搜档网
当前位置:搜档网 › 人教版A版高中数学必修2课后习题解答

人教版A版高中数学必修2课后习题解答

人教版A版高中数学必修2课后习题解答
人教版A版高中数学必修2课后习题解答

第一章空间几何体

1.1 空间几何体的结构

练习(第7 页)

1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;

(4)由一个六棱柱挖去一个圆柱体而得到的组合体。

2.(1)五棱柱;(2)圆锥

3.略

习题1.1

A组

1.(1) C;(2)C;(3)D;(4) C

2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面的平面截得的几何体。

3.(1)由圆锥和圆台组合而成的简单组合体;

(2)由四棱柱和四棱锥组合而成的简单组合体。

4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。

5.制作过程略。制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。

B组

1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。

2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。

1.2 空间几何体的三视图和直观图

练习(第15 页)

1.略

2.(1)四棱柱(图略);

(2)圆锥与半球组成的简单组合体(图略);

(3)四棱柱与球组成的简单组合体(图略);

(4)两台圆台组合而成的简单组合体(图略)。

3.(1)五棱柱(三视图略);

(2)四个圆柱组成的简单组合体(三视图略);

4.三棱柱

练习(第19 页)

1.略。

2.(1)√(2)×(3)×(4)√

3.A

4.略

5.略

习题1.2

A组

1.略

2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体

3~5.略

B组

1~2.略

3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。

1.3 空间几何体的表面积与体积

高中数学必修2综合测试题

正视图 侧视图 俯视图 2 1 1 高中数学必修2综合测试题 文科数学 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若直线1=x 的倾斜角为α,则=α( ). A .0 B.3 π C .2π D .π 2.已知直线1l 经过两点)2,1(--、)4,1(-,直线2l 经过两点)1,2(、)6,(x ,且21//l l ,则=x ( ). A .2 B .-2 C .4 D .1 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .π25 B .π50 C .π125 D .π200 4.若方程02 2 =++++k y x y x 表示一个圆,则k 的取值范围是( ) A.21> k B.21≤k C. 2 1 0<

人教版高中数学必修2全册学案(完整版)

第一章 立体几何初步 一、知识结构 二、重点难点 重点:空间直线,平面的位置关系。柱、锥、台、球的表面积和体积的计算公式。平行、垂直的定义,判定和性质。 难点:柱、锥、台、球的结构特征的概括。文字语言,图形语言和符号语言的转化。平行,垂直判定 与性质定理证明与应用。 第一课时 棱柱、棱锥、棱台 【学习导航】 学习要求 1.初步理解棱柱、棱锥、棱台的概念。掌握它们的形成特点。 2.了解棱柱、棱锥、棱台中一些常用 名称的含义。 3.了解棱柱、棱锥、棱台这几种几何 体简单作图方法 4.了解多面体的概念和分类. 【课堂互动】 自学评价 1. 棱柱的定义: 表示法: 思考:棱柱的特点:. 【答】 2. 棱锥的定义: 表示法: 思考:棱锥的特点:. 【答】 3.棱台的定义: 表示法: 思考:棱台的特点:. 【答】

4.多面体的定义: 5.多面体的分类: ⑴棱柱的分类 ⑵棱锥的分类 ⑶棱台的分类 【精典范例】 例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥; 丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。 以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3 例2:画一个四棱柱和一个三棱台。 【解】四棱柱的作法: ⑴画上四棱柱的底面----画一个四边形; ⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段; ⑶画下底面------顺次连结这些线段的另一个端点 互助参考7页例1 ⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去. 互助参考7页例1 点评:(1)被遮挡的线要画成虚线(2)画台由锥截得 思维点拔: 解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点: 例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗? 答:不能. 点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。 自主训练一 1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到? 答由四边形ABCD沿AA1方向平移得到. 2.右图中的几何体是不是棱台?为什么? 答:不是,因为四条侧棱延长不交于一点.3.多面体至少有几个面?这个多面体是怎样的几何体。 答:4个面,四面体. 第二课时圆柱、圆锥、圆台、球 【学习导航】 知识网络 A C B D A1 C1 B1 D1

高中数学必修2测试题附答案

数学必修2 一、选择题 1、下列命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同一直线的两条直线平行。 2、下列命题中错误的是:( ) A. 如果α⊥β,那么α内一定存在直线平行于平面β; B. 如果α⊥β,那么α内所有直线都垂直于平面β; C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ. 3、右图的正方体ABCD-A ’B ’C ’D ’ 中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’ 中, 二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 900 5、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=-5; C.a=-2,b=5 D.a=-2,b=-5 6、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3 a π; B. 2 a π; C.a π2; D.a π3. A B D A ’ B ’ D ’ C C ’

高一数学必修二练习题精编版

高一数学必修二练习题 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

三视图、直观图、公里练习 1、下列说法正确的是() A.有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥 B.有两个面平行且相似,其余各面都是梯形的多面体是棱台 C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥 D.有两个相邻侧面是矩形的棱柱是直棱柱 2、在正方体ABCD﹣A1B1C1D1中,O、O1分别为底面ABCD和A1B1C1D1的中心,以OO1所在直线为轴旋转线段BC1形成的几何体的正视图为() 、已知水平放置的△ABC的直观图 △A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC的面积为( ) 、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为( ) 、一个正方体被过其中三个顶点的平面割去一个角余下的几何 体如图所示,则它的正视图应为() 6、已知正三角形的边长为1,那么的平面直观图的面积为() 3366 、如图所示为一个简单几何体的三视图,则其对应的实物是() 、如图是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的正视图为() 9、如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是() A.该三棱柱主视图的投影不发生变化; B.该三棱柱左视图的投影不发生变化; C.该三棱柱俯视图的投影不发生变化;

最新人教版高中数学必修二_全册教案

按住Ctrl键单击鼠标打开教学视频动画全册播放 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 六、布置作业

2019年人教版高中数学必修二综合测试题(含答案)

必修2综合测试题 一、选择题 1.点(1,-1)到直线x -y +1=0的距离是( ). A . 2 1 B . 2 3 C . 2 2 D . 2 2 3 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 3.下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0 D .x + 2 1 y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ). A .2x -y -1=0 B .2x +y +1=0 C .2x -y +1=0 D .2x +y -1=0 5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ). A .三棱台、三棱柱、圆锥、圆台 B .三棱台、三棱锥、圆锥、圆台 C .三棱柱、四棱锥、圆锥、圆台 D .三棱柱、三棱台、圆锥、圆台 (4 (3 (1 (2

6.直线3x+4y-5=0与圆2x2+2y2―4x―2y+1=0的位置关系( ). A.相离B.相切 C.相交但直线不过圆心D.相交且直线过圆心 7.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为3 2,则a等于( ).A.-1 B.-2 C.-3 D.0 8.圆A : x2+y2+4x+2y+1=0与圆B : x2+y2―2x―6y+1=0的位置关系是( ).A.相交B.相离C.相切D.内含 9.已知点A(2,3,5),B(-2,1,3),则|AB|=( ). A.6B.26C.2D.22 10.如果一个正四面体的体积为9 dm3,则其表面积S的值为( ). A.183dm2B.18 dm2C.123dm2D.12 dm2 11.正六棱锥底面边长为a,体积为 2 3a3,则侧棱与底面所成的角为( ) A.30°B.45°C.60°D.75° 12.直角梯形的一个内角为45°,下底长为上底长的 2 3,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+2),则旋转体的体积为( ).A.2 B. 32 + 4C. 32 + 5D. 3 7 二、填空题 13.在y轴上的截距为-6,且与y轴相交成30°角的直线方程是______. 14.若圆B : x2+y2+b=0与圆C : x2+y2-6x+8y+16=0没有公共点,则b的取值范围是________________. 15.已知△P1P2P3的三顶点坐标分别为P1(1,2),P2(4,3)和P3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.

高中数学必修2模块测试试卷

高中数学必修2模块测试试卷 考号 班级 姓名 一、选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 下列说法不正确的.... 是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) A . B . C . D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( ) A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( ) (A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆22 (1)1x y -+= 与直线y x = 的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心 9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为

(完整版)高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。 一、选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为() A.3 B.-2 C. 2 D. 不存在 2.过点且平行于直线的直线方程为() A. B.C.D. 3. 下列说法不正确的 ....是() A.空间中,一组对边平行且相等的四边形是一定是平行四边形; B.同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点、,则线段的垂直平分线的方程是() A. B. C. D. 5. 研究下在同一直角坐标系中,表示直线与的关系 6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()

A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题: ①若,,则②若,,,则 ③若,,则④若,,则 其中正确命题的序号是( ) (A)①和②(B)②和③(C)③和④(D)①和④ 8. 圆与直线的位置关系是() A.相交 B.相切 C.相离 D.直线过圆心 9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为() A.-1 B.2 C.3 D.0 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( ) A.点P必在直线AC上 B.点P必在直线BD上 C.点P必在平面DBC内 D.点P必在平面ABC外 11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C ) A.MN∥β B.MN与β相交或MNβ C. MN∥β或MNβ D. MN∥β或MN与β相交或MNβ

新人教版高中数学必修2知识点总结

高中数学必修2知识点总结 第一章 空间几何体 1.1柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' ' E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'' ' ' ' E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' ' E D C B A P - 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 (1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 (2)画三视图的原则: 长对齐、高对齐、宽相等

高二数学必修二综合测试题有答案

班级 ________________ 姓名 ________________________________ 一、选择题(本大题共 12小题,每小题5分,共60分) 1.下面四个命题: ① 分别在两个平面内的两直线是异面直线; ② 若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③ 如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④ 如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( ) A .①② B .②④ C .①③ D .②③ cos F 1PF 2 等于( C . 5. 已知空间两条不同的直线 m,n 和两个不同的平面 A .若 m// ,n ,则m//n B .若 m,m n,则n C .若 m// ,n// ,则m//n D .若m// ,m , I n,则m//n 6. 圆x 2 + y 2— 2x + 4y — 20= 0截直线5x — 12y + c = 0所得的弦长为 8,则c 的值是( ) A . 10 B . 10 或—68 C . 5 或—34 D . — 68 7. 已知ab 0,bc 0 ,则直线ax by c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 & 正方体 ABC —A 1BC 1D 1中,E 、F 分别是AA 与CC 的中点,则直线 ED 与DF 所成角的 数学 必修 综合测试题 总分: _________________ 2. 过点P ( 1,3)且垂直于直线x 2y 3 0的直线方程为( A . 2x y 1 0 B . 2x y 5 C . x 2y 5 D . x 2y 7 3. 4. 圆(x — 1)2+ y 2= 1的圆心到直线 2 2 y 1的左右焦点, 5 B . 2 x 已知F, F 2是椭圆石 C . P 为椭圆上一个点, 且 PF 1 : PF 1:2,则 B . ,则下列命题中正确的是( )

人教版高中数学必修二测试卷

高中数学必修二检测题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟. 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1 、一个棱锥被平行于底面的平面所截,若截面面积与底面面积之比为4∶9,则此棱锥的侧棱被分成上下长度两部分之比为( ) A .4∶9 B .2∶1 C .2∶3 D .2∶5 2 、 如果实数x ,y 满足22 (2)3x y -+=,那么y x 的最大值是( ) A 、3 B 、3- C 、33 D 、33 - 3 、已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 4 、 如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 5 、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为( ) 俯视图 主视图 侧视图 A.24πcm 2,12πcm 3 B.15πcm 2,12πcm 3 C.24πcm 2,36πcm 3 D.以上都不正确 6 、棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( ) A .平行 B .相交 C .平行或相交 D .不相交

7 、直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1) 8 、 两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 9、 直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)2 2 (B)4 (C)2 4 (D)2 10、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1B C 成60角 11 、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 12 、点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-

最新高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案) 1 2 本文适合复习评估,借以评价学习成效。 3 一、选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为() 4 5 A.3 B.-2 C. 2 D. 不存在 6 2.过点且平行于直线的直线方程为() 7 A. B.C.D. 8 3. 下列说法不正确的 ....是() 9 A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; 10 B.同一平面的两条垂线一定共面; 11 C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面 12 内; 13 D. 过一条直线有且只有一个平面与已知平面垂直. 14 15 16 17 18 19 4.已知点、,则线段的垂直平分线的方程是() 20 21 A. B. C. D.

5. 研究下在同一直角坐标系中,表示直线与的关系 22 23 24 6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系() 25 A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 26 27 7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题: 28 ①若,,则②若,,,则 29 30 ③若,,则④若,,则 31 32 其中正确命题的序号是( ) 33 (A)①和②(B)②和③(C)③和④(D)①和④ 34 35 8. 圆与直线的位置关系是() A.相交 B.相切 C.相离 D.直线过圆心 36 37 38 9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c 39 的值为() 40 A.-1 B.2 C.3 D.0 41 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、42 GH相交于点P,那么( )

高中数学必修2综合测试题__人教A版

2015-2016学年度第一学期高一数学期末考试试卷 试卷满分:150分考试时间:120分钟 12道小题,每小题5分,共60分。在每小题给出的四个选项中,只 、下图(1)所示的圆锥的俯视图为() .已知直线l的方程为1 y x =+,则该直线l的倾斜角为(). 30 (B) 60 (C) 45 (D)135 、边长为a正四面体的表面积是() A3;B3;C2;D2。 、对于直线:360 l x y -+=的截距,下列说法正确的是() A、在y轴上的截距是6; B、在x轴上的截距是6; C、在x轴上的截距是3; D、在y轴上的截距是3-。 、已知, a b αα ? //,则直线a与直线b的位置关系是() A、平行; B、相交或异面; C、异面; D、平行或异面。 、已知两条直线 12 :210,:40 l x ay l x y +-=-=,且 12 l l//,则满足条件a的值为 () A、 1 2 -;B、 1 2 ;C、2 -;D、2。 7.已知点(,1,2) A x B 和点(2,3,4),且AB=,则实数x的值是(). (A) 6或-2 (B)–6或2 (C)3或-4 (D) -3或4 8、已知圆22 :260 C x y x y +-+=,则圆心P及半径r分别为() A、圆心() 1,3 P,半径10 r=;B、圆心() 1,3 P,半径r=; C、圆心() 1,3 P-,半径10 r=;D、圆心() 1,3 P-,半径r=。 9、若直线a与平面α不垂直,那么在平面α内与直线a垂直的直线() (A)只有一条(B)无数条 (C)是平面α内的所有直线(D)不存在 10、两条不平行的直线,其平行投影不可能是() A、两条平行直线; B、一点和一条直线; C、两条相交直线; D、两个点。 11.棱长为a的正方体内切一球,该球的表面积为() A、2 a πB、22a πC、32a πD、a π2 4 12.直线 3 y2 x= - - 与圆 9 )3 y( )2 x(2 2= + + - 交于E、F两点,则 ?EOF(O是原 点)的面积为(). A. 5 2 B.4 3 C.2 3 D. 5 5 6(B 第 1 页共5 页

高中数学必修2综合测试题

高中数学必修2综合测试题 一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 、直线:30l y ++=的倾斜角α为 ( ) A 、30; B 、60; C 、120; D 、150。 3、边长为a 正四面体的表面积是 ( ) A 、 34; B 、312a ; C 、24 ; D 2 。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或 异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( ) A 、1 2 -; B 、12; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2a ; B 2; C 2; D 2 。 8、已知圆2 2 :260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) 图(1) A B C D

A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径r =; C 、 圆心()1,3P -,半径10r =; D 、圆心()1,3P -,半径r =。 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都 不对。 12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC 的 ( ) A 、外心; B 、内心; C 、垂心; D 、重心。 二、填空题(本大题共4道小题,把答案填在题中横线上) 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。 用 符 号 表 示 为 ; 1 5 、 点 () 2,1M 直线 l y --=的距离 是 ; 16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //;

人教版高中数学必修二-全册教案

第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1. 知识与技能 (1) 通过实物操作,增强学生的直观感知。 (2) 能根据几何结构特征对空间物体进行分类。 (3) 会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4) 会表示有关于几何体以及柱、锥、台的分类。 2. 过程与方法 (1) 让学生通过直观感受空间物体,从实物中概括出拄、锥、台、球的几何结构特征。 (2) 让学生观察、讨论、归纳、概括所学的知识。 3. 情感态度与价值观 (1) 使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提鬲学生的观察能力。 (2) 培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大董空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的槪括。 三、教学用具 (1) 学法:观察、思考、交流、讨论、槪括。 (2) 实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1. 教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗这些建筑的几何结构特征如何引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2. 所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容。 (二)、研探新知 1. 引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2. 观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么它们的共同 特点是什么 3. 组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)毎相邻两上四边形的公共边互相平

(word完整版)高一数学必修一必修二综合测试卷

高一数学必修一必修二综合测试卷 一、选择题 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 A.{x |x ∈R } B.{y |y ≥0} C.{(0,0),(1,1)} D.? 2. 下列四个函数中,与y =x 表示同一函数的是 A.y =(x )2 B.y =33 x C.y =2 x D.y =x x 2 3. 下列四个函数中,在(0,+∞)上为增函数的是 A.f (x )=3-x B.f (x )=x 2-3x C.f (x )=-1 1+x D.f (x )=-|x | 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( B ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5. 二次函数y =ax 2+bx 与指数函数y =( a b )x 的图象只可能是 D 6. 已知函数f (n )=? ??<+≥-),10)](5([), 10(3n n f f n n 其中n ∈N ,则f (8)等于 A.2 B.4 C.6 D.7 7.过点(1,3)-且平行于直线032=+-y x 的直线方程为( A ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 8. 下列说法不正确的.... 是( D ) A 空间中,一组对边平行且相等的四边形是一定是平行四边形;

B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 9. 圆22 (1)1x y -+=与直线y x = 的位置关系是( A ) A .相交 B . 相切 C .相离 D .直线过圆心 10. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( ) A .-1 B .2 C .3 D .0 11. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 12.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠; (2)如果超过200元但不超过500元,则按标价给予9折优惠; (3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠. 某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 A.413.7元 B.513.7元 C.546.6元 D.548.7元 二 填空题 13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.函数 )23(log 3 2-=x y 的定义域为______________ 15.已知f (x )=x 2-1(x <0),则f - 1(3)=_______. 16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 三、解答题 17. 求函数y = 1 2 -x 在区间[2,6]上的最大值和最小值.(10分)

人教版A版高中数学必修2课后习题解答

第一章空间几何体 1.1 空间几何体的结构 练习(第7 页) 1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体; (4)由一个六棱柱挖去一个圆柱体而得到的组合体。 2.(1)五棱柱;(2)圆锥 3.略 习题1.1 A组 1.(1) C;(2)C;(3)D;(4) C 2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。 3.(1)由圆锥和圆台组合而成的简单组合体; (2)由四棱柱和四棱锥组合而成简单组合体。 4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。 5.制作过程略。制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。 B组 1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。 2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。 1.2 空间几何体的三视图和直观图 练习(第15 页) 1.略 2.(1)四棱柱(图略); (2)圆锥与半球组成的简单组合体(图略); (3)四棱柱与球组成的简单组合体(图略); (4)两台圆台组合而成的简单组合体(图略)。 3.(1)五棱柱(三视图略); (2)四个圆柱组成的简单组合体(三视图略); 4.三棱柱 练习(第19 页) 1.略。 2.(1)√(2)×(3)×(4)√ 3.A 4.略 5.略 习题1.2 A组 1.略 2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体 3~5.略 B组 1~2.略 3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。 1.3 空间几何体的表面积与体积

高中数学必修二直线和圆的综合问题精选

直线与圆 一.解答题(共10小题) 1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2. (1)求圆C的方程; (2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程. 2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径. (1)求圆C的方程; (2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由. 3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6|| (Ⅰ)求点P的轨迹方程; (Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由. 4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程; (Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.

5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线 C. (Ⅰ)求曲线C的方程; (Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由. 6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB, 在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系. (Ⅰ)求曲线Γ的方程; (Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围. 7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上. (Ⅰ)求C点的轨迹Γ的方程; (Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

相关主题