搜档网
当前位置:搜档网 › 土壤氮素矿化影响因子研究进展

土壤氮素矿化影响因子研究进展

土壤氮素矿化影响因子研究进展
土壤氮素矿化影响因子研究进展

土壤水分动态对氮素净矿化的影响

土壤水分动态对氮素净矿化的影响 土壤氮素矿化作用作为氮素内循环的重要环节之一,直接决定了氮素的有效性,显著影响了生态系统的结构和功能。水分动态变化通过影响矿质氮的输入、输出和氮矿化速率等显著影响土壤氮素的有效性。 本论文以不同质地、不同土地利用方式下土壤样品为对象,设计“恒温恒水”、“恒温变水”和“变温变水”3种不同水分动态处理,比较分析了土壤水分条件由理想条件恢复到实际条件的过渡过程中氮素矿化特征的变化规律,研究结果可为准确预测不同类型土壤氮矿化潜力和优化土壤氮素矿化模型提供重要参数。研究结论如下:(1)“恒温恒水条件”下,土壤累积净氮矿化量和净氮矿化速率分别与水分含量呈显著正相关关系,在100%田间持水量(FC)条件下累积净氮矿化量 和净氮矿化速率均达到最大值。 水分含量对氮素矿化的影响与土壤质地和土地利用方式有关。质地对氮素矿化特征有极显著影响,土地利用方式对土壤氮素矿化特征的影响不显著。 (2)“恒温恒水条件”下,在水分较充足时(60%FC、80%FC和100%FC),一级动力学模型对氮素矿化的拟合效果较好,R~2在0.64~0.99之间(P<0.001);二元一次回归方程可以拟合氮素矿化对水分含量和培养时间的响应关系,土壤累积氮素净矿化量随水分含量的增加呈线性增加趋势,随培养时间的延长呈对数增加趋势。(3)恒温变水和变温变水条件下均可用一级动力学模型拟合氮素净矿化过程,多数土壤样品氮素净矿化量在两种水分条件下累积均随时间的延长而增加。 (4)土壤累积氮素净矿化量对时间和水分的响应曲面有所差异,可分为“上升型”和“先上升后平稳型”,恒温恒水条件下呈逐渐上升的趋势,在恒温变水条件和变温变水条件下呈先上升后平稳的趋势。(5)恒温变水条件下累积氮素净矿化

土壤侵蚀分类分级标准

剧毒化学品: 剧毒化学品是指,按照国务院安全生产监督管理部门会同国务院公安、环保、卫生、质检、交通部门确定并公布的剧毒化学品目录中的化学品。一般是具有剧烈毒性危害的化学品,包括人工合成的化学品及其混合物和天然毒素,还包括具有急性毒性易造成公共安全危害的化学品。 释义: 根据2005年5月公安部公布的《剧毒化学品购买和公路运输许可证件管理办法》,“除个人购买农药、灭鼠药、灭虫药以外,在中华人民共和国境内购买和通过公路运输剧毒化学品的,应当遵守本办法。 本办法所称剧毒化学品,按照国务院安全生产监督管理部门会同国务院公安、环保、卫生、质检、交通部门确定并公布的剧毒化学品目录执行。”“国家对购买和通过公路运输剧毒化学品行为实行许可管理制度。购买和通过公路运输剧毒化学品,应当依照本办法申请取得《剧毒化学品购买凭证》《剧毒化学品准购证》和《剧毒化学品公路运输通行证》。未取得上述许可证件,任何单位和个人不得购买、通过公路运输剧毒化学品。 任何单位或者个人不得伪造、变造、买卖、出借或者以其他方式转让《剧毒化学品购买凭证》《剧毒化学品准购证》和《剧毒化学品公路运输通行证》,不得使用作废的上述许可证件。”

土壤侵蚀区划: 土壤侵蚀区划,亦称水土流失分区。是指根据土壤侵蚀成因、类型、强度及其影响因素的相似性和差异性,对某一地区进行的地域划分。土壤侵蚀区划反映土壤侵蚀的地域分异规律,为不同地区的侵蚀类型指出治理途径、方向和应采取的水土保持措施以及实施步骤,并为水土保持规划和分区治理提供科学依据。2008年颁布的《土壤侵蚀分类分级标准》中,全国分为水力、风力、冻融3个一级侵蚀类型区。其中,水力侵蚀类型区包括西北黄土高原区、东北黑土区、北方土石山区、南方红壤丘陵区和西南土石山区5个二级类型区;风力侵蚀类型区分为“三北”戈壁沙漠及沙地风沙区、沿河环湖滨海平原风沙区2个二级类型区;冻融侵蚀类型区分为北方冻融侵蚀区、青藏高原冰川冻土侵蚀区2个二级类型区。各大流域、各省(自治区、直辖市)可在全国二级分区的基础上再细分为三级类型区和亚区。 根据土壤侵蚀的成因、类型、强度等在一定的区域内相似性和区域间的差异性所做出的低于划分。土壤侵蚀区划反映土壤侵蚀的地域分异规律,为不同地区的侵蚀指出治理途径、方向和应采取的水土保持措施及其实施步骤,为水土保持规划和分区治理提供科学依据。 土壤侵蚀区划的基本内容为:拟定区划原则和分级系统;研究并查明各级分区的界限,编制土壤侵蚀区划图;按土壤侵蚀区域特征,探讨土壤侵蚀分区治理途径和关键性的水土保持措施;编写侵蚀区划报告。

天然水体中氮磷的循环特征及其在水生态系统中的重要意义

水化学 周立平水产1801班2018308210108 题目:分析天然水体中氮磷的循环特征及其在水生态系统中的重要意义。 分析结果: 第一部分:天然水体中氮的循环特征及其在水生态系统中的重要意义。 1、天然水体中氮的来源 2、天然水体中氮的存在形式 3、天然水体中无机氮的分布变化 4、天然水中氮的循环 5、天然水体中氮的消耗 6、天然水体中氮在生态系统中的意义 第二部分:天然水体中磷的循环特征及其在水生态系统中的重要意义。 1、天然水体中磷的来源 2、天然水体中磷的存在形式 3、天然水体中无机磷的分布变化 4、天然水中磷的循环 5、天然水体中磷的消耗 6、天然水体中磷在生态系统中的意义

第一部分:天然水体中氮的循环特征及其在水生态系统中的重要意义。 1、天然水体中氮的来源 天然水体中化合态氮的来源很广,包括大气降水下落过程中从大气中的淋溶、地下径流从岩石土壤的溶解、水体中水生生物的代谢、水中生物的固氮作用、以及沉积物中氮元素的释放等。另外,近年来随着工农业生产的发展、人口的增加、工业和生活污水的排放、农业的退水造成对环境的污染日益严重,污染成了天然水化合态氮的重要来源。根据文献报道,如我国滇池、东湖等城郊湖泊,由于受生活污水的影响,氨氮含量高达0. 09~2.8 mg/L。但是对于水产养殖水体,施肥投饵及养殖生物的代谢是水中氮的主要来源。 天然水和沉积物中的一些藻类(蓝.绿藻)及细菌,它们具有特殊的酶系统,能把一般生物不能利用的单质N2,转变为生物能够利用的化合物形态,这一过程称为固氮作用。湖泊沉积物中存在大量的固氮细菌,如巴氏固氮梭菌,大部分集中于上层2 cm内;海洋中的固氮藻类有束毛藻项圈藻属、念珠蓝藻属等,它们既有营自由生活的,也有与其他初级生产者共生、或与动物(如海胆、船蛆)共生的。在固氮作用进行时,固氮酶系统需要外界供给Fe、Mg、Mo,有时还需B、Ca、Co等,水中这些微生物的含量对固氮作用有着决定性作用。 2、天然水体中氮的存在形式 天然水域中,氮的存在形态可粗略分为5种:溶解游离态氮气、氨(铵)态氮、硝酸态氮、亚硝酸态氮和有机氮化物。有机氮化物包括尿素、氨基酸、蛋白质腐殖酸等及其分解产物,这类物质的含量相对少,性质比较复杂,至今还不十分清楚。 (1)溶解游离态氮气:天然水中氮的最丰富形态是溶解游离态氮气,它主要来自空气的溶解。地表水中的游离氮的含量为近饱和值。由于脱氮作用以及固氮作用可能改变其含量,但其影响不大,在天然水域中,游离态氮的行为基本上是保守的。 (2)硝酸态氮(NO5-N):在通气良好的天然水域,NO5是含氮化合物的稳定形态,在各种无机化合态氮中占优势。它是含氮物质氧化的最终产物,但在缺氧水体中可受反硝化菌的作用而被还原。 (3)亚硝酸态氮(NO2 -N):天然水中NO2通常比其他形态的无机氮的含量要低很多,NO2 -N是NHt -N和NO5 - N之间的一种中间氧化状态,它可以作为NHt-N的氧化和NO;-N的还原的一种过渡形态,而且在自然条件下,这两种过程受微生物的作用而活化,因此它是一种不稳定的形态。 (4)氨(铵)态氦(TNH -N):天然水的氨(铵)态氦是指在水中以NH和NH;形态存在

全国土壤侵蚀类型区划分

土壤侵蚀类型区的划分 2012-07-04 16:02 根据我国的地形特点和自然界某一外营力在一较大的区域里起主导作用的原则,水利水电部颁发了《关于土壤侵蚀类型区划分和强度分级标准的规定》,把全国区分为三大土壤侵蚀类型区。 (一) 水力侵蚀为主的类型区 这一类型区大体分布在我国大兴安岭—阴山—贺兰山—青藏高原东缘一线以东,包括西北黄土高原、东北的低山丘陵和漫岗丘陵、北方山地丘陵、南方山地丘陵、四川盆地及周围山地丘陵、云贵高原六个二级类型区。 1.西北黄土高原 这一高原区主要是指青海日月山以东,山西太行山以西,陕北长城以南,陕、甘秦岭以北的广大地区。绝大部分属黄河中游,是我国土壤侵蚀最严重的地区。 土壤条件:黄土在本区内分布很广、厚度很大的第四纪粉沙物质。分为新黄土和老黄土两种。前者覆盖在后者之上,总厚度由几十米至100多米,最厚处达200多米。黄土质地匀细,组织疏松,具有大孔隙构造,垂直节理发育,湿陷性和渗透性都较大。颗粒粒径0.05-0.002mm的占50%,渗透速度一般在0.8-1.3mm/min。黄土具有迅速分散的特性,在清水中1—4 min即可全部分散。 地貌条件:按形态、结构分,除大部分为丘陵沟壑、高原沟壑,还有风沙丘陵、涧地、河谷川地和土石山地。总的来看,沟壑纵横,地形破碎,沟深陡坡是黄土地貌的主要特征。

气候条件:属大陆型季风气候,冬寒夏热,气温变化剧烈,年平均降雨量在300—600mm,分布集中,7、8、9三个月,降雨量占全年的70%;多以暴雨形式出现,暴雨强度每分钟可达1mm,甚至2mm 以上,瞬时暴雨强度更大。一次大暴雨产沙量可占全年总产沙量的40%-86%。 植被条件:黄土高原自东南向西北大致可分为:山地森林、森林草原、草原和干旱草原四个带。山地植被带的植被以针、阔叶混交林和灌丛为主,开垦指数低,一般在10%以下,土壤侵蚀轻微;森林草原带植被类型以夏绿阔叶林及禾本科、菊科植物群落为主,开垦指数一般在40%-50%,部分人多地少地区高达60—70%,土壤侵蚀严重;干旱草原带的植被以藜科及旱生多刺的植物群落为主,开垦指数为10%—20%,土壤侵蚀严重,同时有较强烈的风蚀发生。 水土流失状况:除了溅蚀和层状面蚀普遍发生外,2度以上的坡耕地有细沟侵蚀发生;5度以上,则细沟侵蚀较强,并开始发生浅沟侵蚀。25度以上有切沟出现;35以上土壤泻溜;45度-75度陡坡地可发生滑坡;75度以上陡崖和岸壁可发生崩塌。年平均侵蚀模数一般为5000—10000t/km2,高的可达20000t/km2以上,黄河下游泥沙绝大部分来自于本区。 2.东北的低山丘陵和漫岗丘陵区 本类型区南界为吉林省南部,西、北、东三面为大、小兴安岭和长白山所围绕。在该区域内,除了大、小兴安岭林区以及三江平原外,其余地方都有不同程度的土壤侵蚀。可分为低山丘陵和漫岗丘陵。这

矿化作用

矿化作用 在土壤微生物作用下,土壤中有机态化合物转化为无机态化合物过程的总称。因无机态亦称矿质态,故名。矿化作用在自然界的碳、氮、磷和硫等元素的生物循环中十分重要。有机氮、磷和硫的矿化作用对植物营养尤有重要意义。作用的强度与土壤的理化性质有关,还受被矿化的有机化合物中有关元素含量比例的影响,如有机氮化合物的矿化作用的强弱,即与碳氮比值的大小有关,通常碳氮比值低于25的有机氮化合物易于发生矿化作用,反之则作用较弱。 有机氮的矿化作用主要分2个阶段: 氨基化作用阶段指由复杂的含氮有机物质逐步分解为简单有机态氨基化合物的过程。其反应式可简略地表述为:蛋白质→多肽→氨基酸、酰胺、胺等。参与该作用的微生物有多种类群的细菌和真菌;每一类群参与反应的一个或多个步骤;每一步骤的产物为下一步骤提供作用底物。 氨化作用阶段即经氨基化作用产生的氨基酸等简单的氨基化合物,在另一些类群的异养型微生物参与下,进一步转化成氨和其他较简单的中间产物如有机酸、醇、醛等。其一般的水解过程为: RCHNH2COOH+H2O→RCH2OH+CO2+NH3 或 RCHNH2COOH+H2O→ RCHOHCOOH+NH3 在充分通气条件下的过程为: RCHNH2COOH+O2→RCOOH+CO2+NH3 在嫌气条件下的过程为: RCHNH2COOH+2H→RCH2COOH+NH3 或 RCHNH2COOH+2H→RCH3+CO2+NH3 氨化作用中释出的氨,除一小部分挥发和淋溶或被微生物用以合成其躯体的蛋白质以外,在土壤中大部分与有机或无机酸结合成铵盐,或被植物吸收,或在微生物作用下氧化成硝酸盐。

由于土壤中绝大部分的氮以有机物质的形式存在,不能为植物直接利用,氨化作用对于植物的氮营养十分重要。但在某些情况下氨化作用会导致氨以气态挥发或以铵盐淋溶损失,农业上宜采取措施调节其作用强度。 15N示踪研究表明,烟株全生育期氮素吸收总量的60%以上来源于土壤氮的矿化,特别是上部叶中,土壤供氮比例甚至高达80%以上[1-2]。对土壤氮素矿化特性与供氮能力了解不足是造成我国烤烟过量施用氮肥的主要原因之一。矿化势(No)是指在既定条件下经过无限长时间后,土壤氮素矿化可释放的最大氮量,是土壤氮素矿化的重要参数[3]。它反映了土壤的潜在供氮能力,与植物吸氮量呈显著正相关[4-5],可作为土壤供氮能力的指标[6]。 [1] 刘卫群,郭群召,张福锁,晁逢春.氮素在土壤中的转化及其对烤烟上部叶烟碱含量的影响[J].烟草科技. 2004, (5): 36-391Liu WQ, Guo QZ, Zhang FS, Chao FC. Nitrogen transformation in soil and its effects on nicotine content of u per flue-cured tolmceo leaves[J]. Tobacco Sci. &Tech., 2004, (5) : 36-391 [2] 陈萍,李天福,张晓海,等,利用15N示踪技术探讨烟株对氮素肥料的吸收与分配[J].云南农业大学学报,2003, 18 (1) 1-41Chen P, Li TF, Zhang X H et al. Exploring tobacco plantcs absorption and distribution of nitrogen fertilizers by using15N tracing technique[J]. J. Yunnan Agric. Univ., 2003, 18 (1): 1-41 [3] Stanford G, Smith S J. Nitrogen mineralization potentials of soils[J].Soil Sci. Soc. Am. Proc., 1972, 36: 465-4721 [4] 杜建军,王新爱,王夏晖,等.旱地土壤氮素、有机质状况及与作物吸氮量的关系[J].华南农业大学学报(自然科学版).2005,26(1): 11-151Du J J, Wang X A, Wang X Het al. The relationship between soil N, organic matter and N up taken by crops on dry land[J]. J. South China Agric. Univ.(Nat. Sci. Ed.), 2005, 26(1): 11-151 [5] 唐玉琢,袁正平,肖永兰,等.不同稻作制下红壤性水稻土氮矿化特性的研究[J].湖南农业大学学报(自然科学版),1991,(S1): 233-2411Tang Y Z, Yuan Z P, Xiao Y Let al. Effects of there cropping systems on nitrogen mineralization of paddy soil derived from quaternary red clay[J]. J. Hunan Agric. Univ. (Nat. Sci. Ed.), 1991(S1): 233-2411 [6] 叶优良,张福锁,李生秀.土壤供氮能力指标的研究[J].土壤通报, 2001,32(6): 273-2771Ye Y L, Zhang FS, Li S X. Study on soil nitrogen supplying indexes[J]. Chin. J. Soil Sci., 2001, 32(6): 273-2771

土壤净氮矿化率的测定

土壤净氮矿化率的测定—厌氧培养法(Anaerobic method) 一,实验目的 1.掌握厌氧培养法测定土壤净氮矿化率的基本原理与操作方法 2.掌握凯氏定氮的原理和蒸馏定氮器或氨气敏电极的使用方法 返回 二,实验内容 1.土样的野外采集与处理 2.土样水淹状态下厌氧矿化培养 3.凯氏定氮法测定土样矿化率 返回 三,实验原理 1.背景知识 ①土壤中的氮素 氮素是蛋白质和核酸的重要组成部分,同时又是叶绿素,酶,维生素,生物碱等的必要成分,在植物细胞的生长,分化和各种代谢过程中,氮素都起着重要的作用.土壤中的氮绝大部分(约90%以上)以复合态存在于有机质或腐殖质中,而大多数的植物所吸收利用的氮素主要是无机态的铵态氮和硝态氮.土壤中的有机质和腐殖质等有机态氮通过氮素矿化作用(主要是土壤微生物作用)释放出无机态氮(主要是铵态氮与硝态氮),为植物吸收利用. 返回 ②氮素矿化作用与土壤净氮矿化率 氮素矿化作用是土壤中有机态氮经土壤微生物的分解,转化为无机态氮的过程,它在生态系统中是土壤对植物生长供给氮素的关键过程. 土壤净氮矿化率则是描述土壤氮素矿化作用速率的指标,指单位时间内土壤有机态氮经矿化作用转化为易被植物利用的无机态氮的量.它在一定程度上反映了土壤对植物氮素的供应能力,对农业生产中作物的选择和肥料的施用都起着指导性的作用. ③测试方法简介 目前国内外土壤矿化氮的测定方法主要是生物培养法,此法测定的是土壤中氮的潜在供应能力,其结果与植物生长的相关性较高.生物培养法分为好氧培养法(aerobic method)和厌氧培养法(anaerobic method). 好氧培养法:使土样在适宜的温度,水分,通气条件下进行培养,测定培养过程中释放出的无机态氮,即在培养之前和培养之后测定土壤中无机态氮(铵态氮和硝态氮等)的总量,二者之差即为矿化氮.好氧培养法沿用至今已有很多改进,主要反映在:用的土样质量(10~15g),加或不加填充物(如砂,蛭石)以及土样和填充物的比例,温度控制(25~35℃),水分和通气调节(如土10g,加水6mL或加水至土壤持水量的60%),培养时间(14~20天)等.很明显,培养的条件不同,测出的结果也会不同. 厌氧培养法:通常以水淹创造条件进行培养(water logging method),测定土壤中有机态氮经矿化作用转化的无机态氮的量.其培养过程中条件的控制比较容易掌握,不需要考虑同期条件和严格的水分控制,可用较少土样和较短培养时间,方法简单且快速,结果的再现性较好,更适合于例行分析.故本试验采用厌氧培养法. 2,基本原理

中国东北黑土区土壤侵蚀环境 Ξ

第18卷第2期2004年4月 水土保持学报 Journal of S oil and Water C onservation V ol.18N o.2 Apr.,2004  中国东北黑土区土壤侵蚀环境Ξ 范昊明1,2,蔡强国1,王红闪3 (1.中国科学院地理科学与资源研究所,北京100101;2.沈阳农业大学水利学院,辽宁沈阳110161; 3.中国科学院水利部水土保持研究所,陕西杨陵712100) 摘要:分析了黑土腐殖质、黑土母质、黑土区气候、地貌、植被及人类开垦等活动与黑土侵蚀之间的关系,指出了 黑土区农业开垦与耕作是导致黑土流失的主要原因,同时,在人类干预条件下,某些自然因素对黑土加速侵蚀的 影响就会明显地凸现出来。实际上,黑土区独特的自然环境与人类活动方式已经使其成为目前中国土壤侵蚀潜 在危险性最大的地区之一。目前,黑土流失速度相当快,不少地区已经出现了成土母质露于地表的现象,土壤侵 蚀严重。如果我们现在还不能正确认识黑土地治理的紧迫性,黑土区很快就将变为名副其实的“不毛之地”了。 关键词:东北黑土区; 自然地理环境; 人类活动; 土壤侵蚀 中图分类号:S157.1 文献标识码:A 文章编号:100922242(2004)022******* Condition of Soil Erosion in Phaeozem R egion of N ortheast China FAN Hao2ming1,2,C AI Qiang2guo1,W ANG H ong2shan3 (1.Institute o f G eographical Sciences&Natural Resources Research,C AS,Beijing,100101; 2.College o f Water Conservancy,Shenyang Agriculture Univer sity,Shenyang110161; 3.Institute o f soil and water conservation,C AS&Ministry o f Water Resource,Yangling Shaanxi712100) Abstract:The relationships between the s oil erosion of phaeozem in the northeast region of china and humus,s oil parent material,climatic condition,land feature,vegetation and man′s activity in this area have been analyzed.It has been point2 ed out that the reclamation on a large scale in the phaeozem region is the primary reas on causing s oil erosion in this place, and at the same time,several natural factors that are the potential factors to affect s oil erosion have played m ore significance role in accelerated erosion after human broke into the phaeozem region.In fact,the phaeozem region of northeast China has became the m ost hazard region of potential erosion now for it′s unique physical geography environment and man′s activity. At present,the phaeozem region is subjected to severely s oil erosion and at s omewhere the loess m other material is exposing to the air.S o we must action now to explore the law of s oil erosion and to cure the s oil erosion using this law,or else,the phaeozem region of northeast China will became the real barren land. K ey w ords:phaeozem region of northeast China; physical geography environment; manπs activity; s oil erosion 中国东北地区土壤普遍呈暗色,发育有肥力高、性状良好的黑土、黑钙土、草甸土等。实践中,人们对黑土区的概念通常并不仅局限于土壤分类中的黑土,而是一个包括更多东北地区土壤类型的广泛的概念。松辽水利委员会在关于东北黑土区水土流失情况的报告中将黑土区的土壤类型定义为包括黑土、黑钙土、暗棕壤、草甸土、白浆土、棕壤、棕色针叶林土、风沙土和沼泽土等。根据全国农业土壤普查结果确定黑土区总面积为101.85万km2(含大小兴安岭、长白山),其中典型黑土区面积为11.78万km2。东北黑土区分布于黑龙江、吉林、辽宁和内蒙古四省(区),其中黑龙江省45.25万km2,吉林省18.7万km2,辽宁省12.29万km2,内蒙古自治区25.41万km2。黑土区地处温带大陆性季风气候区,大部分地区的年降水量为500~600mm左右,地貌类型多样,分异规律性强,自南而北跨越了暖温带-中温带-寒温带3个不同的自然地带,从东到西横穿湿润-亚湿润-亚干旱3个不同的自然地区。黑土区是我国的重要工业和商品粮基地,然而,长期以来该区的发展却是以牺牲生态环境为代价的,由于自然因素影响及人为不合理生产活动的破坏,导致土壤侵蚀比较严重。该区土壤侵蚀类型包括水力侵蚀、风力侵蚀、冻融侵蚀和重力侵蚀。据松辽委2002年统计报告,区内现有水土流失面积27.59万km2,占黑土区总土地面积的27%,其中黑龙江省9.55万km2(水力侵蚀8.53万km2,风力侵蚀1.02万km2),吉林省3.11万km2(水力侵蚀1.72万km2,风力侵蚀1.39万km2),辽宁省3.41万km2(水力侵蚀3.08万km2,风力侵蚀0.33万km2),内蒙古自治区11.52万km2(水力侵蚀10.9万km2,风力侵蚀0.62万km2)。黑 Ξ收稿日期:2003205222 基金项目:国家自然科学基金委员会重点基金支持研究项目(编号:40235056) 作者简介:范昊明,男,生于1972年,讲师,在读博士。从事土壤侵蚀模拟与水土保持规划方面的研究。

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化 过程 This model paper was revised by the Standardization Office on December 10, 2020

土壤氮素的形态及其转化过程 摘要:氮是植物生长发育所必需的大量元素,对植物的产量和品质影响很大。土壤中氮素的形态及其转化过程和结果则直接决定了氮对植物生长的有效性的大小,了解土壤中氮素存在的形态和其转化过程,对于科学合理经济的肥料施用具有现实的启示作用。 关键词:氮素;形态;转化过程 土壤中氮素的含量受自然因素和人为因素的双重影响,较高的氮素含量表明土壤肥力也较高。自然条件下,土壤没有受到人为因素的影响,有机质日积月累,土壤中氮的含量也较高。耕地土壤氮素含量及转化过程则更强烈的受到人为耕作、施肥、不同作物等因素的影响,因而相对表现的复杂一些。 一、土壤中氮素的形态 1.无机态氮 无机态氮包括固定态NH4+、交换性NH4+、土壤溶液中的NH4+、硝态氮(NO3-)、亚硝态氮等,这其中以NH4+离子和NO3-离子最容易被植物吸收利用,农业生产中常常用到的碱解氮,也叫水解氮或速效氮,就属于无机态氮中的一部分。无机态氮并不是全部都能被植物所直接吸收利用,它们中的大部分是被粘土矿物晶层所固定了的固定态铵,不能作为速效氮存在。固定态铵只有在土壤中经过相

应的转化,转化为铵离子或硝酸离子、硝酸盐类的含氮物,才能为作物利用。 2.有机态氮 有机态氮构成了土壤全氮的绝大部分。它们与有机质或粘土矿物相结合,或与多价阳离子形成复合体。有机态氮大都难以分解,并不能为作物所直接吸收利用。但有机态氮的含量高低依然是衡量土壤肥力高低的重要指标,有机态氮的含量高,可被转化的氮素水平也相应的高,其作为植物氮素营养‘库’的存在是有很大的作用的。 二、土壤中氮素的转化过程 1.氮素的矿化与生物固持作用 氮素的矿化作用,简单的说就是有机态的、不易分解的氮素及含氮化合物在土壤中微生物的参与下分解转化为无机态氮的过程,是一个氮的速效化的过程,也是一个可利用氮素增加的过程。氮的固持作用,就是土壤中的无机态氮在土壤微生物的作用下转化为细胞体中有机态氮的过程,其对于农业生产上的实质就是可利用的速效氮的减少过程。 2.铵离子的固定与释放 铵离子的固定,其实质就是土壤溶液中的能自由移动的、可交换的铵离子被土壤胶体所吸附,变成不可交换的铵离子的过程,固定了的铵离子不能再被交换到土壤溶液

森林土壤氮素养分研究进展

森林土壤氮素研究进展 摘要氮素是林木生长所必需的大量营养元素之一,也是林木生长最重要的养分限制因子。土壤氮素是林木吸取氮素的主要来源。文章从氮素的化学结构、空间变异特征、氮沉降以及氮素矿化特征等方面土对土壤氮素的研究进展进行了综述。并展望了今后土壤氮素的研究方向。 关键词化学机构;有机氮;变异特征;矿化;氮沉降 1土壤中氮的含量和氮的形态 土壤中氮的含量范围为0.02%—0.05%,表层土壤和心底土壤的含氮量相差很大。心底土含氮量一般在0.1%以下,甚至只有0.02%;而表土的含氮量比较高,耕地土壤表层含氮量一般为0.05—0.3%,少数肥沃的耕地、草原、林地的表层土壤甚至可以达到0.5—0.6%以上,而冲刷严重、贫瘠的荒地表层土则可低至0.05%以下。有机质土壤的含氮量较矿质土高,如腐泥土、泥炭土等的含氮量可以高达1—3.5%,当然,也有一些高位泥炭土含氮量在1%以下。但是总的情况是含有机质高的土壤,其含氮量也比较高,两者有着密切的关系[1]。 在陆地生态系统中的氮以不同的形态存在于大气圈、岩石圈、生物圈、和水圈,并在各圈层之间相互转换,大气中氮以分子态氮(N2)和各种氮氧化物(NO2、N2O、NO等)形式存在。其中生物不能吸收利用的惰性氮气(N2)占大气体积的78%,它们在微生物作用下通过同化作用或物理、化学作用进入土壤,转换为土壤和水体的生物有效氮—铵态氮(NH4-N)和硝态氮(NO3-N)[2]。 氮在土壤中以无机氮和有机氮形态存在,有机氮是土壤氮素的主要组成成分,占土壤总氮的90%左右[3]。氮素的化学机构与供氮能力有关,我国研究学者通过先进化学仪器,初步查明,腐殖物质中氮素约70%以上以酰胺态氮存在,脂肪和杂环态氮均各占15%以下,杂环态氮主要是吲哚和吡咯类,吡啶类没有或者数量甚少。非酸解氮中,部分可能为抗酸解的酰胺[4—5]。 传统上,人们一直认为植物只能吸收无机态氮素,而不能吸收有机态氮,土壤中的有机态氮必须经土壤微生物矿化为无机态氮后才能被植物吸收。然而研究发现,在高寒苔原及北方森林生态系统中,无机氮含量少,既植物氮摄取量远高于土壤无机氮,这表明其他氮源为植物营养也很重要[20]。报道称生长在苔草的莎草科(Cyperaceae)植物白毛羊胡子草(Eriophorum vaginatum)可以迅速吸收游离氨基酸,它吸收的氮至少60%来自氨基酸[3]。 2土壤中氮的空间变异特征 森林生态系统中,在垂直尺度上,全氮和碱解氮在不同层次土壤中,存在明显差异性。一般而言,自表层至下层,含量依次下降。就碱解氮,A层土壤变异系数明显高于B、C层[6-7]。 由于森林演替和植被类型植被干扰程度及地形等多重因素的影响,森林土壤全氮及碳氮比在空间的分布有着明显的变异特征。演替过程中,有机氮,全氮其平均值随生态系统由人工林、次生演替早起林、次生演替中后期林顺向演替,平均值先增加后减少[8]。 人工林土壤全氮异质性相对较低,空间分布较次生林更趋于均匀化。次生林则表现出较强的空间自相关变异性[8]。 不同森林类型土壤全氮,有效氮质量分数均表现出阔叶林中明显高于针叶林。土壤全氮在针阔混交林中变异强度最大,但变异的空间相关性较差,而在阔叶和针叶纯林中变异强度有所下降,但是变异的空间相关性较好[9]。土壤氮素空间异质性的产生受多个环境因子的影响[10]。当然土壤资源的异质性特征也可导致森林空间分布异质性及格局产生,同时,树木的

土壤中的氮素及其转化

土壤中的氮素及其转化 1.土壤中氮素的来源和含量 1.1 来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的NO3—N。 1.2 含量 我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。 2. 土壤中氮素的形态 3. 土壤中氮素的转化 3.1 有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮氨基酸NH4+-N+有机酸 结果:生成NH4+-N(使土壤中有机态的氮有效化)

3.2 土壤粘土矿物对NH4+的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 ②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH4+的供应程度(优点?缺点?) 3.3氨的挥发 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程 过程: 结果:造成氮素损失 3.4硝化作用 定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象 过程: 结果:形成NO3--N 利:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 3.5无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。 过程: 结果:减缓氮的供应,可减少氮素的损失 3.6反硝化作用

定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 3.7硝酸盐的淋洗损失 NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 结果:氮素损失,并污染水体 4. 小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时) 氮肥的种类、性质和施用 氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。 ①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。 1.铵态氮肥 共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。

土壤侵蚀模数

2.1.2 土壤侵蚀强度分级 (1)土壤侵蚀容许量标准 土壤侵蚀容许量是指在长时期内能保持土壤肥力和维持土地生产力基本稳定的最大土壤流失量。 因为我国地域辽阔,自然条件千差万别,各地区的成土速度也不相同,该标准规定了我国主要侵蚀类型区的土壤容许流失量: 侵蚀类型区土壤容许流失量 Et/(km ·a)] 西北黄土高原区1 ooo 东北黑土区200 北方土石山区200 南方红壤丘陵区500 西南土石山区500 (2)水力侵蚀强度分级 强度分级平均侵蚀模数[t/(km ·a)] 微度侵蚀<2O0,500,1 000 轻度侵蚀200,500,1 000~2 500 中度侵蚀2 500~5 000 强度侵蚀5 000~8 000 极强度侵蚀8 000~1 5 000 剧烈侵蚀>1 5 000 (3)风蚀强度分级 风蚀强度分级按地表植被覆盖度、年肼蚀厚度和侵蚀模数三项指标划分。 强度分级植被覆盖度年风蚀厚度侵蚀模数 ( ) (ram) [t/(km。·a)] 微度>70 <2 <200 轻度70~50 2~1O 200~2 500 中度5O~30 1O~25 2 5OO~5 000 强度3O~10 25~50 5 000~8 000 极强度<10 50~100 8 000~15000 剧烈<1O >100 >1 5 000 除此外,还有面蚀、沟蚀、重力侵蚀等分级标 准,此处不一一赘述。 土壤侵蚀强度划分标准: “水”和“土”是水土流失的两个漉失主体,水土流失归根结底是土地表屡的侵蚀和水的流失。而评价水土流失程度的量化指标,即水土流失强度分级标准应同时包括两个流失主体的强度指标。我国目前采用的土壤侵蚀强度分级标准做为水土流失强度分级标准,不仅混淆丁水土

稻田土壤氮素流失机制研究

稻田土壤氮素流失机制研究 摘要:本文通过查阅大量文献,总结了稻田土壤中氮素流失的过程机制和影响因素,并进一步探究了抑制或减缓稻田土壤氮素流失的方法,为稻田氮素流失的相关研究提供基础资料。 关键词:稻田;氮素流失;机制 Study on the mechanism of soil nitrogen losing in paddy field Abstract:Through consulting a large number of documents, this article summarizes the process of soil nitrogen losing mechanism and the influencing factors in the paddy fields, then explore the methods to inhibit or slow the nitrogen losing in the paddy fields; the goal is to providing a basic material for related research. Key words: paddy field; nitrogen losing; mechanism 氮素是动植物生长所需的主要元素。土壤中氮素的丰缺及供给状况直接影响着农作物的生长水平[1]。随着世界人口的日益增加, 对粮食的需求量也越来越大, 该元素在维持农业系统的可持续性和经济活力中扮演着重要的角色。由于其易于以气体形式挥发, 易于淋失和迁移, 因此氮素会大量流失, 进而影响水和空气的质量[2]。 为提高土壤的氮素水平,人们在农业生产中广泛使用大量的氮素化肥。目前中国已成为世界上氮肥年用量最多的国家之一[3],单位面积的施用量也高于世界平均水平。由于施肥方法或农业管理措施不当,导致氮素损失加剧[4],严重影响了氮肥利用率,中国氮肥利用率仅为30% ~50%[5]。研究表明,农田中氮素损失的途径主要包括:氨的挥发、反硝化脱氮、铵的固定、径流冲刷和硝态氮的淋失等。其中,硝态氮的淋失是损失的重要方面[6],淋失量可达5%~41.9%[7]。 水稻是我国南方的主要粮食作物之一, 同时也是消耗氮素较多, 流失

土壤氮素循环及其模拟研究进展

土壤氮素循环模型及其模拟研究进展 * 唐国勇 1,2 黄道友1 童成立 1** 张文菊 1,3 吴金水 1 (1中国科学院亚热带农业生态研究所亚热带农业生态重点实验室,长沙410125;2中国科学院研究生院,北京100039;3 华中农业大学资源环境学院,武汉430070) 摘要 N 既是植物必需的营养元素,又是造成环境污染的重要元素.正确模拟土壤中N 循环已经成为科学家共同关注的热点问题.简述了土壤N 循环的基本过程,重点介绍了13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论了模拟中存在的参数化问题. 关键词 土壤N N 循环 模型 模拟 文章编号 1001-9332(2005)11-2208-05 中图分类号 S153.6 文献标识码 A Research advances in soil nitrogen cycling models and their simulation.T AN G Guo yong 1,2,HU AN G Daoyou 1,T ON G Cheng li 1,ZHA NG Wenju 1,3,WU Jinshui 1(1Key L abor ator y of S ubtr op ical A gro ecology ,I nstitute of Subtrop ical A gr icultur e,Chinese A cademy of Sciences,Changsha 410125,China;2Gr aduate School of Chinese A cademy of Sciences ,Beij ing 100039,China;3College of Resources and Env ironment,H uaz hong A gricultural Univer sity ,W uhan 430070,China). Chin.J.A p pl.Ecol .,2005,16(11):2208~2212. N itrogen is one of the necessary nutrients for plant,and also a pr imar y element leading to environmental pollu tion.M any researches hav e been concerned about t he contr ibution of agr icultur al act ivities to env ironmental pollu tion by nitrogenous compounds,and the focus is how to simulate soil nitrog en cycling pr ocesses correctly.In this paper,the pr imary soil nitro gen cycling processes were rev iewed in brief,w ith 13cycling models and 6simulated cycling processes introduced,and t he parameterization o f models discussed.Key words Soil nitro gen,Nitro gen cycle,M odel,Simulation. *中国科学院知识创新工程重要方向项目(KZCX3 S W 426)、国家 自然科学基金重点项目(40235057)和国家重点基础研究发展资助项目(2002CB412503).**通讯联系人. 2005-01-10收稿,2005-05-08接受. 1 引 言 N 是植物必需的营养元素,也是评价土壤质量和土地生产力的重要指标.为了获得高产,需要施用大量的氮肥.据统计[32],仅1996年全世界氮肥(折纯N)使用总量就高达8 50!107t,但N 累积利用率不高.据估计,施入土壤中的N 大约有35%通过各种途径损失掉[6,32].此外,氮肥的使用还可能造成环境污染,诸如温室气体(主要是氮氧化物)和致酸雨气体(氨气)的排放、地下水硝酸盐超标、水体富营养化等[20].如2000年,比利时80%的饮用水中硝酸盐含量超标[10].目前,土壤N 循环的研究已经成为土壤学家、环境学家、农学家等共同关注的热点问题之一. 土壤N 循环是N 生物地球化学循环中的重要环节,其模拟是作物估产、环境评价、农田管理、决策制定和长期预测的重要依据,对提高氮肥利用率、防止或减轻环境污染具有重要的理论和实践意义.20世纪60年代,就有基于单个过程的土壤N 循环方面的报道[25,28].40多年来,北美和欧洲一些国家建立了大量的土壤N 循环模型.我国在这方面研究还比较薄弱[3,15,24].本文拟通过简要概述土壤N 循环过程,重点介绍13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论模型模拟中的参数化问题,以期为深入研究土壤N 循环及其模拟提供一定的参考和借鉴. 2 土壤N 循环的基本过程 土壤中含N 化合物种类多,理化、生物学性质各异.一般可将土壤中N 划分为有机氮和无机氮,以有机氮为主.在土壤微生物等因子的作用下,N 在土壤中发生一系列复杂的循环.主要循环过程有:有机氮矿化、腐殖化、硝化、反硝化、氨挥发、N 沉降、硝酸盐淋失、生物固氮、铵离子晶格固定和释放、土壤粘粒吸附和解吸、植物吸收等过程.土壤N 循环过程的研究是建立土壤N 循环模型以及N 生物地球化学循环模型的基础. 3 土壤N 循环模型的研究概况 目前,农业中数学模型并无统一的分类,可从不同角度进行划分.根据建模的方法可分为经验模型和机理模型;从土壤有机氮角度可分为单组分和多组分模型;从模拟循环过程的数目方面可分为单过程和多过程模型;此外,根据模型模拟的元素也可分为独立N 模型和综合模型的N 子模型. 经验模型通常依据实验测定或调查的N 循环分量与气 应用生态学报 2005年11月 第16卷 第11期 CHIN ESE JO UR NAL OF A PPL IED ECOLO GY,Nov.2005,16(11)?2208~2212

相关主题