搜档网
当前位置:搜档网 › 第1章土的物理性质及工程分类

第1章土的物理性质及工程分类

第1章土的物理性质及工程分类
第1章土的物理性质及工程分类

第1章土的物理性质及工程分类

1.1 土的形成

岩土体是地壳的物质组成。岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。它赋存于一定的地质环境之中,并随着地质环境的演化和地质作用的持续,仍在不断的变化着。土体是岩石风化的产物,是一种松散的颗粒堆积物。由于岩土材料组成的复杂性,其性质在许多方面不同于其它材料,具有其特有的多变性及复杂性。以下就岩土的特性分别简述之。

1.2 土的组成

1.1.1 土的结构与特性

土是一种松散的颗粒堆积物。它是由固体颗粒、液体和气体三部份组成。土的固体颗粒一般由矿物质组成,有时含有胶结物和有机物,这一部分构成土的骨架。土的液体部分是指水和溶解于水中的矿物质。空气和其它气体构成土的气体部分。土骨架间的孔隙相互连通,被液体和气体充满。土的三相组成决定了土的物理力学性质。

1)土的固体颗粒

土骨架对土的物理力学性质起决定性的作用。分析研究土的状态,就要研究固体颗粒的状态指标,即粒径的大小及其级配、固体颗粒的矿物成分、固体颗粒的形状。

(1)固体颗粒的大小与粒径级配

土中固体颗粒的大小及其含量,决定了土的物理力学性质。颗粒的大小通常用粒径表示。实际工程中常按粒径大小分组,粒径在某一范围之内的分为一组,称为粒组。粒组不同其性质也不同。常用的粒组有:砾石粒、砂粒、粉粒、粘粒、胶粒。以砾石和砂粒为主要组成成分的土称为粗粒土。以粉粒、粘粒和胶粒为主的土,称为细粒土。土的工程分类见本章第三节。各粒组的具体划分和粒径范围见表1-1。

土中各粒组的相对含量称土的粒径级配。土粒含量的具体含义是指一个粒组中的土粒质量与干土总质量之比,一般用百分比表示。土的粒径级配直接影响土的性质,如土的密实度、土的透水性、土的强度、土的压缩性等。要确定各粒组的相对含量,需要将各粒组分离开,再分别称重。这就是工程中常用的颗粒分析方法,实验室常用的有筛分法和密度计法。

筛分法适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。

密度计法适用于粒径小于0.075mm的土。基本原理是颗粒在水中下沉速度与粒径的平

方成正比,粗颗粒下沉速度快,细颗粒下沉速度慢。根据下沉速度就可以将颗粒按粒径大小分组(详见土工试验书籍)。

当土中含有颗粒粒径大于0.075mm 和小于0.075mm 的土粒时,可以联合使用密度计法和筛分法。

工程中常用粒径级配曲线直接了解土的级配情况。曲线的横坐标为土颗粒粒径的对数,单位为mm ;纵坐标为小于某粒径土颗粒的累积含量,用百分比(%)表示。如图1-1。

颗粒级配曲线在土木、水利水电等工程中经常用到。从曲线中可直接求得各粒组的颗粒含量及粒径分布的均匀程度,进而估测土的工程性质。其中一些特征粒径,可作为选择建筑材料的依据,并评价土的级配优劣。特征粒径有:

d 10 - 土中小于此粒径的土的质量占总土质量的10%,也称有效粒径;

d 30 - 土中小于此粒径的土的质量占总土质量的30%;

d 50 - 土中小于此粒径的土的质量和大于此粒径的土的质量各占50%,也称平均粒径,用来

表示土的粗细;

d 60 - 土中此粒径土的质量占总土质量的60%,也称限制粒径。粒径分布的均匀程度由不均

匀系数C u 表示:

C u = d 60/ d 10 (1-1)

C u 愈大,土愈不均匀,也即土中粗、细颗粒的大小相差愈悬殊。

若土的颗粒级配曲线是连续的,C u 愈大,d 60与d 10相距愈远,则曲线愈平缓,表示土中的粒组变化范围宽,土粒不均匀;反之,C u 愈小,d 60与d 10相距愈近,曲线愈陡,表示土中的粒组变化范围窄,土粒均匀。工程中,把C u >5的土称为不均为土,C u ≤5的土称为均匀土。

若土的颗粒级配曲线不连续,在该曲线上出现水平段,如图1-1曲线②和③所示,水平段粒组范围不包含该粒组颗粒。这种土缺少中间某些粒径,粒径级配曲线呈台阶状,土的组成特征是颗粒粗的较粗,细的较细,在同样的压实条件下,密实度不如级配连续的土高,其它工程性质也较差。

土的粒径级配曲线的形状,尤其是确定其是否连续,可用曲率系数C c 反映:

(1-2)

若曲率系数过大,表示粒径分布曲线的台阶出现在d 10和d 30范围

内。反之,若曲率系数过小,表示台阶出现在d 30和d 60范围内。经验表明,当级配连续时,C c 的范围大约在1-3。因此,当C c <1或C c >3时,均表示级配曲线不连续。

由上可知,土的级配优劣可由土中土粒的不均匀系数和粒径分布曲线的形状曲率系数衡量。我国《土的分类标准》(GBJ 145-90)规定:对于纯净的砂、砾石,当实际工程中,C u 大于或等于5,且C c 等于1~3时,它的级配是良好的;不能同时满足上述条件时,它的级配是不良的。

1060230d d d C c ?=

(2)固体颗粒的成份

土中固体颗粒的成份绝大多数是矿物质,或有少量有机物。颗粒的矿物成份一般有两大类,一类是原生矿物,另一类是次生矿物。

(3)固体颗粒的形状

原生矿物的颗粒一般较粗,多呈粒状;次生矿物的颗粒一般较细,多呈片状或针状。土的颗粒愈细,形状愈扁平,其表面积与质量之比愈大。。

对于粗颗粒,比表面积没有很大意义。对于细颗粒,尤其是粘性土颗粒,比表面积的大小直接反应土颗粒与四周介质的相互作用,是反应粘性土性质特征的一个重要指标。

2)土的液体部分

如前所述,土中液体含量不同,土的性质就不同。土中的液体一部分以结晶水的形式存在于固体颗粒的内部,形成结合水;另一部分存在于土颗粒的孔隙中,形成自由水。

(1)结合水

在电场作用力范围内,水中的阳离子和极性分子被吸引在土颗粒周围,距离土颗粒越近,作用力越大;距离越远,作用力越小,直至不受电场力作用。通常称这一部分水为结合水。特点是包围在土颗粒四周,不传递静水压力,不能任意流动。由于土颗粒的电场有一定的作用范围,因此结合水有一定的厚度,其厚度首先与颗粒的粘土矿物成分有关。在三种粘土矿物中,由蒙脱石组成的土颗粒,尽管其单位质量的负电荷最多,但其比表面积较大,因而单位面积上的负电荷反而较少,结合水层较薄;而高岭石则相反,结合水层较厚。伊利石介于二者之间。其次,结合水的厚度还取决于水中阳离子的浓度和化学性质,如水中阳离子浓度越高,则靠近土颗粒表面的阳离子也越多,极性分子越少,结合水也就越薄。

(2)自由水

不受电场引力作用的水称为自由水。自由水又可分为毛细水和重力水。

①毛细水,毛细水分布在土颗粒间相互连通的弯曲孔道。由于水分子与土颗粒之间的附着力和水、气界面上的表面张力,地下水将沿着这些孔道被吸引上来,而在地下水位以上形成一定高度的毛细管水带。它与土中孔隙的大小、形状、土颗粒的矿物成分以及水的性质有关。

在潮湿的粉、细砂中,由于孔隙中的气与大气相通,孔隙水中的压力也小于大气压力,此时孔隙水仅存于土颗粒接触点周围。

②重力水,在重力本身作用下的水称重力水。重力水能在土体中自由流动,具有溶解能力,能传递水压力。

水是土的重要成分之一。一般认为水不能承受剪力,但能承受压力和一定的吸力;一般情况下,水的压缩量很小,可以忽略不计。

3)土的气体部分

在非饱和土中,土颗粒间的孔隙由液体和气体充满。土中气一般以下面两种形式存在于土中:一种是四周被颗粒和水封闭的封闭气体,另一种是与大气相通的自由气体。

当土的饱和度较低,土中气体与大气相通时,土体在外力作用下,气体很快从孔隙中排出,则土的强度和稳定性提高。当土的饱和度较高,土中出现封闭气体时,土体在外力作用

下,则体积缩小;外力减小,则体积增大。因此,土中封闭气体增加了土的弹性。同时,土中封闭气体的存在还能阻塞土中的渗流通道,减小土的渗透性。

1.3 土的物理性质指标

由于土是由固体颗粒、液体和气体三部分组成,各部分含量的比例关系,直接影响土的物理性质和土的状态。例如,同样一种土,松散时强度较低,经过外力压密后,强度会提高。对于粘性土,含水量不同,其性质也有明显差别,含水量多,则软;含水量少,则硬。

在土力学中,为进一步描述土的物理力学性质,将土的三相成分比例关系量化,用一些具体的物理量表示,这些物理量就是土的物理力学性质指标。如含水量、密度、土粒比重、孔隙比、孔隙率和饱和度等。为了形象、直观地表示土的三相组成比例关系,常用三相图来表示土的三相组成,如图1-2所示。在三相图左侧,表示三相组成的质量,三相图的右侧,表示三相组成的体积。

1) 实测指标

(1)土的含水率 ( ω )

土的含水量 ω 是指土中液体的质量 (m w ) 和土颗粒质量 (m s ) 之比,用百分比表示。这一指标需通过试验取得。

(1-4)

式中土粒的质量 m s 就是干土的质量,是把土烘干至恒量后称得的,气体的质量忽略小计,液体的质量由总质量 m 和干土的质量m s 相减而得。

(2)土的密度 ( ρ )

土的密度 ρ 是指单位体积土的质量,在三相图中,即是总质量与总体积之比。单位用3/cm g 或3/m kg 计。公式如下:

(1-5)

对粘性土,土的密度常用环刀法测得。即用一定容积V 的环刀切取试样,称得质量m ,即可求得密度 ρ 。ρ 通常称为天然密度或湿密度。工程计算中还常用到饱和密度和干密度两种密度。

饱和密度(ρsat ):孔隙完全被水充满时土的密度,公式为:

(1-6)

干密度(ρd ):土被完全烘干时的密度,若忽略气体的质量,干密度在数值上等于单位

%100%100?-=?=s s s w m m m m m ωa w s w s V V V m m V m +++==ρV V m w

v s sat ρρ+=

21m m m m G s s

s -+=体积中土粒的质量。公式为

(1-7)

实际工程中,由于人们习惯用重量表示物质含量的多少,所以还常用到土的重度。对应于上述几种密度,相应地用天然重度γ、饱和重度γsat 和干重度γd 来表示土在不同含水状态下单位体积的重量。在数值上,它们等于相应的密度乘以重力加速度g 。此外,静水中土体受水的浮力作用,其重度等于土的饱和重度减去水的重度,称为浮重度γ′,单位用

3/m kN 计。由于重量 (G) 与质量 (m) 有存在G

= mg 关系,所以土的重度γ与土的密度 ρ 的关系如下:

γ = ρ ╳ g = 9.8ρ ( 1-8 )

其中g 为重力加速度(2/8.9s m g =)有时工程上为了计算方便,取 2/10s m g =。土的密度随土的三相组成比例不同而异,一般情况在1.60 ~ 2.203

/m g 之间。

(3) 土粒比重 ( G s )

土粒比重 ( G s ) 是土粒的质量与同体积纯蒸馏水在4℃时的质量之比,这一指标需试验取得,公式如下: (1-9)

式中,ρ s 为土粒的密度,即单位土体土粒的质量;

为4℃时纯蒸馏水的密度。

土粒比重常用比重瓶法测得。将比重瓶加满蒸馏水,称水和瓶的总质量m 1;然后把烘干土m s 装入该空比重瓶,再加满蒸馏水,称总质量m 2,按下面的公式求得土粒比重:

( 1-10 )

实际上由于 = 1.0g/ ,故土粒比重在数值上等于土粒的密度,但无量纲。 天然土的颗粒是由不同的矿物组成的,它们的比重一般并不相同。试验测得的是土粒的比重的平均值。土粒的比重变化范围较小,砂土一般在2.65左右,粘性土一般在2.75左右;若土中的有机质含量增加,则土的比重将减小。

2)其它指标

(1)孔隙比( e )

孔隙比是指孔隙的体积与固体颗粒实体的体积之比,用小数表示,公式为:

S

V V V e = (1-11) C w ?4ρC w

?4ρ3cm w s

C w s s

s V m G ρρρ==?)(4V m s

d =ρ

V V n v =n n

e -=1e e n +=1(2)孔隙度( n )

孔隙度是指孔隙的体积与土的总体积之比,用百分数表示,公式为:

(%) ( 1-12 )

根据二者的定义很容易证明,孔隙度 n 与孔隙比 e 之间有如下关系:

( 1-13 ) 或

( 1-14 )

土的孔隙比和孔隙度都是用来表示孔隙体积的含量。同一种土,孔隙比和孔隙度不同,土的密实程度也不同。它们随土的形成过程中所受到的压力、粒径级配和颗粒排列的不同而有很大差异。一般来说,粗粒土的孔隙度小,如砂类土的孔隙度一般在30%左右;细粒土的孔隙度大,如粘性土的孔隙度有时可高达70%。

(3)饱和度 (S r )

土的饱和度S r 是指土孔隙中液体的体积与孔隙的体积之比,用百分数表示,公式如下

(1-15)

含水率ω是用来表示土中含水程度的一个重要指标,饱和度S r 则用来确定孔隙中充满水的程度。很显然,干土的饱和度S r =0,饱和土的饱和度S r =100% 。

土的物理性质指标之间的关系可用三相图来换算。

1.4 土的物理状态指标

1.5.1粘性土(细粒土)的物理状态指标

粘性土最主要的特征是它的稠度,稠度是指粘性土在某一含水量下的软硬程度和土体对外力引起的变形或破坏的抵抗能力。当土中含水量很低时,水被土颗粒表面的电荷吸着于颗粒表面,土中水为强结合水,土呈现固态或半固态。当土中含水量增加,吸附在颗粒周围的水膜加厚,土粒周围除强结合水外还有弱结合水。弱结合水不能自由流动,但受力时可以变形,此时土体受外力作用可以被捏成任意形状,外力取消后仍保持改变后的形状,这种状态称为塑态。当土中含水量继续增加,土中除结合水外已有相当数量的水处于电场引力范围外,这时,土体不能受剪应力,呈现流动状态。实质上,土的稠度就是反应土体的含水量。

土从一种状态转变成另一种状态的界限含水量,称为稠度界限。工程上常用的稠度界限有液限和塑限。国际上称为阿太堡界限(Aterberg Limit )。

1)液限( )

液限指土从塑性状态转变为液性状态时的界限含水量;

2)塑限( )

(%)νωV V s r =

L ωP ω

塑限指土从半固体状态转变为塑性状态时的界限含水量。

实验室测定液限使用液限仪,测定塑性用搓条法。具体方法请参阅“土工试验规程”。实际上,由于粘性土从一种状态转变为另一种状态是渐变的,没有明确的界限,因此只能根据这些通用的试验方法测得的含水量代替界限含水量。

此外,为了表征土体天然含水量与界限含水量之间的相对关系,工程上还常用液性指数 和塑性指数 两个指标判别土体的稠度。 3)塑性指数 (1-32) 式中, 为液限, 为塑限。 塑性指数越大,土性越粘,工程中根据塑性指数的大小对粘性土进行分类(见表1-16)。

4)液性指数 :

(1-33)

当 =0时, ,土从半固态进入可塑状态。当 =1时,土从可塑状态进入液

态。因此,可以根据 的值直接判定土的软硬状态。工程上按液性指数 的大小,可把粘

性土的状态区分开来:

≤0 坚固状态

0< ≤1. 0 可塑状态

>1.0 流动状态

应当注意,实验室测定塑限和液限时,是用扰动样,土的结构已经破坏,实测值要比实际值小,因此,用液性指数反映天然土的稠度有一定缺点,用于判别重塑土的稠度较为合适。

1)相对密实度(D r )

相对密实度是指砂土的密实程度。孔隙比、干容重在一定程度上也可以反映土的密度程度,但这两个指标没有考虑粒径级配对土的密度程度的影响。不难验证,不同极配的砂土,可以具有相同的孔隙比e ,若土颗粒的大小、形状和级配不同,则土的密实程度也明显不同。如均匀颗粒的土与包含大颗粒和小颗粒的土,其密实程度是不同的。为此,实际工程中,一般用相对密实度D r 来表征砂土的密实程度。公式为:

(1-34)

式中, 指砂土的天然孔隙比;

指砂土的最大孔隙比,由它的最小干密度换算而得;

指砂土的最小孔隙比,由它的最大干密度换算而得;

将式(1-34)中的孔隙比用干密度替换,可得到用干密度表示的相对密度表达式:

(1-35)

式中, 指砂土的天然干密度; 指砂土的最大干密度;

指砂土的最小干密度。

min max 0max e e e e D r --=

0e m ax e m in e d d d d d d r D ρρρρρρ)()(min max max

min --=

d ρm ax d ρm in d ρL I P

I P L P I ωω-=P I L ωP ωL I P L P L I ωωωω--=L I P ωω=L I L I L I L I L I L I

最大干密度和最小干密度可直接由试验测定。具体测定方法请参阅“土工试验规程”。

当 时, ,表示土处于最松状态。当

时, ,表示土处于最密实状态。工程中,用相对密度判别砂土的密实状态标准为: 疏松

中密 密实

粘性土不存在最大和最小孔隙比,因此粘性土的密实度只能依据孔隙比和干密度来判别。

1.5 土的工程分类

自然界中土的种类不同,其工程性质也必不相同。从直观上,可以粗略的把土分成两大类,一类是土体中肉眼可见松散颗粒,颗粒间连结弱,这就是前面提到的无粘性土(粗粒土);另一类是颗粒非常细微,颗粒间连结力强,这就是前面提到的粘土。实际工程中,这种粗略的分类远远不能满足工程的要求,还必须用更能反映土的工程特性的指标来系统分类。前面已介绍过,影响土的工程性质的主要因素是土的三相组成和土的物理状态,其中最主要的因素是三相组成中土的固体颗粒。如颗粒的粗细、颗粒的级配等。目前,国际、国内土的工程分类法并不统一。即使同一国家的各个行业、各个部门,土的分类体系也都是结合本专业的特点而制定的。本节主要介绍我国“土的分类标准”(GBJ 145-90)和“建筑地基基础设计规范”(GB50007-2002)。

1) 土的分类标准(GBJ 145-90)

为了与国际接轨,我国特制定了“土的分类标准”,这一分类体系与一些欧美国家的土分类体系原则相近,仅根据我国的实际情况作了适当修正。按GBJ 145-90分类法,土的总分类体系如下:

对土进行分类时,首先根据有机质的含量把土分成有机土和无机土两大类。无机土中,再根据土中各粒组的相对含量把

土再分为:巨粒土、含巨粒土、粗粒土和细粒土。根据土的分类标准,各粒组还可进一步细分。下面分别予以说明

0=r D 0.1=r D max 0e e =min 0e e =310≤

(1)巨粒土和含巨粒土

土体颗粒粒径在60mm以上的称巨粒。若土中巨粒含量高于50%,该土属巨粒土;若土中巨粒含量在15%~50%之间,该土属含巨粒土。巨粒土和含巨粒土依据其中所含漂石粒含量进一步划分如表1-10。

表1-10 巨粒土和含巨粒土的分类

(2)粗粒土

粗粒土中大于0.075mm的粗粒含量在50%以上。粗粒土分为砾类土和砂类土两类。若土中粒径大于2mm的砾粒含量多于50%,则该土属砾类土;不足50%,则属砂类土。

砾类土和砂类土再按细粒土(<0.075mm)的含量进一步细分。具体细粒含量和其它相关指标见表1-11、表1-12。

表1-11 砾类土的分类

表1-12 砂类土的分类

(3)细粒土的分类

细粒土中粒径小于0.075mm 在细粒含量在50%以上,且粗粒含量少于25%。细粒土按塑性图分类。塑性图以液限为横坐标,塑性指L W 数P I 为纵坐标,见图1-5,图中用A 、B 二条线和6P =I 和10P =I 及 %26L

表1-13 细 粒 土 的 分 类

2) 建筑地基基础设计规范(GB50007―2002)

这种分类方法的体系比较简单,按照土颗粒的大小、粒组的土颗粒含量把地基土分成碎石土、砂土、粉土和粘性土和人工填土。按我国“土的分类标准”,碎石土和砂土属于粗粒土,粉土和粘性土属于细粒土。粗粒土按粒径级配分类,细粒土则按塑性指数分类。

1)碎石土

粒径大于2mm 的颗粒含量大于50%的土属碎石土。根据粒组含量及颗粒形状,可细分为漂石、块石、卵石、碎石、圆砾、角砾。具体见表1-14。

表1-14 碎 石 土

的 分 类

注:分类时应根据粒组含量栏从上到下以最先符合者确定。

2)砂土

粒径大于2mm 的颗粒含量在50%以内,同时粒径大于0.075mm 的颗粒含量超过50%

的土属砂土。砂土根据粒组含量不同又分为砾砂、粗砂、中砂、细砂和粉砂五类。具体见表1-15

表1-15 砂土的分类

注:分类时应根据粒组含量栏从上到下以最先符合者确定。

3)粉土

粒径大于0.075mm的颗粒含量小于50%且塑性指数小于等于10的土属粉土。该类土的工程性质较差,如抗剪强度低,防水性差,粘聚力小等。

4)粘性土

粒径大于0.075mm的颗粒含量在50%以内,塑性指数大于10的土属粘性土。根据塑性指数的大小可细分为粘土和粉质粘土,具体如表1-16。

表1-16

5)淤泥

淤泥为在静水或缓慢的流水环境中沉积,并经生物化学作用形成,其天然含水率大于液限、天然孔隙比大于或等于1.5的粘性土。当天然含水量大于液限而天然孔隙比小于1.5但大于或等于1.0的粘性土或粉土为淤泥质土。

6) 红粘土

红粘土为碳酸盐岩系的岩石经红土化作用形成的高塑性粘土。其液限一般大于50。红粘土经再搬运后仍保留其基本特征,其液限大于45的土为次生红粘土。

7) 人工填土

人工填土根据其组成和成因,可分为素填土、压实填土、杂填土、冲填土。

素填土为由碎石土、砂土、粉土、粘性土等组成的填土。经过压实或夯实的素填土为压实填土。杂填土为含有建筑垃圾、工业废料、生活垃圾等杂物的填土。冲填土为由水力冲填

泥砂形成的填土。

8) 膨胀土

膨胀土为土中粘粒成分主要由亲水性矿物组成,同时具有显著的吸水膨胀和失水收缩特性,其自由膨胀率大于或等于40%的粘性土。

9) 湿陷性土

湿陷性土为浸水后产生附加沉降,其湿陷系数大于或等于0.015的土。

01第一章 土的物理性质及工程分类

兰州交通大学博文学院教案 课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: ●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 ●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 ●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图1.1 土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

常见土的种类及性质

四、无黏性土的物理性质 无黏性土主要是指砂土和碎石土,其工程性质与其密实度密切相关。密实度越大,土的强度越大。因此,密实度是反映无黏性土工程性质的主要指标。 评判无黏性土的密实度有以下方法:1、根据相对密实度 Dr (大小位于0~1 之间)判别: 密实( 1 ≥Dr≥0 . 67 );中密( 0 . 67≥Dr≥0 . 33 );松散( 0 . 33 ≥ Dr ≥0 )。该法适用于透水性好的无黏性土,如纯砂、纯砾。 2、根据天然孔隙比e判别: e越小,土越密实。一般,e< 0 . 6 时属密实,e> 1 . 0 时属疏松。该法适用于砂土,但不能考虑矿物成分、级配等对密实度的影响。 3、根据原位标准贯入试验判别: 密( N > 30 )、中密( 15 ≤N≤ 30 )、稍密( 10≤N≤15 )、松散( N≤10 ) 原位标准贯入试验:在土层钻孔中,利用重63.5kg的锤击贯入器,根据每贯入30cm所

需锤击数来判断土的性质,估算土层强度的一种动力触探试验。 4、根据野外方法鉴别(针对碎石类土) 肉眼观察、挖、钻等。 五、黏性土的物理性质 黏性土的特性主要是由于黏粒与水之间的相互作用产生,因此含水量是决定因素。黏性土的含水量对其物理状态和工程性质有重要影响。 液限(ωL, Liqud Limit ):土由可塑状态变到流动状态的界限含水量;土处于可塑状态的最大含水量,稍大即流态; 塑限(ωP, Plastic Limit ):土由半固态变为可塑状态的界限含水量;土处于可塑状态的最小含水量,稍小即半固态; 缩限(ωS , Shrinkage Limit ):土由固态变为半固态的界限含水量;土处于半固态的最小含水量,稍小即为固态。 塑性指数IP ―表示土处于可塑状态的含水量变化范围。 IP 越大,土处于可塑状态的含水量范围也越大。

土的物理性质指标

第一章 土的物理性质及工程分类 第一节 土的组成与结构 一、 土的组成 天然状态下的土的组成(一般分为三相) ⑴ 固相:土颗粒—构成土的骨架决定 土的性质—大小 、形状、 成分、组成、排列 ⑵ 液相:水和溶解于水中物质 ⑶ 气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相 (一)、土的矿物成分和土中的有机质。 土粒的矿物成分不同、粗细不同、形状不同、土的性质也不同 矿物成分取决于(1)成土母岩的成分 (2)所经受的风化作用①物理风化——原生矿物(化学成分无变化) ②化学风化——次生胯矿物(化学成分变化) 次生矿物(1)三大黏土矿物①高岭石(土) ②伊利石(土) ③蒙脱石(土) (2)水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO4.2H2O ③易溶:NaCl kcl CaCl2 K Na 的 SoO42- CO 3 2- 2.各粒组中所含的主要矿物成分 土颗粒据粒组范围划分不同的粒组名称 石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性 (1) 蒙脱石——透水性小多个晶体层——结构不稳定、颗粒最小、亲水性 (2) 伊利石——介于两者之间,较接近蒙脱石 (3) 高岭石——颗粒相对较大——亲水性较弱晶体结构较稳定 ρd 粘土中的水溶盐 3.土中的有机质——亲水性强,压缩性大,强度低 (二)土的粒组划分 (三)土的颗粒级配 1. 颗粒大小分析试验——颗分试验 方法(1)筛分法:适用60—0.075mm 的粗粒土 (2)密度计法:适用小于0.075mm 的细粒土 2. 颗粒级配曲线——半对数坐标系 3. 级配良好与否的判别 (一) 定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (4) 曲线形状平缓——粒径变化范围大——不均匀——良好 (5) 曲线形状较陡——变化范围小——均匀——不良 (二) 定量判别 (1)不均匀系数 10 60d d C u

第一章土的物理性质及工程分类及答案

第一章土的物理性质及工程分类 一、思考题 1、土是由哪几部分组成的? 2、建筑地基土分哪几类?各类土的工程性质如何? 3、土的颗粒级配是通过土的颗粒分析试验测定的,常用的方法有哪些?如何判断土的级配情况? 4、土的试验指标有几个?它们是如何测定的?其他指标如何换算? 5、粘性土的含水率对土的工程性质影响很大,为什么?如何确定粘性土的状态? 6、无粘性土的密实度对其工程性质有重要影响,反映无粘性土密实度的指标有哪些? 二、选择题 1、土的三项基本物理性质指标是() A、孔隙比、天然含水率和饱和度 B、孔隙比、相对密度和密度 C、天然重度、天然含水率和相对密度 D、相对密度、饱和度和密度 2、砂土和碎石土的主要结构形式是() A、单粒结构 B、蜂窝结构 C、絮状结构 D、层状结构 3、对粘性土性质影响最大的是土中的( ) A、强结合水 B、弱结合水 C、自由水 D、毛细水 4、无粘性土的相对密实度愈小,土愈() A、密实 B、松散 C、居中 D、难确定 5、土的不均匀系数C u 越大,表示土的级配() A、土粒大小不均匀,级配不良 B、土粒大小均匀,级配良好 C、土粒大小不均匀,级配良好 6、若某砂土的天然孔隙比与其能达到的最大孔隙比相等,则该土() A、处于最疏松状态 B、处于中等密实状态 C、处于最密实状态 D、无法确定其状态 7、无粘性土的分类是按() A、颗粒级配 B、矿物成分 C、液性指数 D、塑性指数 8、下列哪个物理性质指标可直接通过土工试验测定() A、孔隙比 e B、孔隙率 n C、饱和度S r D、土粒比重 d s 9、在击实试验中,下面说法正确的是() A、土的干密度随着含水率的增加而增加 B、土的干密度随着含水率的增加而减少 C、土的干密度在某一含水率下达到最大值,其它含水率对应干密度都较小 10、土粒级配曲线越平缓,说明()

土的物理性质与工程分类习题解答全讲解学习

土的物理性质与工程分类习题解答全

二 土的物理性质与工程分类 一、填空题 1. 土是由固体颗粒、_________和_______组成的三相体。 2. 土颗粒粒径之间大小悬殊越大,颗粒级配曲线越_______,不均匀系数越______,颗粒级配越______。为了获得较大的密实度,应选择级配________的土料作为填方或砂垫层的土料。 3. 塑性指标P I =________,它表明粘性土处于_______状态时的含水量变化范围。 4. 根据___________可将粘性土划分为_________、_________、 _________、________、和___________五种不同的软硬状态。 5. 反映无粘性土工程性质的主要指标是土的________,工程上常用指标 ________结合指标________来衡量。 6. 在土的三相指标中,可以通过试验直接测定的指标有_________、_________和________,分别可用_________法、_________法和________法测定。 7. 土的物理状态,对于无粘性土,一般指其________;而对于粘性土,则是指它的_________。 8. 土的结构是指由土粒单元的大小、形状、相互排列及其连接关系等因素形成的综合特征,一般分为_________、__________和__________三种基本类型。 9. 土的灵敏度越高,结构性越强,其受扰动后土的强度降低就越________。 10. 工程上常用不均匀系数u C 表示土的颗粒级配,一般认为,u C ______的土属级配不良,u C ______的土属级配良好。有时还需要参考__________值。 11. 土的含水量为土中_______的质量与_________的质量之比。 12. 某砂层天然饱和重度sat γ20=KN/m 3,土粒比重的68.2=s d ,并测得该砂土的最大干密度33max 1.7110kg /m d ρ=?,最小干密度33min 1.5410kg /m d ρ=?,则 天然孔隙比e 为______,最大孔隙比m ax e 为______,最小孔隙比m in e 为______。 13. 岩石按风化程度划分为__________,__________,________;按其成因可分为

土的组成及物理性质分类

一思考题 1 什么叫土?土是怎样形成的?粗粒土和细粒土的组成有何不同? 2 什么叫残积土?什么叫运积土?他们各有什么特征? 3 何谓土的级配?土的粒径分布曲线是怎样绘制的?为什么粒径分布 曲线用半对数坐标? 4 何谓土的结构?土的结构有哪几种类型?它们各有什么特征? 5 土的粒径分布曲线的特征可以用哪两个系数来表示?它们定义又如 何? 6 如何利用土的粒径分布曲线来判断土的级配的好坏? 7 什么是吸着水?具有哪些特征? 8 什么叫自由水?自由水可以分为哪两种? 9 什么叫重力水?它有哪些特征? 10 土中的气体以哪几种形式存在?它们对土的工程性质有何影响? 11 什么叫的物理性质指标是怎样定义的?其中哪三个是基本指标? 12 什么叫砂土的相对密实度?有何用途?

1-13 何谓粘性土的稠度?粘性土随着含水率的不同可分为几种状态? 各有何特性? 14 何谓塑性指数和液性指数?有何用途? 15 何谓土的压实性?土压实的目的是什么? 16 土的压实性与哪些因素有关?何谓土的最大干密度和最优含水率? 17 土的工程分类的目的是什么? 18 什么是粗粒土?什么叫细粒土? 19 孔隙比与孔隙率是否是一回事?说明理由,并导出两者之间的关 系式。 20 试述粘性土液性指数的定义、简要的测定方法,以及如何根据其大 小来确定粘性土所处的物理状态? 二计算题 1有A、B两个图样,通过室内实验测得其粒径与小于该粒径的土粒质量如下表所示,试绘出它们的粒径分布曲线并求出和值。 A土样实验资料(总质量500g) 粒径d(mm)5210.50.250.10.075小于该粒径的质量(5004603101851257530

土层的工程分类及性质

土层的工程分类及性质 一、土的工程分类 在建筑施工中,按照开挖的难易程度,土可分为八类:一类土(松软土)、二类土(普通土)、三类土(坚土)、四类土(砂砾坚土)、五类土(软石)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)。一至四类为土,五至八类为岩石。 二、土的工程性质 1、土的密度 (1)土的天然密度土在天然状态下单位体积的质量,称为土的天然密度。 (2)土的干密度单位体积中土的固体颗粒的质量称为土的干密度。注:土的干密度越大,表示土越密实。工程上把土的干密度作为评定土体密实程度的标准,以控制基坑底压实及填土工程的压实质量。 2、土的含水量 土的含水量是土中水的质量与固体颗粒质量之比,以百分数表示。注:土的干湿程度用含水量表示。5%以下称干土、5%—30%称潮湿土、30%以上称湿土。含水量越大,土就越湿,对施工越不利。 3、土的可松性 自然状态下的土经开挖后,其体积因松散而增大,以后虽经回填压实,其体积仍不能恢复原状,这种性质称为土的可松性。土的可松性程度用可松性系数表示。

4、土的渗透性 土的渗透性指水流通过土中孔隙的难易程度,水在单位时间内穿透土层的能力称为渗透系数,用表示,单位为。注:土的渗透性大小取决于不同的土质。地下水的流动以及在土中的渗透速度都与土的渗透性有关。 下面来介绍一下,岩石风化。一般情况下,岩体的风化程度呈现出由表及里逐渐减弱的规律。但由于岩体中岩性并不均一,且有断裂存在,所以岩体风化的情况并不一定完全符合一般规律。岩体风化厚度一般为数米至数十米,沿断裂破碎带和易风化岩层,可形成风化较剧的岩层。断层交会处还可形成风化囊。在这两种情况下深度可超过百米。岩体风化分为:①物理风化,如气温变化使岩石胀缩导致破裂等;②化学风化,如低价铁的黄铁矿在水参与下变为高价铁的褐铁矿;③生物风化,如植物根系可使岩石的裂隙扩张等。岩体风化的速度和程度取决于岩石的性质和结构、地质构造、气候条件、地形条件、人类活动的影响等。 另外,按照岩石分化程度不同可以分为:1、未风化:岩质新鲜偶见风化痕迹。2、微风化:结构基本未变,仅节理面有渲染或略有变色,有少量风化裂隙。3、中风化:结构部分破坏,沿节理面有次生矿物,有风化裂隙发育,岩体被切割成岩块。用镐难挖,干钻不易钻进。4、强风化:结构大部分破坏,矿物成分显著变化,风化裂隙发育,岩体破碎,用镐可挖,干钻不易钻进。5、全风化:结构基本破坏,但尚可辨认,有残余结构强度,可用镐挖,干钻可钻进。6、残积土:组织结构全部破坏,已成土状,锹镐易开挖,干钻易钻进,具可塑。

2土的物理性质及分类

第2章 土的物理性质及分类 2.1 概 述 土是土粒(固体相),水(液体相)和空气(气体相)三者所组成的;土的物理性质就是研究三相的质量与体积间的相互比例关系以及固、液两相相互作用表现出来的性质。 土的物理性质指标,可分为两类:一类是必须通过试验测定的,如含水量,密度和土粒比重;另一类是可以根据试验测定的指标换算的;如孔隙比,孔隙率和饱和度等。 2.2 土的三相比例指标 反映着土的物理状态,如干湿软硬松密等。表示土的三相组成比例关系的指标,统称为土的三相比例指标。 一、土的三相图 【注意】土的三相图只是理想化地把土体中的三相分开,并不表示实际土体三相所占的比例。 二、指标的定义 1.三项基本物理性质指标 土的物理性质指标中有三个基本指标可直接通过土工试验测定,亦称直接测定指标。 ① 土的密度ρ——土单位体积的质量(单位为3 /cm g 或3 /m t ) V m =ρ g ργ= 试验测定方法:环刀法 一般粘性土ρ=1.8~2.03/cm g ;砂土ρ=1.6~2.03/cm g ;腐殖土ρ=1.5~1.73 /cm g ; ② 土粒比重(土粒相对密度)s G ——土粒的质量与同体积4o C 纯水的质量之比。

1 11w s w s s s V m G ρρρ=?= ,无量纲。 s ρ——土粒密度(3/cm g ) 1w ρ——纯水在C 04时的密度(单位体积的重量),等于3/1cm g 或3 /1m t 。 试验测定方法:比重瓶法 实际上:土粒比重在数值上等于土粒密度,前者无因次。同一类土,其比重变化幅度很小,通常可按经验数值选用。见下表。 【课堂讨论】相对密度(比重)与天然密度(重度)的区别 注意:从公式可以看出,对于同一种土,在不同的状态(重度、含水量)下,其比重不变; ③ 土的含水量ω——土中水的质量与土粒质量之比,以百分数表示: %100?= s m m ω ω 一般:同一类土,当其含水量增大时,其强度就降低。 试验测定方法:烘干法(湿,干土质量之差与干土质量的比值) 【讨论】含水量能否超过100%? ——从公式可以看出,含水量可以超出100%。 2.特殊条件下土的密度 ① 饱和密度和饱和重度 饱和密度sat ρ——(土孔隙中充满水时的单位体积质量)土体中孔隙完全被水充满时的 土的密度:V V m v s sat ωρρ+= 。 (3 1/1cm g w w ==ρρ) 饱和重度:γ sat = sat ρg (kN/m 3) 。 ② 干密度和干重度 干密度——单位体积中土粒的质量:V m s d = ρ,(kg/m 3,g/cm 3)。 干重度——单位体积中土粒的重量:d γ=ρd g ,(kN/m 3)。

土的物理性质

第一章土的物理性质 第一节土的成因和工程特性 第二节土的组成及结构构造 一、名词解释 1粒径:土粒的直径大小。 2粒组:实际工程中常按粒径大小将土粒分组,粒径在某一范围之内的分为一组。 3粒径级配:各粒组的质量占土粒总质量的百分数。 4筛分法:适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。 5土的结构:指土中颗粒之间的联系和相互排列形式。 6土的构造:指同一土层中成分和大小都相近的颗粒或颗粒集合体相互关系的特征。 7土的有效粒径(d10):小于某粒径的土粒质量累计百分数为10%时,相应的粒径。 二、填空题 1.平缓大好良好 2.压缩性高承载力低渗透性强 3.单粒结构蜂窝结构絮状结构4.Cu≥5且Cc=1~3 5.固液 6固,液,气 7.缺乏某些粒径——不连续级配 8.不均匀系数Cu。 9. 小 10. B,A 11.二相土三相土二相土 三、选择题 1.C 2.C 3.B 4.B 5.A 6.C 7.A 第三节土的物理性质指标 一、名词解释 1.土的含水量ω:是指土中水的质量和土粒质量之比或重力之比。 2.土的密度ρ:指单位体积土的质量。 ρ:土中孔隙完全被水充满时单位体积土的质量。 3.饱和密度 sat 4.干密度ρd:单位体积土中土粒的质量。 5.土粒相对密度 Gs: 是土粒的质量与同体积纯蒸馏水在4℃时的质量之比。 6.孔隙比e:是指土中孔隙的体积与土粒体积之比。 7.孔隙率n:是指土中孔隙的体积与土的总体积之比。 8.土的饱和度Sr:是指土中水的体积与孔隙体积之比。

第四章:土壤物理性质

第四章土壤物理性质 主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。 第一节土壤质地 一、几个概念 1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒; 2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。 3、粒级:按一定的直径范围,将土划分为若干组。 土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。 4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。 5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等 二、粒级划分标准: 我国土粒分级主要有2个 1、前苏联卡庆斯基制土粒分级(简明系统) 将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。 2、现在我国常用的分级标准是: 这个标准是1995年制定的。 共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂;0.10~ 0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒 三、各粒级组的性质 石砾:主要成分是各种岩屑 砂粒:主要成分为原生矿物如石英。比表面积小,养分少,保水保肥性差,通透性强。 粘粒:主要成分是粘土矿物。比表面积大,养分含量高,保肥保水能力强,但通透性差。粉粒:性质介于砂粒和粘粒之间。 四、土壤质地分类 1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。 2、简明系统二级制,根据物理性粘粒的数量确定。考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。在我国较常用。 3、我国土壤质地分类系统: 结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。对石砾含量较高的土壤制定了石砾性土壤质地分类标准。将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。 五、土壤质地与土壤肥力性状关系 从两个方面来论述 1、土壤质地与土壤营养条件的关系 肥力性状砂土壤土粘土 保持养分能力小中等大 供给养分能力小中等大

最新土的物理性质及地基土的工程分类

土的物理性质及地基土的工程分类

第二章 土的物理性质及地基土的工程分类 1. 土力学的研究对象:土 土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不 同的搬运方式,在各种自然环境中生成的沉积物。 §2-1 土的组成 一、土的组成?? ? ??孔隙中的水液气体 气冰土颗粒 固::: 土中颗粒的大小、成分及三相之间的比例关系反映出土的不同性质,如干湿、轻重、松紧、软硬等。这就是土的物理性质。 二、土的固体颗粒 (一)土的颗粒级配 1.土颗粒的大小直接决定土的性质 2.粒径——颗粒直径大小 3.粒组——为了研究方便,将粒径大小接近、矿物成分和性质相似的土粒 归并为若干组别即称为粒组。 粒组的划分: 漂石 4.颗粒级配——土粒的大小及组成情况,通常以土中各个粒组的相对含量 来表示,称为土的颗粒级配。 颗粒级配的测室方法:——筛析法 比重计法 试验成果分析: ①颗粒级配累积曲线(半对数坐标) 见P17 图1-10 分析?? ?级配良好不均匀 粒径大小接近 曲线陡 级配良好不均匀粒径大小悬殊曲线平缓 ②不均匀系数(C u ) 1060u d /d C = ?? ?<>级配不良级配良好5 C 0C u u 式中:d 60——当小于某粒径的土粒质量累计百分数为60%时,该粒径称为 限定粒径d 60。 d 10——当小于某粒径的土粒质量累计百分数为10%时,相应的粒径称为 有效粒径d 10。

③曲率系数(C c ) 60102 30 c d d d C ?= 式中:d 30——当小于某粒径的土粒质量累计百分数为30%时的粒径用d 30 表示。 C c ——曲率系数,它描写的是累积曲线的分布范围,反映曲线的整体形 状。 C c =1~3时 级配良好 (二)土粒的矿物成分 漂石、卵石、砾石等粗大土粒的矿物成分以原生矿物为主。(与每岩相同) 砂粒的矿物成分大多为母岩中的单矿物颗粒。如石英等。 粉粒的矿物成分以粘土矿物为主。 粘土矿物由两种原子层构成,主要类型??? ??高岭石 伊利石蒙脱石 粘土矿物的特点:细小、亲水性强,吸水膨胀,脱水收缩。 二、土中的水和气 (一)土中水? ? ? ??? ???????毛细水重力水自由水弱结合水强结合水 结合水 1. 结合水 ——指受电分子吸引力吸附于土粒表面的土中水。 几万大气压 吸收力达几千极性分子水负电 土粒~? ?? -- 见P19 图1-13 (1)强结合水 ——指紧靠土粒表面的结合水。 特征:没有溶解盐类的能力,不传递静水压力,只有吸热变成蒸汽时才能移动。 物理指标:容度1.2~2.4g/cm 3 固体状态 冰点-78℃ 砂土吸 度占土粒质量1%、粘土17%。

第1章土的物理性质及工程分类

第1章土的物理性质及工程分类 1.1 土的形成 岩土体是地壳的物质组成。岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。它赋存于一定的地质环境之中,并随着地质环境的演化和地质作用的持续,仍在不断的变化着。土体是岩石风化的产物,是一种松散的颗粒堆积物。由于岩土材料组成的复杂性,其性质在许多方面不同于其它材料,具有其特有的多变性及复杂性。以下就岩土的特性分别简述之。 1.2 土的组成 1.1.1 土的结构与特性 土是一种松散的颗粒堆积物。它是由固体颗粒、液体和气体三部份组成。土的固体颗粒一般由矿物质组成,有时含有胶结物和有机物,这一部分构成土的骨架。土的液体部分是指水和溶解于水中的矿物质。空气和其它气体构成土的气体部分。土骨架间的孔隙相互连通,被液体和气体充满。土的三相组成决定了土的物理力学性质。 1)土的固体颗粒 土骨架对土的物理力学性质起决定性的作用。分析研究土的状态,就要研究固体颗粒的状态指标,即粒径的大小及其级配、固体颗粒的矿物成分、固体颗粒的形状。 (1)固体颗粒的大小与粒径级配 土中固体颗粒的大小及其含量,决定了土的物理力学性质。颗粒的大小通常用粒径表示。实际工程中常按粒径大小分组,粒径在某一范围之内的分为一组,称为粒组。粒组不同其性质也不同。常用的粒组有:砾石粒、砂粒、粉粒、粘粒、胶粒。以砾石和砂粒为主要组成成分的土称为粗粒土。以粉粒、粘粒和胶粒为主的土,称为细粒土。土的工程分类见本章第三节。各粒组的具体划分和粒径范围见表1-1。 土中各粒组的相对含量称土的粒径级配。土粒含量的具体含义是指一个粒组中的土粒质量与干土总质量之比,一般用百分比表示。土的粒径级配直接影响土的性质,如土的密实度、土的透水性、土的强度、土的压缩性等。要确定各粒组的相对含量,需要将各粒组分离开,再分别称重。这就是工程中常用的颗粒分析方法,实验室常用的有筛分法和密度计法。 筛分法适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。 密度计法适用于粒径小于0.075mm的土。基本原理是颗粒在水中下沉速度与粒径的平

土的物理性质与工程分类习题解答全

二 土的物理性质与工程分类 一、填空题 1. 土是由固体颗粒、_________和_______组成的三相体。 2. 土颗粒粒径之间大小悬殊越大,颗粒级配曲线越_______,不均匀系数越______,颗粒级配越______。为了获得较大的密实度,应选择级配________的土料作为填方或砂垫层的土料。 3. 塑性指标P I =________,它表明粘性土处于_______状态时的含水量变化范围。 4. 根据___________可将粘性土划分为_________、_________、_________、________、和___________五种不同的软硬状态。 5. 反映无粘性土工程性质的主要指标是土的________,工程上常用指标________结合指标________来衡量。 6. 在土的三相指标中,可以通过试验直接测定的指标有_________、_________和________,分别可用_________法、_________法和________法测定。 7. 土的物理状态,对于无粘性土,一般指其________;而对于粘性土,则是指它的_________。 8. 土的结构是指由土粒单元的大小、形状、相互排列及其连接关系等因素形成的综合特征,一般分为_________、__________和__________三种基本类型。 9. 土的灵敏度越高,结构性越强,其受扰动后土的强度降低就越________。 10. 工程上常用不均匀系数u C 表示土的颗粒级配,一般认为,u C ______的土属级配不良,u C ______的土属级配良好。有时还需要参考__________值。 11. 土的含水量为土中_______的质量与_________的质量之比。 12. 某砂层天然饱和重度sat γ20=KN/m 3,土粒比重的68.2=s d ,并测得该砂土的最 大干密度33max 1.7110kg /m d ρ=?,最小干密度33 min 1.5410kg /m d ρ=?,则天然孔隙比e 为 ______,最大孔隙比m ax e 为______,最小孔隙比m in e 为______。 13. 岩石按风化程度划分为__________,__________,________;按其成因可分为_________,_________,_________;按坚固程度可划分为_________,_________。 14.砂土是指粒径大于______mm 的颗粒累计含量不超过总质量的______,而粒径大于______mm 的颗粒累计含量超过总质量的______的土。 15. 土由可塑状态转到流动状态的界限含水量叫做_________,可用_________测定;土由半固态转到可塑状态的界限含水量叫做________,可用___________测定。 16. 在击实试验中,压实功能越大,得到的最优含水量越______,相应得到的最大干密度越______。 17. 土按颗粒级配和塑性指数可分为________、________、________、_______四种土。 18. 土中液态水按其存在状态可分为________、__________。 19. 工程上常按塑性指数的大小把粘性土分为__________、__________两种;其相应的塑性指数范围分别为__________、__________。

第四章 土的工程性质与分类

第四章土的工程性质与分类 名词解释 湿陷性:黄土在一定压力作用下受水浸湿,土结构迅速破坏而发生显著附加下沉,具有这种特性的黄土,称湿陷性黄土。 膨胀土:膨胀土是一种粘性土,含有较多的亲水性粘土矿物,吸水膨胀,遇水崩解或软化,失水收缩,抗冲刷性能差,这种具有较明显的胀缩性的土称为膨胀土。 冻土:温度小于等于0℃,并含有冰的土层,称为冻土。 土的结构:土颗粒本身的特点:土颗粒大小、形状和磨圆度及表面性质(粗糙度)等。土颗粒之间的相互关系特点:粒间排列及其连结性质。 构造:在一定土体中,土层单元体的形态和组合特征,整个土层(土体)构成上的不均匀性特征的总和。包括:层理、夹层、透镜体、结核、组成颗粒大小悬殊及裂隙发育程度与特征等。 思考题 土的结构类型是什么,特征是什么? 1.单粒结构(散粒结构):是碎石(卵石)、砾石类土和砂土等无黏性土的基本结构形式。 2.集合体结构:也称团聚结构或絮凝结构。这类结构为粘性土所特有。对集合体结构,根据其颗粒组成、连结特点及性状的差异性,可分为蜂窝状结构和絮状结构两种类型。 单粒结构(散粒结构)特点 1) 孔隙大,透水性强,一般没有内聚力,但内摩擦力大,并且受压力时土体积变化较小。 2) 在荷载作用下压密过程很快。 3)一般情况(静荷载作用)下可不担心强度和变形问题。 集合体结构特点: 1)孔隙度和压缩性大(可达50%~98 %). 2)含水量大(往往超过50%),渗透性差,压缩过程缓慢. 3)具有大的易变性—不稳定性。 特殊土的特征和工程地质特性是什么及如何判别? ?黄土的湿陷性是如何判别? 湿陷黄土的工程特征:1)塑性较弱;2)含水较少;3)压实程度很差,孔隙较大;4)抗水性弱,遇水强烈崩解,膨胀量较小,但失水收缩量较明显;5)透水性较强;6)压缩中等,抗剪强度较高。 根据湿陷系数的大小,可以大致判断湿陷性黄土湿陷的强弱。 ?非自重湿陷性和自重湿陷性的差别? 自重湿陷性黄土: 在上覆土自重压力下受水浸湿发生湿陷的湿陷性黄土地基; 非自重湿陷性黄土: 只有在大于上覆土自重压力下受水浸湿后才会发生湿陷的湿陷性黄土地基。 当自重湿陷量<7cm时应定为非自重湿陷性黄土。 当自重湿陷量>7cm时应定为自重湿陷性黄土 ?湿陷起始压力和湿陷起始含水量是什么? 黄土的湿陷量与所受压力有关,存在一个压力界限,压力低于这个数值,黄土浸水也不会湿陷,这个压力为湿陷起始压力。

土的物理性质及工程分类

课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: 单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

土的组成和物理性质

第四讲土的组成和物理性质 一、内容提要: 本讲主要讲述土的三相组成和三相指标、土的矿物组成和颗粒级配、土的结构、粘性土的界限含水量、塑性指数、液性指数、砂土的相对密实度、土的最佳含水量和最大干密度、土的工程分类 二、重点、难点: 土的物理力学性质指标的计算 一、土的三相组成 土是由固体颗粒、水和气体三部分组成的,通常称为土的三相组成。随着三相物质的质量和体积的比例不同,土的性质也将不同。 【例题1】土的三相组成中不包括的部分是()。 A. 水 B. 气体 C. 固体颗粒 D. 矿物成分答案:D (一)土的固相 土的固相物质包括无机矿物颗粒和有机质,是构成土的骨架最基本的物质,称为土粒。对土粒应从其矿物成分、颗粒的大小和形状来描述。 1. 土的矿物成分 土中的矿物成分可以分为原生矿物和次生矿物两大类。 原生矿物是指岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。 次生矿物是由原生矿物经过风化作用后形成的新矿物,如三氧化二铝、三氧化二铁、次生二氧化硅、粘土矿物以及碳酸盐等。 【例题2】在下列各类矿物中,属于次生矿物的是()。 A. 石英 B. 长石 C. 云母 D. 蒙脱石答案:D 2. 土的粒度成分(颗粒级配) 天然土是由大小不同的颗粒组成的,土粒的大小称为粒度。工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称为粒度成分。

(1)土的粒组划分 工程上常把大小相近的土粒合并为组,称为粒组。粒组间的分界线是人为划定的,划分时应使粒组界限与粒组性质的变化相适应,并按一定的比例递减关系划分粒组的界限值。 对粒组的划分,我国有关规范均将砂粒粒组与粉粒粒组的界限为0.075mm。其余粒组划分标准可参见《岩土工程勘察规范》(GB50021-2001)和《土的工程分类标准》(GBJl45-90)等。 (2)粒度成分及其表示方法 土的粒度成分是指土中各种不同粒组的相对含量(以干土质量的百分比表示),它可用以描述土中不同粒径土粒的分布特征。 常用的粒度成分的表示方法是累计曲线法,也称颗分曲线法,它是一种图示的方法,通常用半对数纸绘制,横坐标(按对数比例尺)表示某一粒径,纵坐标表示小于某一粒径的土粒的百分含量,如图15-4-1所示。 在累计曲线上,可确定两个描述土的级配的指标:

第一章 土的物理性质指标和工程分类

第一章 土的物理性质指标和工程分类 1-1 有A 、B 两个土样,通过室内试验测得其粒径与小于该粒径的土粒质量如下表所示,试绘制出它 们的级配曲线并求出C u 和C c 值。 A 土样试验资料(总质量500g ) 粒径d (mm ) 5 2 1 0.5 0.25 0.1 0.075 小于该粒径的质量(g ) 500 460 310 185 125 75 30 B 土样试验资料(总质量30g ) 粒径d (mm ) 0.075 0.05 0.02 0.01 0.005 0.002 0.001 小于该粒径的质量(g ) 30 28.8 26.7 23.1 15.9 5.7 2.1 1-2 从地下水位以下某粘土层取出一土样做试验,测得其质量为15.3 g ,烘干后质量为10.6 g ,土粒 比重为2.70。求试样的含水率、孔隙比、孔隙率、饱和密度、浮密度、干密度及其相应的重度。 1-3 某土样的含水率为6.0%,密度为1.60 g/cm 3,土粒比重为2.70,若设孔隙比不变,为使土样完全 饱和,问100 cm 3土样中应加多少水? 1-4 有一砂土层,测得其天然密度为1.77 g/cm 3,天然含水率为9.8%,土的比重为2.70,烘干后测 得最小孔隙比为0.46,最大孔隙比为0.94,试求天然孔隙比e 、饱和含水率和相对密实度D r ,并判别该砂土层处于何种密实状态。 1-5 今有两种土,其性质指标如下表所示。试通过计算判断下列说法是否正确? 1. 土样A 的密度比土样B 的大; 2. 土样A 的干密度比土样B 的大; 3. 土样A 的孔隙比比土样B 的大; 1-6 试从基本定义证明: 1. 干密度 (1)1s w d s w G G n E ρρρ= =?+ 2. 湿密度 1s r w G S e e ρρ+=+

相关主题