搜档网
当前位置:搜档网 › 一线三等角基本模型及习题

一线三等角基本模型及习题

一线三等角基本模型及习题
一线三等角基本模型及习题

一线三等角的基本构造:

基本结论:

存在一线三等角

若DF DE = ,则全等与DCF EBD ?? 若DF DE ≠,则相似与DCF EBD ?? 存在一线两等角:构造一线三等角

B A

(完整word版)几何模型:一线三等角模型.docx

一线三等角模型 一 . 一线三等角概念 “一线三等角” 是一个常见的相似模型, 指的是有 三个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角, 也可以是锐角或钝角。 不同地区对此有不同的称呼, “K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角” 。二 . 一线三等角的分类 全等篇 C D D C A P B A P B 锐角 直角 D D D C A P B 同侧 钝角 D A A B P P B A B P C C 相似篇 C 异侧 D C D C A P B A P B 锐角 直角 D D C A P B 同侧 钝角 D D A B P A B P A B P C C C 异侧 三、“一线三等角”的性质 1. 一般情况下,如图 3-1 ,由∠ 1=∠ 2=∠ 3,易得△ AEC ∽△ BDE. 2. 当等角所对的边相等时,则两个三角形全等 . 如图 3-1 ,若 CE=ED ,则△ AEC ≌△ BDE.

3.中点型“一线三等角” 如图 3-2,当∠ 1=∠2=∠3,且 D 是 BC 中点时,△ BDE∽△ CFD∽△ DFE. 4. “中点型一线三等角“的变式( 了解 ) 如图 3-3,当∠ 1=∠2 且BOC 901 BAC 时,点O是△ABC的内心.可以考虑构2 造“一线三等角”. 如图 3- 4“中点型一线三等角”通常与三角形的内心或旁心相关, BOC901 BAC 这是内心的性质,反之未必是内心. 2 在图 3-4(右图)中,如果延长BE 与 CF,交于点 P ,则点 D 是△ PEF 的旁心 . 5.“一线三等角”的各种变式(图 3-5 ,以等腰三角形为例进行说明) 图 3-5 其实这个第 4 图,延长 DC 反而好理解 . 相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况 . a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,不上“一等角”构造模型解题;

一线三等角模型

专题九:“一线三角型”模型的应用 1、如图,在△ABC中,AB=AC,P、M分别在BC、AC边上,且APM B ∠=∠,AP=MP,求证:△APB≌△PMC。 分析:证明两个三角形全等,找边、角的等量关系,根据 已有的知识经验,学生很快能够解决。 2、如果把第1题中的等腰三角形改为等边三角形,如图, △ABC为等边三角形,60 APM? ∠=,BP=1, 2 3 CM=,求△ABC的边长。 3、如图,等腰梯形ABCD中,AD//BC,3,7,60 AD cm BC cm B? ==∠=,P为BC上一点(不与B、C重合),连结AP,过P点作PM交DC于M,使得APM B ∠=∠。 (1)求证:△ABP∽△PCM; (2)求AB的长; (3)在底边BC上是否存在一点P,使得DM:MC=5:3?若存在, 求出BP的长;若不存在,请说明理由。

4、如图,, ===, AB cm CD cm BD cm ⊥⊥,且6,4,14 AB BD CD BD 问:在BD上是否存在P点,使以P、B、A为顶点的三角形与以P、D、C 为顶点的三角形相似?如果存在,求BP的长;如果不存在,请说明理由。 5、已知在梯形ABCD中,AD//BC,AD BC <,且AD=5,AB=DC=2。 (1)如图a,P是AD上的一点,满足BPC A ∠=∠。 ①求证:△ABP∽△DPC;②求AP的长。 (2)如果点P在AD边上移动(点P与点A、D不重合),且满足BPE A ∠=∠,PE交直线BC于点E,同时交直线DC于点Q,那么: ①当点Q在线段DC的延长线上时,设, AP x CQ y ==,求y关于x的函数解析式,并写出函数自变量的取值范围; ②当CE=1时,求出AP的长。 6、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点, 当M点在BC上运动时,保持AM和MN垂直,如图。 (1)证明Rt△ABM∽Rt△MCN; (2)设BM x =,梯形ABCN的面积为y,求y与x之间的函数 关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出

基本图形-一线三等角

基本图形:一线三等角,相似两边找 “一线三等角”这个基本图形性质虽然不同,就是可以得到一组相似三角形而已,但因为这组相似三角形的对应关系较难看出,因此根据这个基本图形先判断存在着一组相似三角形,就有其价值了。 例1:在等腰△ABC中,AB=AC,D是BC上的一点,作∠ADE=∠B,问:△ABD与△DCE相似吗?如果相似,请写出这组相似三角形顶点和边的对应关系。 讲评:从这个例子,我们可以提炼出如下基本图形:“三个相等的顶点在一直线上,就有两个三角形相似”这个结论。这就成为一个基本图形,简称“一线三等角”。 如图,当∠A=∠B=∠EDC时,就有△ADE∽△CDB; 其证明只要用到外角知识。“一线三等角”不能作为定理直接引用,因此在书写证明时,还得用外角知识重新证明。 数学上特别注意的是,这对相似三角形的对应关系不太“顺眼”,要把其中一个三角形转过一个角度后,才比较容易看出顶点的对应关系和对应边。比较好的记忆方法“逆时针比例法”:从图中的点E出发,沿逆时针沿外周绕,得比例EA:AD=DB:BC.

例2:在等边△ABC中,将角A翻折,使点A落在BC边的D点上,EF为折痕,求证:△BED∽△CDF.并写出对应线段比例式。 例3.在矩形ABCD中,AD=4,CD=5,点F在AD上,将角D沿CF翻折,使点D落在AB边的点E处,求 的值。 例4:如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=2,BC=8,∠MEN=∠B.∠MEN的顶点E在边BC上移动,一条边始终经过点A,另一边与CD交于点F,连接AF。设BE=,DF=,试建立关于的函数关系式,并写出函数定义域。

一线三等角模型、双垂直模型(自己总结)

如图,AB=12米,CA丄AB于点A , DB丄AB于点B,且AC=4米,点P从B向A运动, 每分钟走1米,点Q从B点向D运动,每分钟走2米,P、Q两点同时出发,运动几分钟后,△ CPA 与厶PQB全等? D C / / F - f I A p S 如图①所示,在△ ABC中,/ C=90 0,AC=BC,过点C在厶ABC外作直线MN,AM丄M N于点M , BN丄MN于点N . ⑴求证:MN=AM + BN . (2)如图②.若过点C直线MN与线段AB相交,AM丄MN于点M, BN丄MN于N ,(1)中的 结论是否仍然成立?说明理由. 图①图②

如图,已知/ B= / C=90 ° M是BC的中点,DM平分/ ADC. (1) 求证:AM平分/ DAB (2) 试说明线段DM与AM有怎样的位置关系? (3) 线段CD、AB、AD间有怎样的关系?直接写出结果 如图,△ ABE EDC , E 在BD 上, AB 丄BD ,垂足为 B , △ AEC 是等腰直角三角形吗 ? 为什么?

【练3】正方形ABCD,E是BC上一点,AE — EF,交/ DCH的平分线于点 F ,求证AE=EF 如图所示,在Rt ABC中,.ABC =90 ,点D在边AB上,使,过点D作EF _ AC,分别 交AC于点E,CB的延长线于点F。求证:AB=BF。( 8分) 如图(1),已知AB 丄BD,ED 丄BD,AB=CD,BC=DE, ⑴试判断AC与CE的位置关系,并说明理由. (2)若将CD沿CB方向平移得到图②③④⑤的情形,其余条件不变,此时第(1)问中AC与CE的位置关系还成立吗?结论还成立吗?请任选一个说明理由.

一线三等角典型例题

“ 一线三等角”模型在初中数学中的应用 一、“一线三等角”模型的提炼 例1、(2015 年·卷) (1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP. (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点 A 出发,沿边AB 向点 B 运动,且满足∠DPC=∠A.设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与A B 相切,求t 的值. 变式1 ( 2012 年) ( 1) 问题探究 如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD 1E 1 和正方形BCD 2E 2,过点C 作直线KH 交直线AB 于点H ,使∠AHK = ∠ACD 1 . 作 D 1M ⊥ KH,D 2N ⊥ KH,垂足分别为点M 、N . 试探究线段D 1M 与线段D 2N 的数量关系,并加以证明. ( 2) 拓展延伸 1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K 1H 1 ,K 2H 2,分别交直线AB 于点H 1、H 2,使∠AH 1K 1 = ∠BH 2K 2 = ∠ACD 1 . 作D 1M ⊥K 1H 1,D 2N⊥K 2H 2,垂足分别为点M 、N . D 1M = D 2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由. 2 如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变. D 1M = D 2N 是否仍成立? ( 要求: 在图8 中补全图形,注明字母,直接写出结论,不需证明)

几何模型:一线三等角模型知识讲解

几何模型:一线三等 角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 同侧 锐角直角钝角 P 异侧 相似篇 A 同侧锐角直角钝角 异侧

三、“一线三等角”的性质 1.一般情况下,如图 3-1,由∠1=∠2=∠3,易得△AEC ∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED ,则△AEC ≌△BDE. 3.中点型“一线三等角” 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1 902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 902 BOC BAC ∠=?+∠这是内心的性质,反之未必是内心. 在图 3-4(右图)中,如果延长 BE 与 CF ,交于点 P ,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明 ) 图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用

一线三等角教案

相似三角形的判定---“一线三等角”

一、教学目标 1.学生会运用两组对应角分别相等的两个三角形为相似三角形的判定方法证明两个三角形相似。 2.学生经历观察、比较、归纳的学习过程,归纳出“一线三等角”图形的基本特征,并且能够在不同的背景中认识和把握基本图形。 3.学生在学习过程中感受几何直观图形对几何学习的重要性。 二、教学重点、难点 1、重点:运用判定方法解决“一线三等角”的相关计算与证明 2、难点:在不同背景中识别基本图形 三、教学方法:教师主导与学生合作探究相结合。 四、教学过程

四知识巩固: 1已知,如图,在矩形ABCE 中, D 为EC 上一点,沿线段AD 翻折,使得点 E 落在BC 上,若BC=12,BE ∶EC=2∶1.求AB 的长 A B C D E 借助此题,让学生感到在矩形中因为矩形四个角为直角的特点,容易和“一线三直角”基本图形建立联系。 本题融入了轴对称的变换,让题目更鲜活 教师引导学生观察图形, 找基本图形。 师生共同完成 2. 在平面直角坐标系中,A(0,1),B (2,0),AC ⊥AB,AC=3. 求点C 的坐标。 B A C 在坐标系中感受基本图形的作用。 引导学生分析如果要求出点c 的坐标应求那条线段的长?鼓励学生添加辅助线,构造 基本图形。 学生到黑板上完成。 五课堂小结: 知识:(1)判断相似三角形的方法(2)“一线三等角”的基本特征(3)“一线三等角”在不同背景中的应用 思想方法:转化思想。 通过小结让学生可以梳理一 下本节课所学知识。学生及时的小结为下一阶段的学习打下基础。 教师提问、补充。 学生回答。

一线三等角模型综合题解

【例1】已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG. (1)探索EG、CG的数量关系和位置关系并证明; (2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论; (3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.

【例2】如图,在梯形ABCD中,AD∥BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为顶点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,连接EF. (1)求证:△MEF∽△BEM; (2)若△BEM是以BM为腰的等腰三角形,求EF的长; (3)若EF⊥CD,求BE的长.

【例3】如图,在梯形ABCD 中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P 由B 出发沿 BD 方向匀速运动,速度为1cm/s;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s,交BD 于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t 为何值时,PE∥AB; (2)设△PEQ 的面积为y(cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t,使S△PEQ=25 2S△BCD?若存在,求出此时t 的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.

一线三等角模型、双垂直模型[自己总结]

如图,AB=12 米,CA⊥AB 于点A,DB⊥ AB 于点B,且AC=4 米,点P 从 B 向 A 运动, 每分钟走1米,点Q从B点向D 运动,每分钟走2米,P、Q两点同时出发,运动几分钟 如图①所示,在△ABC 中,∠C=90°,AC=BC,过点 C 在△ABC 外作直线MN,AM⊥M N 于点M,BN⊥MN 于点N. (1)求证:MN=AM+BN. (2)如图②.若过点C 直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于N,(1)中的 结论是否仍然成立?说明理由. 图① 图②

如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC. 1)求证:AM 平分∠DAB 2)试说明线段DM与AM有怎样的位置关系? 3)线段CD、AB、AD间有怎样的关系?直接写出结果。 如图,△ABE≌△EDC,E 在BD 上,AB⊥BD,垂足为B,△AEC 是等腰直角三角形吗?为什么?

练3】正方形ABCD,E 是BC上一点,AE ⊥EF,交∠DCH 的平分线于点F,求证AE=EF

交AC 于点E,CB 的延长线于点F。求证:AB=BF 。(8 分) 如图(1),已知AB⊥BD,ED⊥BD,AB=CD,BC=DE, (1)试判断AC与CE的位置关系,并说明理由. (2)若将CD沿CB方向平移得到图②③④⑤的情形,其余条件不变,此时第(1)问中AC与CE的位置关系还成立吗?结论还成立吗?请任选一个说明理由. 如图,在△ABC 中,AB=AC,DE 是过点A 的直线,BD⊥DE 于D,CE⊥DE 于点E;如图所示,在Rt ABC中,ABC = 90,

一线三等角模型

专题九:“一线三角型”模型的应用1如图,在△ ABC中,AB=AC P、M分别在BC AC边上, 且.APM ,AP=MP,求证:△ APB^A PMC 分析:证明两个三角形全等,找边、角的等量关系,根据已有的知识经验,学生很快能够解决。 2、如果把第1题中的等腰三角形改为等边三角形,如图, △ ABC为等边三角形,.APM =60 , BP=1,CM =?,求△ ABC的边长 3 AD//BC, AD 二3cm, BC 二7cm, 一B 二 3、如图,等腰梯形ABCD中, 60 , P为BC上一点(不与B C重合),连结AP,过P点作PM交DC于M,使得 APM "B。 (1)求证:△ ABP^A PCM (2)求AB的长; (3)在底边BC上是否存在一点P,使得DM:MC=5:3若存在, 求出BP的长;若不存在,请说明理由

4、如图,AB I BD,CD _ BD ,且 AB = 6cm,CD = 4cm, BD = 14cm , 问:在 BD 上是否存在P 点,使以P 、B 、A 为顶点的三角形与以P 、DC 为顶点的三角形相似?如果存在,求 BP 的长;如果不存在,请说明理由。 5、已知在梯形 ABCD 中, AD//BC, AD :: BC ,且 AD=5,AB=DC=2 (1) 如图a ,P 是AD 上的一点,满足.BPC- A ①求证:△ ABP^A DPC ②求AP 的长。 (2) 如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满 足.BPE W^A ,PE 交直线BC 于点E ,同时交直线DC 于点Q,那么: ①当点Q 在线段DC 的延长线上时,设AP 二x,CQ 二y ,求y 关于x 的函数解析式, 并写出函数自变量的取值范围; ②当CE=1时,求出AP 的长 6、正方形ABCD 边长为4, M N 分别是BC CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和 MN 垂直,如图。 (1) 证明 Rt △ ABMh Rt △ MCN (2) 设BM =x ,梯形ABCN 勺面积为y ,求y 与x 之间的函数 关系 式;当M 点运动到什么位置时,四边形 ABCNS 积最大,并求出 占 ~~

中考数学压轴题专项汇编专题一线三等角模型

专题17 一线三等角模型 破解策略 在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D . 1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BP D . 321D B P A C (2)如图,若∠1为锐角,则有△ACP ∽△BP D . 3 C D P A 证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB , ∵∠1=∠2,∴△ACP ∽△BPD (3)如图,若∠1为钝角,则有△ACP ∽△BP D . 231D B P A C 2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BP D . 32 1C P D B A 证明:∵∠DPB =180°-∠3-∠CPA ,∠C =180°-∠1-∠CPA ,而∠1=∠3 ∴∠C =∠DPB , ∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD 3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BP D .

32 1C D B A P 证明:∵∠C =∠1-∠CPB ,∠BPD =∠3-∠CPB ,而∠1=∠3 ∴∠C =∠BP D . ∵∠1=∠2,∴∠PAC =∠DBP .∴△ACP ∽△BP D . 例题讲解 例1:已知:∠EDF 的顶点D 在△ABC 的边AB 所在直线上(不与点A ,B 重合).DE 交AC 所在直线于点M ,DF 交BC 所在直线于点N .记△ADM 的面积为S 1,△BND 的面积为S 2. (1)如图1,当△ABC 是等边三角形,∠EDF =∠A 时,若AB =6,AD =4,求S 1S 2的值; (2)当△ABC 是等腰三角形时,设∠B =∠A =∠EDF =α. ①如图2,当点D 在线段AB 上运动时,设AD =a ,BD =b ,求S 1S 2的表达式(结果用a ,b 和a 的三角函数表示). ②如图3,当点D 在BA 的延长线上运动时,设AD =a ,BD =b ,直接写出S 1S 2的表达式. N F C M E B D A F N M E B D A C F N D A B E M C 图1 图2 图3 解:(1)如图4,分别过点M ,N 作AB 的垂线,垂足分别为G ,H . H G A D B E M C F N 则S 1S 2= 1 2 MG AD 12 NH BD = 14 AD AM sin A BD BN sinB . 由题意可知∠A =∠B =60o,所以sin A =sin B =32 . 由“一线三等角模型”可知△AMD ∽△BDN . ∴ AM AD BD BN ,从而AM BN =AD BD =8,∴S 1S 2=12. (2)①如图5,分别过点M ,N 作AB 的垂线,垂足分别为G ,H .

几何模型:一线三等角模型 (最终版)

初中几何模型之“一线三等角模型” 一.【一线三等角概念】 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.【一线三等角的分类】

2.1 全等篇_同侧 A P A P 锐角直角钝角2.2 全等篇_异侧 P D P P 锐角直角钝角

2.3 相似篇_同侧 D C A B P P 锐角直角钝角2.4 相似篇_异侧 P D P P 锐角直角钝角

三、【性质】 1.相似,如图 3-1,由∠1=∠2=∠3,或者α=α 2=α3易得△AEC∽△BDE. 2.当等角所对的边相等时,则两个三角形全等.如下图,若 CE=ED,则△AEC≌△BDE.异侧结果同样。

3.中点型“一线三等角”——相似中多了一位兄弟 如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图 3-3,当∠1=∠2 且1902 BOC BAC ∠=?+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”.

5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明) 图 3-5 四、【“一线三等角”的应用】 1.应用的三种情况. a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,构造“一等角”模型解题; c.图形中只有直线上一个角,构造“二等角”模型解题.

几何模型:一线三等角模型

一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。二.一线三等角的分类 全等篇 C A P 锐角 D A B C 相似篇 C A P 锐角 D D D C C BA P B A P B同 侧 直角钝角 D D A A P P P B B C C 异侧 D D D C C BA P B A P B同 侧 直角钝角 D D D A B P A B P A B P C C C 异侧 三、“一线三等角”的性质 1.一般情况下,如图3-1,由∠1=∠2=∠3,易得△AEC∽△BDE.

2.当等角所对的边相等时,则两个三角形全等.如图3-1,若CE=ED,则△AEC≌△BDE.

3.中点型“一线三等角” 如图3-2 ,当∠1=∠2=∠3,且D是BC中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解) 如图3-3 ,当∠1=∠2且BOC90 1 BAC时,点O是△ABC的内心.可以考虑构2 造“一线三等角”. 如图3-4“中点型一线三等角”通常与三角形的内心或旁心相关, BOC 90 1 BAC这是内心的性质,反之未必是内心. 2 在图3-4 (右图)中,如果延长BE与CF,交于点P,则点D是△PEF的旁心. 5.“一线三等角”的各种变式(图3-5,以等腰三角形为例进行说明) 图3-5 其实这个第4图,延长DC反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况. a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,不上“一等角”构造模型解题;

基本图形-一线三等角

基本图形:一线三等角,相似两边找 “一线三等角”这个基本图形性质虽然不同,就就是可以得到一组相似三角形而已,但因为这组相似三角形得对应关系较难瞧出,因此根据这个基本图形先判断存在着一组相似三角形,就有其价值了。 例1:在等腰△ABC中,AB=AC,D就是BC上得一点,作∠ADE=∠B,问:△ABD与△DC E相似吗?如果相似,请写出这组相似三角形顶点与边得对应关系。 例2:在等边△ABC中,将角A翻折,使点A落在BC边得D点上,EF为折痕,求证:△BED∽△CDF、并写出对应线段比例式。 讲评:从这个例子,我们可以提炼出如下基本图形:“三个相等得顶点在一直线上,就有两个三角形相似”这个结论。这就成为一个基本图形,简称“一线三等角”。 如图,当∠A=∠B=∠EDC时,就有△ADE∽△CDB; 其证明只要用到外角知识。“一线三等角”不能作为定理直接引用,因此在书写证明时,还得用外角知识重新证明。 数学上特别注意得就是,这对相似三角形得对应关系不太“顺眼”,要把其中一个三角形转过一个角度后,才比较容易瞧出顶点得对应关系与对应边。比较好得记忆方法“逆时针比例法”:从图中得点E出发,沿逆时针沿外周绕,得比例EA:AD=DB:BC、 例3、在矩形ABCD中,AD=4,CD=5,点F在AD上,将角D沿CF翻折,使点D落在AB边得点E处,求得值. 例4:如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD= 2,BC=8,∠MEN=∠B、∠MEN得顶点E在边BC上移动, 一条边始终经过点A,另一边与CD交于点F,连接AF.设BE=, DF=,试建立关于得函数关系式,并写出函数定义域。 例5:如图,在RtABC中,∠C=90°,BC=6,AC=8,O 就是AB上一点,AO=4,P就是AC上动点,过点P做OP得垂线交 边BC于点Q,设AP=,CQ=,试求关于得函数解析式,并写出 定义域。

相似三角形模型讲解一线三等角问题

第一部分相似三角形模型分析一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

(五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . A C D E B

2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。 求证:(1)△AME∽△NMD; (2)ND2=NC·NB 3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。 求证:EB·DF=AE· DB 4.在?ABC中,AB=AC,高AD与BE交于H,EF BC ⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。 求证:∠=? GBM90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC 于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设 A、P两点的距离为x,△BEP的面积为y. (1)求证:AE=2PE; (2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.A B P D E (第25题图) G M F E H D C A

几何模型一线三等角模型

实用标准 一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 D D C D C C A P B A P B A P B同侧 锐角直角钝角 D D D A A P B B P A B P C C C 异侧相似篇 D D C D C C A P B A P B A P B同侧 锐角直角钝角 D D D A P B A P B A P B

异侧文档大全

三、“一线三等角”的性质 1. 一般情况下,如图3-1 ,由∠1=∠2=∠3,易得△AEC∽△BDE. 2. 当等角所对的边相等时,则两个三角形全等. 如图3-1 ,若CE=ED,则△AEC≌△BDE. 3.中点型“一线三等角” 如图3-2 ,当∠1=∠2=∠3,且 D 是BC 中点时,△BDE∽△CFD∽△DFE. 4. “中点型一线三等角“的变式(了解) 如图3-3 ,当∠1=∠2 且造“一线三等角”. 1 BOC 90 BAC 时,点O 是△ABC 的内心. 可以考虑构2 如图3- 4“中点型一线三等角”通常与三角形的内心或旁心相关, 1 BOC 90 BAC 这是内心的性质,反之未必是内心. 2 在图3-4 (右图)中,如果延长BE 与CF,交于点P,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图3-5 ,以等腰三角形为例进行说明) 图3-5 其实这个第 4图,延长DC 反而好理解. 相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题

一线三等角

直角形一线三等角的应用 ——在直角坐标系构造一线三直角求点坐标 例:如图,在直角坐标系中,矩形OABC,点B的坐标为(1,2),三角形OAB沿直线OB翻折,点A落在点D处,求点D的坐标。

例:如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2). 求过点A、O、B的抛物线的表达式 一线三等角的应用——求解等腰三角形存在性问题 例:如图,等腰梯形ABCD中,AD//BC,AB=DC=5,AD=2,BC=8,∠MEN=∠B。∠MEN的定点E在边BC 上移动,一条边始终经过点A,另一边与CD交于点F,联结AF。 (1)设BE=x,DF=y,试建立y关于x的函数关系式,并写出定义域; (2)若等腰三角形,求出BE的长。

一线三等角的应用——中点型的证明 例:如图,在梯形ABCD中,AD//BC,AB=CD=BC=6,AD=3.点M为边BC的中点,以M为定点作∠EMF=∠B,射线ME交腰AB于点E,射线MF交腰CD于点F,联结EF. (1)求证:; (2)若以BM为腰的等腰三角形,求EF的长; (3)若EF⊥CD,求BE的长. 例:如图,在梯形ABCD中,AB//CD,∠A=90°,AB=3,CD=6,BE⊥BC交直线AD于点E, (1)当点E与D恰好重合时,求AD的长度;

(2)当点E 在边AD 上时,(E 不与A 、D 重合),设AD=x ,ED=y ,试求y 关于x 的函数关系式,并写出定义域; (3)问:是否可能是△ABE 、△CDE 、△BCE 都相似?若能,请求出此时AD 的长;若不能,请说明理由. 一线三等角与图形的运动结合 例:把两块边长为4的等边三角板ABC 和DEF 先如图1放置,使三角板DEF 的顶点D 与三角板ABC 的AC 边的中点重合,DF 经过点B ,射线DE 与射线AB 相交于点M ,接着把三角形板ABC 固定不动,将三角形板DEF 由图11-1所示的位置绕点D 按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF 与线段BC 相交于点N (如图2示). (1)当0°<α<60°时,求AM ?CN 的值; (2)当0°<α<60°时,设AM=x ,两块三角形板重叠部分的面积为y ,求y 与x 的函数解析式并求定义域; (3)当BM=2时,求两块三角形板重叠部分的面积 B C D E A

一线三等角模型

1. 如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE , 并作DEF B ∠=∠, 射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长. 2如图,在△ABC 中,AB =AC =5cm ,BC =8,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线 PM 交AC 于点M ,使∠APM =∠B ; (1)求证:△ABP ∽△PCM ; (2)设BP =x ,CM =y .求 y 与x 的函数解析式,并写出函数的定义域. (3)当△APM 为等腰三角形时, 求PB 的长. 3.如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放 在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E 。 (1)求证△BPD ∽△CEP (2)是否存在这样的位置,△PDE 为直角三角形? 若存在,求出BD 的长;若不存在,说明理由。 4、已知在等腰三角形ABC 中,4,6AB BC AC ===,D 是AC 的中点, E 是BC 上的动点(不 与B 、C 重合),连结DE ,过点D 作射线DF ,使EDF A ∠=∠,射线DF 交射线E B 于点F , 交射线AB 于点H . (1)求证:CED ?∽ADH ?; (2)设,EC x BF y ==.①用含x 的代数式表示BH ; ②求y 关于x 的函数解析式,并写出x 的定义域. A B P C M F B A C D E H A B C D E F C P E A B D

中考专题练习一线三等角

AB=DC=AD=6,∠ABC=60°,点E、F分别在线段AD、DC上(点E与点A、D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x何值时,y有最大值,最大值是多少? 4. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D为BC边上动点( D不与B 、C重合), ∠ADE=45°,DE交AC于点E. (1)∠BAD与∠CDE的大小关系为.请证明你的结论; (2)设BD=x,AE=y,求y关于x的函数关 系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长;(4)是否存在x,使△DCE的面积是△ABD 面积的2倍?若存在,求出x的值,若 不存在,请说明理由. 本王闯关 一.基础技能 1.(2015?连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC= . 2.如图,已知 3 2 1 // //l l l,相邻两条平行直线 间的距离相等,若等腰直角△ABC的三个项点分别在这三条平行直线上,则sina值是() A. 3 1 B. 17 6 C. 5 5 D. 10 10 3.(2012·苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x 轴的距离是() 4.如图,在边长为9正三角形ABC中,BD=3,∠ADE=60°,则AE= . 5.(2012·宁波)如图1是由边长相等小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为 B C A D E AED F CB

几何模型一线三等角模型知识讲解

几何模型:一线三等型模角. 一线三等角模型 一.一线三等角概念 “一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。 二.一线三等角的分类 全等篇 D D C D C C BA BAP P ABP同侧 锐角直角钝角 D D D AP A A B P PB BC C C异侧 相似篇 D D C D C C BA BA P P ABP同侧

钝角直角锐角 D D D AP A B PB APB C C C异侧 三、“一线三等角”的性质BDE. ∽△,易得△AEC一般情况下,如图 3-1,由∠1=∠2=∠31.BDE. AEC≌△当等角所对的边相等时,则两个三角形全等.如图 3-1,若 CE=ED,则△2. 3.中点型“一线三等角”中点时,△BDE∽△CFD∽△DFE.如图 3-2,当∠1=∠2=∠3,且 D 是 BC ) 了解4.“中点型一线三等角“的变式(1??BOC?BAC90??时,点 O 是△ABC 的内心如图 3-3,当∠1=∠2 且.可以考虑构2造“一线三等角”. 如图 3-4“中点型一线三等角”通常与三角形的内心或旁心相关, 1?BOC?90???BAC这是内心的性质,反之未必是内心. 2 在图 3-4(右图)中,如果延长 BE 与 CF,交于点 P,则点 D 是△PEF 的旁心. 5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明)

图 3-5 其实这个第 4 图,延长 DC 反而好理解.相当于两侧型的,不延长理解,以为是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题 四、“一线三等角”的应用. 1.“一线三等角”应用的三种情况. a.图形中已经存在“一线三等角”,直接应用模型解题; b.图形中存在“一线二等角”,不上“一等角”构造模型解题; c.图形中只有直线上一个角,不上“二等角”构造模型解题. 体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题. 2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在 x 轴或 y 轴(也可以是平行于 x 轴或 y 轴的直线)上构造一线三等角解决问题更是重要的手段. 3.构造一线三等角的步骤:找角、定线、构相似

相似三角形的基本模型(一线三等角)-精选.

模型中的相似三角形(2) 【基本模型】 C B B C C B A A A 1. 如图1,BDE EDF C B ??∠=∠=∠∽CFD ?(一线三等角) 如图2,ABD ADE C B ??∠=∠=∠∽DCE ?(一线三直角) 如图3,特别地,当D 是BC 中点时:BDE ?∽DFE ?∽ CFD ??ED 平分BEF ∠,FD 平分EFC ∠。 2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。 【巩固提高】 1. 已知ABC ?中,120,6?=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点 AC E , 延长线上有一点F ,使.C EDF ∠=∠ 已知 4=BE ,则=CF 4 27

提示:,120,6?=∠==BAC AC AB ,D 是BC 的中点 ∴33 ==CD BD 由BDE ?∽CFD ? ∴CF DB DC BE = , 4 27 =CF 2. 如图,等边ABC ?中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ?折叠,使点A 落在BC 边上的点D 处.那么 AN AM 的值为 7 5 . A B C 提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,, 设:,3,1==DC BD 则4,4=+=+DN CN DM BM ∵BDM ?∽CND ?, ∴ 7 5 3414=++===??CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长

(完整版)2018年初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型

一线三等角 相似三角形判定的基本模型 A字型X字型反A字型反8字型 母子型旋转型双垂直三垂直 相似三角形判定的变化模型 C B E D A 一线三等角型相似三角形 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

【应用】 1.如图,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,BC=1,AB=5,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连接CP ,过点P 作PD 交AB 于点D . (1)直接写出点B 的坐标 . (2)当点P 在线段OA 上运动时,使得∠CPD=∠OAB ,且BD: AD=3:2 ,求点P 的坐标. 2、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直 线AD 于点M ,那么 ①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;② 当BEP DMF S S ??=4 9 时,求BP 的长. 模型训练: 1. 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ; (2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由. A B C D E E D C B A P (第25题图) E D C B A (备用图)

相关主题