法(SIMA)是将常规铸锭经过预变形,如进行挤压、滚压等热加工制成半成品棒料,这时的显微组织具有强烈的拉长形变结构,然后加热到固液两相区等温一定时间,被拉长的晶粒变成了细小的颗粒,随后快速冷却获得非枝晶组织铸锭。 SIMA工艺效果主要取决于较低温度的热加工和重熔两个阶段,或者在两者之间再加一个冷加工阶段,工艺就更易控制。SIMA技术适用于各种高、低熔点的合金系列,尤其对制备较高熔点的非枝晶合金具有独特的优越性。已成功应用于不锈钢、工具钢和铜合金、铝合金系列,获得了晶粒尺寸20um左右的非枝晶组织合金,正成为一种有竞争力的制备半固态成形原材料的方法。但是,它的最大缺点是制备的坯料尺寸较小。 3.3.4 近几年开发的新方法 近几年来,东南大学及日本的Aresty研究所发现,通过控制合金的浇注温度,初生枝晶组织可转变为球粒状组织。该方法的特点是,不需要加入合金元素也无需搅拌。V.Dobatkin等人提出了在液态金属中加细化剂,并进行超声处理后获得半固态铸锭的方法,称之为超声波处理法,如图1所示。 图1超声波处理法示意图 3.4 成形方法 半固态合金成形方法很多,主要有: (1)流变铸造(Rheoforming, Rheocast) 图2 触变铸造工艺示意图 1 压铸合金 2 连续供给合金液 3 感应加热器 4 冷却器 5 流变铸锭 6 压射室 7 压铸模 在金属液从液相到固相冷却过程中进行强烈搅动,在一定固相分数下,直接将所得到的半固态金属浆液压铸或挤压成形,见图2。 如R.Shibata等人曾将用电磁搅拌方法制备的半固态合金浆液直接送入压铸机射室中成形。该方法生产的铝合金铸件的力学性能较挤压铸件高,与半固态触变铸件的性能相当。问题是,半固态金属浆液的保存和输送难度较大,故实际投入应用的不多。 (2)触变铸造(Thixoforming, Thixocast)

相关主题