搜档网
当前位置:搜档网 › 鲁科版选修三第二章 化学键与分子间作用力测试题试卷含答案解析

鲁科版选修三第二章 化学键与分子间作用力测试题试卷含答案解析

鲁科版选修三第二章 化学键与分子间作用力测试题试卷含答案解析
鲁科版选修三第二章 化学键与分子间作用力测试题试卷含答案解析

单元过关(二)

一、选择题(每小题3分,共42分)

1.下列分子中所有原子都满足最外层8电子结构的是()

A.光气(COCl2) B.六氟化硫

C.三氯化硼D.五氯化磷

解析光气的电子式为所有原子都满足最外层8电子结构,六氟化硫中,硫原子最外层12个电子,三氯化硼中,硼原子最外层6个电子,五氯化磷中,磷原子最外层10个电子。

答案A

2.卤素单质从F2到I2,在常温、常压下的聚集状态由气态、液态到固态的原因是()

A.原子间的化学键键能逐渐减小

B.范德华力逐渐增大

C.原子半径逐渐增大

D.氧化性逐渐减弱

解析F2、Cl2、Br2、I2,相对分子质量依次增大,范德华力依次增大,熔、沸点依次升高,F2和Cl2常温、常压下为气态,Br2常温常压下为液态,I2常温常压下为固态。

答案B

3.下列各组分子中属于含极性键的非极性分子的是()

A.CO2、H2S B.C2H4、CH4

C.Cl2、C2H2D.NH3、HCl

解析A选项中,H2S为含有极性键的极性分子;C选项中,Cl2为含非极性键的非极性分子;D中NH3和HCl都为含极性键的极性分子;B选项中两种分子都为含极性键的非极性分子。

答案B

4.能证明AlCl3为共价化合物的方法是()

A.AlCl3溶液容易导电

B.AlCl3水溶液呈酸性

C.熔融AlCl3不能导电

D.AlCl3溶于水可以电离出Al3+和Cl-

解析共价化合物熔化时,只破坏范德华力,不破坏化学键,不能电离产生离子,所以共价化合物的熔融态仍不能导电。

答案C

5.下列分子中的键的极性最强的是()

A.H2O B.NH3

C.HF D.HCl

解析由于O、N、F、Cl几种原子中,F原子的电负性最大,所以H—F键的极性最强。

答案C

6.下列叙述中错误的是()

A.带相反电荷离子之间的相互吸引称为离子键

B.金属元素与非金属元素化合时,不一定形成离子键

C.某元素的原子最外层只有一个电子,它跟卤素原子结合时所形成的化学键不一定是离子键

D.非金属原子之间不可能形成离子键

解析相互作用包括相互吸引和相互排斥两个方面,A项错误;AlCl3、BeCl2是由金属与非金属通过共价键形成的共价化合物,B项正确;H原子和Cl原子结合成的HCl是通过共价键形成的,C项正确;NH+4是由非金属元素形成的阳离子,铵盐为离子化合物,D项错误。

答案AD

7.金属钠、金属镁、金属铝的熔点依次增高,与之直接有关的是()

A.离子半径B.原子半径

C.离子电荷D.核电荷数

解析金属键的强弱与离子半径的大小、离子所带电荷数的多少有关。金属阳离子的半径越小,所带电荷数越多,其熔点越高。

答案AC

8.下列原子在形成不同物质时,既能形成离子键又能形成极性键和非极性键的是()

A.Na B.Mg

C.Br D.Ne

解析Br与活泼金属元素如Na之间形成离子键,与其他的非金属元素的原子间形成极性键,Br与Br之间形成非极性键。

答案C

9.下列分子中,分子间不能形成氢键的是()

A.NH3B.HF

C.C2H5OH D.CH4

解析在氢键X—H…Y中,X原子和Y原子所属的元素通常具有很强的电负性和很小的原子半径,主要是氮原子、氧原子和氟原子,

而D 中CH 4不符合条件。

答案 D

10.下列化合物中阴离子半径与阳离子半径的比值最小的是

( )

A .CaF 2

B .KCl

C .NaI

D .CsF

解析 F -、Cl -、I -中,F -半径最小,Ca 2+、K +、Na +、Cs +中Cs +半径最大,所以CsF 中阴离子半径与阳离子半径的比值最小。

答案 D

11.某物质的实验式为PtCl 4·2NH 3,其水溶液不导电,加入AgNO 3溶液也不产生沉淀,用强碱处理并没有NH 3放出,则关于此化合物的说法中正确的是( )

A .配合物中心原子的电荷数和配位数均为6

B .该配合物可能是平面正方形结构

C .Cl -和NH 3分子均与Pt 4+配位

D .配合物中Cl -和Pt 4+配位,而NH 3分子不配位

解析 PtCl 4·2NH 3的水溶液不导电,说明配合物溶于水后不会产生自由移动的离子;加入AgNO 3溶液不产生沉淀并且用强碱处理也没有NH 3放出,说明Cl -和NH 3都参与配位,配位数是6,中心原子的电荷数为4;配位数是6的配合物不可能是平面结构。

答案 C

12.下列化学用语书写正确的是( )

A .次氯酸的电子式 H:Cl ····:O ··

··

:

解析次氯酸的电子式为,甲基的电子式为

,乙醇的电子式为

答案B

13.实验测得BeCl2为共价化合物,两个Be—Cl键间的夹角为180°,由此可判断BeCl2属于()

A.由极性键形成的极性分子

B.由极性键形成的非极性分子

C.由非极性键形成的极性分子

D.由非极性键形成的非极性分子

解析Be—Cl键为极性键,因键角为180°,BeCl2是直线形分子,为对称结构,所以BeCl2为非极性分子。

答案B

14.下列物质中存在离子键、共价键和配位键的是()

A.Na2O2B.H3O+

C.NH4Cl D.NaOH

解析NH4Cl的电子式,NH+4与Cl-之间存在离子键,N、H之间3个N—H共价键,1个N―→H配位键。

答案C

二、填空题(58分)

15.(8分)下表中的数据是破坏1 mol化学键所消耗的能量。

(1)下列物质本身具有的能量最低的是()

A.H2B.Cl2

C.Br2D.I2

(2)下列氢化物中,最稳定的是()

A.HF B.HCl

C.HBr D.HI

(3)X2+H2===2HX(X代表F、Cl、Br)的反应是吸热反应还是放热反应:________。

(4)相同条件下,X2(X代表F、Cl、Br)分别与氢气反应,当消耗等物质的量的氢气时,放出或吸收的热量最多的是________。

解析破坏1 mol化学键消耗能量越大,说明键能越大,键能越大,物质本身能量越低,物质越稳定。相反生成物越稳定,形成该键时,放出的能量就越多。

答案(1)A

(2)A

(3)放热反应

(4)F2

16.(16分)在下列物质中:①CO2②NaCl③MgBr2④I2⑤NH4Cl⑥Ca(OH)2⑦N2⑧H2S⑨NH3

10K2O2

(1)只有非极性键的是_________________________________;

(2)只有极性键的是___________________________________;

(3)只有离子键的是___________________________________;

(4)有离子键,也有非极性键的是_______________________;

(5)既有离子键,又有极性键的是_______________________;

(6)属于离子化合物的是_______________________________;

(7)属于共价化合物的是_______________________________;

(8)含有配位键的物质是_______________________________。

解析电负性相差较大的较活泼的金属元素与较活泼的非金属元素易形成离子化合物。铵盐为离子化合物,含配位键。Na2O2为离子化合物,含有非极性键O—O(过氧键)。

答案(1)④⑦

(2)①⑧⑨

(3)②③

(4)○10

(5)⑤⑥

(6)②③⑤⑥○10

(7)①⑧⑨

(8)⑤

17.(14分)下图中四条曲线分别表示ⅣA、ⅤA、ⅥA、ⅦA族元素的气态氢化物的沸点,a、b、c分别为三种氢化物,

(1)其中表示ⅥA元素气态氢化物沸点的是曲线________(填标号,下一空同),表示ⅣA族元素气态氢化物沸点的是曲线________。

(2)a的电子式为________,b的空间构型为________,c的化学式为________。

(3)同一族中第3、4、5周期元素的气态氢化物沸点依次升高,其原因是________________。曲线中第2周期元素的气态氢化物的沸点显著高于第3周期元素气态氢化物的沸点,其原因是__________。

解析据ⅦA族中HF分子间形成氢键,ⅥA族H2O分子间形成氢键,ⅤA中NH3分子间形成氢键,ⅣA族的氢化物分子间不会形成氢键,确定曲线④为ⅣA族氢化物的沸点曲线,又由于H2O常温为液态,NH3易液化,所以①表示ⅥA族氢化物的沸点曲线,③表示ⅤA族氢化物的沸点曲线,②表示ⅦA族氢化物的沸点曲线。a、

b 、

c 分别为H 2O 、HF 、SiH 4。

答案 (1)① ④

(2)H:O ··

··

:H 直线形 SiH 4 (3)相对分子质量依次增大,范德华力依次增大,故沸点依次升高 存在氢键

18.(20分)有A 、B 、C 、D 、E 五种短周期元素,它们的核电荷数按C 、A 、B 、D 、E 的顺序增大。C 、D 都能分别与A 按原子个数比为1:1或2:1形成化合物;CB 可与EA 2反应生成C 2A 与气态物质EB 4;E 的M 层电子数是K 层电子数的2倍。

(1)写出这五种元素的名称:

A________,B________,C________,D________,E________。

(2)画出E 的原子结构示意图________,写出D 2A 2、EB 4电子式,D 2A 2:__________,EB 4:__________。

(3)比较EA 2与EB 4的熔点高低(填化学式)________>________。 解析 E 的M 层电子数是K 层电子数的2倍,故E 应为Si ,且可知EA 2为SiO 2,气态EB 4为SiF 4,4HF +SiO 2===SiF 4↑+2H 2O ,则B 为F 、C 为H 、A 为O ,C 、D 分别与A 形成原子个数比1:1或2:1的化合物,可判断D 为Na 。

答案 (1)氧 氟 氢 钠 硅 (2) Na +[·×O ····:O ··

··

·×]2-Na +

(3)SiO2SiF4

共价键和分子间作用力习题及解析

《共价键和分子间作用力》作业参考解析 1. 下列说法错误的是 A. 按原子轨道重叠方式,共价键可分为σ键和π键 B. σ键构成分子的骨架,π键不能单独存在 C. 配位键既不是σ键,也不是π键 D. 双键或叁键中只有一个σ键 【C】按原子轨道的重叠方式不同,当其头碰头重叠时,形成“σ”键,当其肩并肩重叠时,形成“π”键;由于σ键重叠程度大,稳定性更高,因此可以单独存在,并构成分子的骨架,而π键重叠程度小,稳定性低,容易打开,因此不能单独存在,只能和σ键共存于双键或叁键中;σ键由于头碰头重叠,因此重叠部分对键轴呈圆柱形对称,可以自由旋转,但是π键对键轴呈镜面反对称,因此不能自由旋转;配位键是由一个成键原子提供孤对电子,另一个成键原子提供空轨道形成的,在配位键形成的过程中,两原子的原子轨道可能发生头碰头重叠而形成σ配位键,也可能发生肩并肩重叠而形成π配位键,因此C的说法是不正确的。 2. 下列说法正确的是 A. 若AB2分子为直线型,其中心原子A一定发生了sp杂化 B. HCN是直线型分子,也是非极性分子 C. H-O键能比H-S键能大,因此H2O熔沸点比H2S高 D. 氢键不属于化学键,但是具有饱和性和方向性

【D】A:一般对于AB2分子来说,如果中心原子发生了sp杂化,那么分子的空间构型是直线型的,但是AB2分子如果为直线型,中心原子A不一定发生了sp 杂化,典型的例子就是I3-离子,这个离子的中心原子I发生的是sp3d杂化,价层电子对的空间构型为三角双锥,由于中心原子上有3对孤对电子,分别位于三角双锥中间的三角平面上,因此分子的空间构型就是直线型了(这可以用夹层电子对互斥理论来解释);B:HCN分子是直线型分子,但是根据其分子中各原子的电负性大小的情况来看,这是一个极性分子;C:体系沸点的高低主要与分子间作用力的大小有关,因此H2O熔沸点之所以比H2S高,是因为水分子之间除了范德华力作用外,还存在很强的氢键作用;D:当一个氢原子形成一个氢键后,就不能再和其它原子之间形成第二个氢键了,这体现了氢键的饱和性,同一个氢原子形成的共价键和氢键之间需以最大角度分布,这体现了氢键的方向性,不过氢键仍然属于分子间作用力,而不属于共价键作用。所以D的说法是正确的。 3. 下列关于H3O+离子的说法,正确的是 A. O发生sp2等性杂化,空间结构为平面正三角形 B. O发生sp2不等性杂化,空间结构为平面三角形 C. O发生sp3等性杂化,空间结构为正四面体型 D. O发生sp3不等性杂化,空间结构为三角锥型 【D】我们知道H2O分子中O发生了sp3不等性杂化,在与氢原子成键后, H2O分子中有两对孤对电子。那么H3O+离子的形成可以认为是由H2O分子中的O提供一对孤对电子,H+离子提供空轨道,在两者之间形成了配位键而形成的,两者之间形成配位键时,并不会改变O原子的原子轨道杂化类型,同时O原子上仍然有1对孤对电子,因此O发生sp3不等性杂化,H3O+离子的空间结构为三角锥型。 4. 下列分子或离子中,不含有孤对电子的是

分子间作用力 分子晶体

分子间作用力分子晶体 【学习目标】 1.了解范德华力的类型,把握范德华力大小与物质物理性质的关系。 2.初步认识影响范德华力的主要因素。 3.理解氢键的本质,能了解氢键的强弱,认识氢键的重要性。 4.加深对分子晶体有关知识的认识和应用 【课前预习】 1.分子间作用力存在于之间,是使聚集在一起的作用力。分子间作用力的实质是,它的强度比化学键。和是两种常见的分子间作用力。 2.范德华力是一种普通存在于、和中分子之间的作用力。与共价键相比,范德华力,且没有和。3.影响范德华力的因素很多,如分子的、分子的、以及分子中等。对于和相似的分子,其范德华力一般随着的增大而。 4.范德华力主要影响由分子构成的物质的、、等性质,而共价键主要影响共价分子的和原子晶体的。5.水分子中的键是一种极性很强的共价键,氧原子与氢原子共用的电子对强烈的偏向,于是H原子变成了一个几乎,这样,一个水分子中氢原子,就能与另一个水分子中显负电性的氧原子的孤电子对接近并产生相互作用,这种相互作用叫做。 6.氢键通常用表示,其中和代表 的非金属原子,如等。 7.当分子间存在氢键时,该物质有熔点和沸点,乙醇和水能以任意比例互溶是因为乙醇分子和水分子间存在。

8.分别从构成微粒、微粒间作用力、熔沸点高低、硬度大小、导电性等方面比较四种晶体: 【问题探究一】大家知道,自然界中水存在三态变化,有固态冰、液态水及水蒸气,三种状态的水,其分子组成与化学性质有何不同呢?分子之间是否也存在着相互作用呢?如何证明这种作用力的存在? 【知识梳理】 一、范德华力 1.分子间作用力 (1)定义: (2)实质: (3)分类: 【问题探究二】参看P53表3-8“卤化氢分子的范德华力和共价键键能的比较”分析两者的强弱关系。

《分子间作用力分子晶体》同步习题1.doc

《分子间作用力分子晶体》同步习题 基础过关 1.以下命题,违背化学变化规律的是( ) A.石墨制成金刚石 B.煤加氢变成人造石油 C.水变成汽油 D.干冰转化成原子晶体 2.固体乙醇晶体中不存在的作用力是( ) A.极性键 B. 非极性键 C.离子键 D.氢键 3.最近,科学家研制得到一种新的分子,它具有空心类似足球状结构,分子式为C60,下列说法正确的是( ) A.C 60是一种新型的化合物 B.C60和石墨都是同一类型晶体 C.C60中含离子键 D.C60的相对分子质量是720 4.氮化硼(BN) 是一种新型结构材料,具有超硬、耐磨、耐高温等优良特性,下列各组物质熔 化时,所克服的粒子间作用与氮化硼熔化时克服的粒子间作用都相同的是( ) A.硝酸钠和金刚石 B.晶体硅和水晶 C.冰和干冰 D.苯和萘 5.据报道,科研人员应用电子计算机模拟出类似C60 的物质N60,试推测下列有关N60的说法正确的是( ) A.N 60易溶于水 B.N 60是一种原子晶体,有较高熔点和硬度 C.N60的熔点高于N2 D.N 60的稳定性低于N 2 6.氮化铝(AlN) 具有耐高温、抗冲击、导热性好等优良性质,被广泛用于电子工业、陶瓷工 业等领域。在一定条件下,氮化铝可通过如下反应合成: Al 2O3+N 2+3C高温2AlN+3CO 下列叙述正确的是( ) A.在氮化铝的合成反应中,N2是还原剂,Al 2O3是氧化剂 B.上述反应中每生成 2 mol AlN ,N2得到3 mol电子

C.氮化铝中氮元素的化合价为-3 D.氮化铝晶体属于分子晶体 7.X是核外电子数最少的元素,Y 是地壳中含量最多的元素,Z在地壳中的含量仅次于Y, W 可以形成自然界最硬的原子晶体。下列叙述错误的是( ) A.WX 4是沼气的主要成分 B.固态X2Y 是分子晶体 C.ZW 是原子晶体 D.ZY 2的水溶液俗称“水玻璃” 8.下列有关晶体的说法中正确的是( ) A.晶体中分子间作用力越大,分子越稳定 B.原子晶体中共价键越强,熔点越高 C.冰融化时水分子中共价键发生断裂 D.氯化钠熔化时离子键未被破坏 9.下列物质的熔沸点高低顺序中,正确的是( ) A.金刚石>晶体硅>二氧化硅>碳化硅 B.Cl 2>CBr 4>CCl4>CH 4 C.MgO>H 2O>O2>N2 D.金刚石>生铁>纯铁>钠 综合运用 10.下列叙述错误的是( ) A.范德华力是普遍存在的一种分子间作用力,属于电性作用 B.范德华力比较弱,但范德华力越强,物质的熔点和沸点越高 C.氢键属于一种较强的分子间作用力,只能存在于分子之间 D.形成氢键时必须含有氢原子,另外氢原子两边的原子必须具有很强的电负性、很小的原子半径 11.四氯化硅的结构与四氯化碳类似,对其性质的推断正确的是( ) ①四氯化硅晶体是分子晶体②通常情况下为液态③熔点高于四氯化碳④属正四面体的分子构型 A.① B.①④ C.②③④ D.①②③④ 12.HgCl 2的稀溶液可用作手术刀的消毒剂,已知HgCl 2的熔点是277 ℃,熔融状态的HgCl 2不 能导电,HgCl 2的稀溶液有弱的导电能力,则下列关于HgCl 2的叙述中正确的是( ) ①HgCl 2属于共价化合物②HgCl 2属于离子化合物③HgC l2属于非电解质④HgCl 2属 于弱电解质 A.①③ B.①④ C.②③ D.②④

分子间作用力教案

第一步:预习检测: 我们在前面学习了物体是由大量分子组成的,分子在永不停息地做无规则运动。提问 1.什么现象可以证实分子在做无规则运动? 2.布朗运动是谁在运动? 分子在做无规则运动需要分子间有空隙。观看书中彩图并举一些宏观现象来说明分子间存在空隙。分子间有空隙但却形成了固体和液体这是什么原因呢?从而引入本节课内容,学生先根据下列问题看书预习。 提问 1.为什么分子间有空隙还能形成固体和液体? 2.为什么分子不能紧挨在一起,而存在着空隙? 3.分子间引力、斥力随分子间的距离如何变化? 4.分子力到底是指什么力? 第二步:引导新课: (注:预习同时书写板书) 提问学生来回答预习提纲中的问题。先分析分子间存在引力并举宏观现象来说明。例如物体难以拉伸、两铅块可以合在一起等。做演示实验。 演示 把一块洗净的玻璃板吊在弹簧秤下面,记清弹簧秤指针位置。再将玻璃板水平地接触水面,在向上拉弹簧秤会发现示数明显的变大了。(注:说明分子间存在引力)分子间存在引力又有空隙说明分子间还存在斥力,并举宏观现象来说明。例如物体难以压缩。 分子间同时存在着相互吸引的引力(注:不是万有引力)和相互排斥的斥力,它们都随分子间距离的增大而减小。分子力指的是他们的合力。

(注:书写板书) 分子力随分子间距离如何变化呢,何时为引力何时为斥力。当分子间的距离是某一值时引力和斥力相等,此时分子力表现为零,这个位置称其为平衡位置,此时分子间距离用r o来表示,其数量级为10-10m。当分子间距离小于r o时,分子间相互作用力表现为斥力。当分子间距离大于r o时,分子间相互作用力表现为引力。当分子间距离达到10r o时,分子间的引力和斥力都已经相当微弱了,分子间相互作用力便可忽略不计了。 (注:用课件来演示分子力随分子间距离的变化情况,同时对学生进行提问,讲完之后给学生时间记笔记) 用一种更为直接的方式来表现分子之间相互作用力随分子间距离的变化情况。纵坐标表示分子力,正半轴表示斥力负半轴表示引力,横轴表示分子间距离。 (注:图像用电脑打出) 第三步:当堂验收: 1.下面证明分子间存在引力和斥力的实验,哪个是错误的() A.两块铅块压紧以后能连成一块,说明存在引力 B.一般固体液体很难压缩,说明存在相互排斥的力 C.碎玻璃不能拼在一起,是由于分子间存在着斥力 D.拉断一根绳子需要一定大小的拉力,说明存在相互引力。 2.分子间相互作用力由引力和斥力两部分组成则() A.引力和斥力同时存在 B.引力和斥力都随分子间距增大而减小 C.分子力指引力和斥力的合力 D.随分子间距离的增大,斥力减小,引力增大 3.固体和液体都很难被压缩的本质原因是()

2020届高三化学二轮复习教案:化学键与分子间作用力

2020届高三化学二轮复习教案:化学键与分子间 作用力 1.把握化学键的类型,明白得离子键与共价键的概念 2.把握极性键和非极性键判定方法 3.了解键参数,共价键的要紧类型δ键和π键 4.把握原子、离子、分子、离子化合物的电子式,用电子式表示物质的形成过程 5.等电子原理 一、化学键的概念及类型 1、概念:,叫做化学键,依照成键原子间的电负性差值可将化学键分为和。旧的化学键的断裂和新的化学键的生成是化学反应的本质,也是化学反应中能量变化的全然。 摸索:1.离子键、共价键分不存在于哪些种类的物质中? 2.写出以下微粒的电子式:Al Mg2+O2-OH- NH4+CaCl2CO2 二、共价键的类型 非极性共价键:元素的原子间形成的共价键,共用电子对偏 向任何一个原子,各原子都,简称 极性共价键:元素的原子间形成的共价键,共用电子对偏向电负性 较的一方,简称 δ键:δ键的特点:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特点称为。常见的δ键有〝s-sδ 键〞、、。 π键:π键呈对称,常见的有〝π键〞 摸索:如何判定δ键和π键?δ键和π键的稳固性如何? 三、键参数 键参数包括、、;其中、是衡量共价稳固性的参数,

通常键长越,键能越大,讲明共价键越稳固;共价键具有性,是描述分子立体结构的重要参数,分子的立体结构还与有一定的关系。 四、等电子原理 、相同的分子具有相似的化学键特点,它们的许多 【例1】关于化学键的以下表达中,正确的选项是 A.离子化合物中可能含有共价键 B.共价化合物中可能含有离子键 C.离子化合物中只含离子键 D.共价键只能存在于化合物中 解析:离子键只存在于离子化合物中,共价键可存在于离子化合物、共价化合物以及某些单质中 答案: A 【例2】以下化合物中既存在离子键,又存在极性键的是 A.H2O B.NH4Cl C.NaOH D.Na2O2 解析:水分子中只有H-O键,是极性键,无离子键,排除A项;NH4Cl中NH4+和Cl-间是离子键,NH4+内N和H原子以极性键结合,B项正确;NaOH中Na+和OH- 以离子键结合,OH-内H和O之间以极性键结合,C项正确;Na2O2中Na+和O22- 以离子键结合,O22-内有非极性键,排除D项。 答案:B C。 【例3】以下分子中所有原子都满足最外层8电子结构的是 A.光气(COCl2) B.六氟化硫C.二氟化氙D.三氟化硼 解析:分子中的原子是否满足8电子结构,决定于中心原子的最外层电子数和形成共价键的数目 答案:A 【例4】对δ键的认识不正确的选项是〔〕 A.δ键不属于共价键,是另一种化学键 B.S-Sδ键与S-Pδ键的对称性相同 C.分子中含有共价键,那么至少含有一个δ键 D.含有π键的化合物与只含δ键的化合物的化学性质不同 解析:共价键包括δ键和π键,δ键不管是S-Sδ键、S-Pδ键依旧P-Pδ键差不多上轴对称的,π键不够稳固,必须与δ键共存 答案:A 【例5】以下分子中,键能最小的是 A.F2B.Br2C.Cl2D.N2 解析:N2中含有一个三键,键能较大;F2、Br2、Cl2中只有一个单键,键能小,F2分子中电子〝密度〞大,F原子间斥力大,键能最小 答案:A 【例6】能够用键能讲明的是〔〕 A.氮气的化学性质比氧气稳固 B.常温常压下,溴呈液体,碘为固体 C.稀有气体一样专门难发生化学反应 D.硝酸易挥发,硫酸难挥发

高考化学第一轮章节复习试题 课时2 化学键与分子间作用力

课时2 化学键与分子间作用力 1.X和Y是原子序数大于4的短周期元素,X m+和Y n-两种离子的核外电子排布相同,下列说法中正确的是() A.X的原子半径比Y小B.X和Y的核电荷数之差为m-n C.电负性X>Y D.第一电离能XY,原子半径X>Y。X比Y更易失电子,第一电离能X小于Y,电负性X小于Y。 答案:D 2.下列说法中不正确的是() A.σ键比π键重叠程度大,形成的共价键强 B.两个原子之间形成共价键时,最多有一个σ键 C.气体单质中,一定有σ键,可能有π键 D.N2分子中有一个σ键,2个π键 解析:从原子轨道的重叠程度看,π键轨道重叠程度比σ键重叠程度小,故π键稳定性低于σ键,A项正确;根据电子云的形状和成键时的重叠原则,两个原子形成的共价键最多只有一个σ键,可能没有π键,也可能有1个或2个π键,B正确;稀有气体为单原子分子,不存在化学键,故C项错误。 答案:C 3.若AB n的中心原子A上没有未用于形成共价键的孤对电子,运用价层电子对互斥模型,下列说法正确的是() A.若n=2,则分子的立体结构为V形 B.若n=3,则分子的立体结构为三角锥型 C.若n=4,则分子的立体结构为正四面体型 D.以上说法都不正确 解析:若中心原子A上没有未用于成键的孤对电子,则根据斥力最小的原则,当n=2时,分子结构为直线型;n=3时,分子结构为平

面三角形;n=4时,分子结构为正四面体型。 答案:C 4.在下列空格中,填上适当的元素符号: (1)在第三周期中,第一电离能最小的元素是________, 第一电离能最大的元素是________。 (2)最活泼的金属元素是________。 (3)最活泼的气态非金属原子是________。 (4)第二、三、四周期原子中p轨道半径充满的元素是________。 解析:同周期中从左到右,元素的第一电离能(除ⅢA族、ⅥA族反常外)逐渐增大,同周期中金属元素最小,稀有气体最大,故第三周期中第一电离能最小的为Na,最大的为Ar。 答案:(1)Na Ar(2)Cs(3)F(4)N、P、As 5.现有部分短周期元素的性质或原子结构如下表: (1)元素T的原子最外层共有________种不同运动状态的电子。元素 X的一种同位素可测定文物年代,这种同位素的符号是________。 (2)元素Y与氢元素形成一种离子YH+4,写出该微粒的电子式 ____________________(用元素符号表示)。 (3)元素Z与元素T相比,非金属性较强的是________(用元素符号表 示),下列表述中能证明这一事实的是________。 a.常温下Z的单质和T的单质状态不同

分子间作用力的种类和作用

分子间作用力的种类 分子间作用力按其实质来说是一种电性的吸引力,因此考察分子间作用力的起源就得研究物质分子的电性及分子结构。分子间作用力可以分为以下三种力。 (1)取向力 取向力发生在极性分子与极性分子之间。由于极性分子的电性分布不均匀,一端带正电,一端带负电,形成偶极。因此,当两个极性分子相互接近时,由于它们偶极的同极相斥,异极相吸,两个分子必将发生相对转动。这种偶极子的互相转动,就使偶极子的相反的极相对,叫做“取向”。这时由于相反的极相距较近,同极相距较远,结果引力大于斥力,两个分子靠近,当接近到一定距离之后,斥力与引力达到相对平衡。这种由于极性分子的取向而产生的分子间的作用力,叫做取向力。 (2)诱导力 在极性分子和非极性分子之间以及极性分子和极性分子之间都存在诱导力。 在极性分子和非极性分子之间,由于极性分子偶极所产生的电场对非极性分子发生影响,使非极性分子电子云变形(即电子云被吸向极性分子偶极的正电的一极),结果使非极性分子的电子云与原子核发生相对位移,本来非极性分子中的正、负电荷重心是重合的,相对位移后就不再重合,使非极性分子产生了偶极。这种电荷重心的相对位移叫做“变形”,因变形而产生的偶极,叫做诱导偶极,以区别于极性分子中原有的固有偶极。诱导偶权和固有偶极就相互吸引,这种由于诱导偶极而产生的作用力,叫做诱导力。 同样,在极性分子和极性分子之间,除了取向力外,由于极性分子的相互影响,每个分子也会发生变形,产生诱导偶极。其结果使分子的偶极矩增大,既具有取向力又具有诱导力。在阳离子和阴离子之间也会出现诱导力。 (3)色散力 非极性分子之间也有相互作用。粗略来看,非极性分子不具有偶极,它们之间似乎不会产生引力,然而事实上却非如此。例如,某些由非极性分子组成的物质,如苯在室温下是液体,碘、萘是固体;又如在低温下,222H O N 、、和稀有气体等都能凝结为液体甚至固体。这些都说明非极性分子之间也存在着分子间的引力。当非极性分子相互接近时,由于每个分子的电子不断运动和原子核的不断振动,经常发生电子云和原子核之间的瞬时相对位移,也即正、负电荷重心发生了瞬时的不重合,从而产生瞬时偶极。而这种瞬时偶极又会诱导邻近分子也产生和它相吸引的瞬时偶极。虽然,瞬时偶极存在时间极短,但上述情况在不断重复着,使得分子间始终存在着引力,这种力可从量子力学理论计算出来,而其计算公式与光色散公式相似,因此,把这种力叫做色散力。 总结以上所述,分子间作用力的来源是取向力、诱导力和色散力。一般说来,极性分子与极性分子之间,取向力、诱导力、色激力都存在;极性分子与非极性分子之间,则存在诱导力和色散力;非极性分子与非极性分子之间,则只存在色散力。这三种类型的力的比例大小,决定于相互作用分子的极性和变形性。极性越大,取向力的作用越重要;变形性越大,色散力就越重要;诱导力则与这两种因素都有关。但对大多数分子来说,色散力是主要的。分子间作用力的大小可从作用能反映出来。表1—1列出了某些分子的三种分子间的作用能的大小。 表 一些分子的分子间作用能的分配

化学键与分子间作用力知识总结

化学键与分子间作用力知识点总结 知识点一化学键(离子键、共价键) 3. (1)Na2S: (2)CO2: 知识点二化学键与化学反应、物质类别的关系 1.化学键的概念:相邻原子或离子间强烈的相互作用。 2.化学键与化学反应 反应物内化学键的断裂和生成物内化学键的形成是化学反应的本质,是化学反应中能量变化的根本。 3.化学键与物质溶解或熔化的关系 (1)离子化合物的溶解或熔化过程 离子化合物溶于水或熔化后均电离成自由移动的阴、阳离子,离子键被破坏。 (2)共价化合物的溶解过程 ①有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏,如CO2和SO2等。 ②有些共价化合物溶于水后,其分子内的共价键被破坏,如HCl、H2SO4等。 ③某些共价化合物溶于水后,其分子内的共价键不被破坏,如蔗糖(C12H22O11)、酒精(C2H5OH)等。 某些活泼的非金属单质溶于水后,能与水反应,其分子内的共价键被破坏,如Cl2、F2等。 4.化学键对物质性质的影响 (1)对物理性质的影响 金刚石、晶体硅、石英、金刚砂等物质硬度大、熔点高,就是因为其中的共价键很强,破坏时需消耗很多的能量。 NaCl等部分离子化合物,也有很强的离子键,故熔点也较高。 (2)对化学性质的影响 N2分子中有很强的NN,故在通常状况下,N2很稳定,H2S、HI等分子中的共价键较弱,故它们受热时易分解。 5.化学键与物质类别 (1)化学键的存在

(2)化学键与物质类别 ①只含有共价键的物质 a.同种非金属元素构成的单质,如I2、N2、P4、金刚石、晶体硅等。 b.不同非金属元素构成的共价化合物,如HCl、NH3、SiO2、CS2等。 ②只含有离子键的物质 活泼非金属元素与活泼金属元素形成的化合物,如Na2S、CsCl、K2O、NaH等。 ③既含有离子键又含有共价键的物质如Na2O2、NH4Cl、NaOH、Na2SO4等。 ④无化学键的物质:稀有气体,如氩气、氦气等。 知识点三分子间作用力和氢键 1.分子间作用力 (1)定义:把分子聚集在一起的作用力,又称范德华力。 (2)特点 ①分子间作用力比化学键弱得多,它主要影响物质的熔点、沸点等物理性质。 ②分子间作用力存在于由共价键形成的多数共价化合物和绝大多数液态、固态非金属单质分子之间。 (3)变化规律 一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点也越高。例如熔、沸点:I2>Br2>Cl2>F2。 2.氢键 (1)定义:分子间存在的一种比分子间作用力稍强的相互作用。 (2)形成条件:非金属性强、原子半径小的O、F、N原子与H原子之间,有的物质分子内也存在氢键。 (3)存在:氢键存在广泛,如蛋白质分子、H2O、NH3、HF等分子之间。分子间氢键会使物质的熔点和沸点升高。 知识点四物质熔沸点高低 (1)不同类型的晶体:一般而言,原子晶体>离子晶体>分子晶体。 如:SiO2>NaCl>S (2)对于相同类型的晶体: I、主要与半径有关的晶体 ①离子晶体:组成相似的离子晶体,离子半径越小,电荷数越多,离子键就越强,晶体的熔沸点就越高; ②原子晶体:原子半径越小,键长就会越短,键能就越大,晶体的熔沸点就越高; ③金属晶体:原子半径越小,金属键键长越短,键能越大,晶体熔沸点越高;如Na<Mg<Al II、主要与分子量有关的晶体: 分子晶体:分子间作用力越大,物质的熔沸点就越高。 a.组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的溶沸点就越高。如卤素单质I2>Br2>Cl2>F2; b.能形成氢键的分子晶体,熔沸点会反常地高,如H2O>H2Te>H2Se>H2S

第九章 共价键和分子间作用力

第九章共价键和分子间作用力 1.根据价键理论写出下列分子的结构式: BBr3、CS2、SiH4、PCl5、C2H4 解:略。 2.分别用VB法和MO法说明下列双原子分子共价键的类型。 O2、B2、CO 解:略 3.试用轨道杂化理论说明下列分子的空间构型。 PF3、COCl2、C2H4、SiCl4、H2S 解:PF3:sp3不等性杂化,分子结构为三角锥型。 COCl2:sp2杂化,分子结构为平面三角形。 C2H4:sp2杂化,分子结构为平面三角形。 SiCl4:sp3等性杂化,分子结构为正四面体型。 H2S:sp3不等性杂化,其中两个sp3杂化轨道分别为孤对电子占有,另两个分别与H成键,故分子结构为V型。 4.试用轨道杂化理论说明,BF3是平面三角形的空间构型,而NF3却是三角锥形。 解:BF3中B的价电子结构为2s22p1,形成分子时,进行sp2杂化,三个sp2杂化轨道分别与三个F原子的p轨道成键,故BF3分子为平面三角形;NF3中的N 价电子结构为2s22p3,形成分子时,进行sp3不等性杂化,其中一个sp3杂化轨道为孤对电子占有,另三个电子分别与F成键,故分子结构为三角锥型。https://www.sodocs.net/doc/e42493482.html,e the valence shell electron-pair repulsion theory to predict for each of the following: ⑴the geometric arrangement of electron pairs around the central atom, ⑵the molecule shape. NO2、SF6、SO32-、ClO4-、C1O3-、NH4+ 解:NO2:价电子对数=(5+0)/2=2.5,相当于3,有1对孤对电子,V形构型。 SF6:价电子对数=(6+6)/2=6,无孤对电子,八面体构型。 2 - SO:价电子对数=(6+2)/2=4,有一对孤对电子,三角锥体构型。 3 - ClO:价电子对数=(7+1)/2=4,有一对孤对电子,三角锥体构型。 3

第四单元分子间作用力分子晶体

吕叔湘中学一体化教学案(高二化学) 执教老师:朱、钟、周、吴起草人:朱志明授课日期:__________ 专题3:微粒间作用力与物质性质 课题:第四单元分子间作用力分子晶体(第一课时) 课程标准: 1.了解范德华力的类型 2.把握范德华力大小与物质物理性质之间的辨证关系 3.初步认识影响范德华力的主要应素,学会辨证的质量分析法 学习重点和难点:范德华力大小与物质物理性质之间的关系 教学课型:新授课 教学过程: 一、分子间作用力 1.提出分子间存在作用力的依据 气体分子能够凝聚成相应的____或______ 2.分子间作用力的本质 存在于________间的一种较_____的相互作用力。 3.影响范德华力的因素 (1)组成和结构相似的分子,相对分子质量越大,范德华力越______。 (2)分子的极性越大,范德华力越_____,一般来说极性分子间的作用力______于非极性分子间的作用力。 4.范德华力对物质熔沸点的影响 (1)结构相似,相对分子质量越大,范德华力越____,熔沸点越_____ (2)相对分子质量相同或相近时,分子的极性越大,范德华力越_____, ,其熔沸点越____ 练习: 1.下列物质变化过程中,有共价键明显被破坏的是() A、I2升华 B、NaCl颗粒被粉碎 C、HCl溶于水得盐酸 D、从NH4HCO3中闻到刺激性气味 2.从微粒之间的作用力角度解释下列实验事实: ⑴溴化氢比碘化氢受热难分解 ⑵使水汽化只需要在常温常压下加热到100℃,而要使水分解为氢气和氧气,要加热至1000℃以上的高温。 3.二氧化碳由固体(干冰)变为气体时,下列各项发生变化的是()

高中化学 第二章 化学键与分子间作用力综合检测题(含解析)鲁科版选修3

第二章化学键与分子间作用力综合检测题(含解析)鲁科版选修3 一、选择题(每小题3分,共42分) 1.下列分子中所有原子都满足最外层8电子结构的是( ) A.光气(COCl2) B.六氟化硫 C.三氯化硼D.五氯化磷 解析光气的电子式为所有原子都满足最外层8电子结构,六氟化硫中,硫原子最外层12个电子,三氯化硼中,硼原子最外层6个电子,五氯化磷中,磷原子最外层10个电子。 答案 A 2.卤素单质从F2到I2,在常温、常压下的聚集状态由气态、液态到固态的原因是( ) A.原子间的化学键键能逐渐减小 B.范德华力逐渐增大 C.原子半径逐渐增大 D.氧化性逐渐减弱 解析F2、Cl2、Br2、I2,相对分子质量依次增大,范德华力依次增大,熔、沸点依次升高,F2和Cl2常温、常压下为气态,Br2常温常压下为液态,I2常温常压下为固态。 答案 B 3.下列各组分子中属于含极性键的非极性分子的是( ) A.CO2、H2S B.C2H4、CH4 C.Cl2、C2H2D.NH3、HCl 解析A选项中,H2S为含有极性键的极性分子;C选项中,Cl2为含非极性键的非极性分子;D中NH3和HCl都为含极性键的极性分子;B选项中两种分子都为含极性键的非极性分子。 答案 B 4.能证明AlCl3为共价化合物的方法是( ) A.AlCl3溶液容易导电 B.AlCl3水溶液呈酸性 C.熔融AlCl3不能导电 D.AlCl3溶于水可以电离出Al3+和Cl- 解析共价化合物熔化时,只破坏范德华力,不破坏化学键,不能电离产生离子,所以共价化合物的熔融态仍不能导电。

答案 C 5.下列分子中的键的极性最强的是( ) A.H2O B.NH3 C.HF D.HCl 解析由于O、N、F、Cl几种原子中,F原子的电负性最大,所以H—F键的极性最强。 答案 C 6.下列叙述中错误的是( ) A.带相反电荷离子之间的相互吸引称为离子键 B.金属元素与非金属元素化合时,不一定形成离子键 C.某元素的原子最外层只有一个电子,它跟卤素原子结合时所形成的化学键不一定是离子键 D.非金属原子之间不可能形成离子键 解析相互作用包括相互吸引和相互排斥两个方面,A项错误;AlCl3、BeCl2是由金属与非金属通过共价键形成的共价化合物,B项正确;H原子和Cl原子结合成的HCl是通过共价键形成的,C项正确;NH+4是由非金属元素形成的阳离子,铵盐为离子化合物,D项错误。 答案AD 7.金属钠、金属镁、金属铝的熔点依次增高,与之直接有关的是( ) A.离子半径B.原子半径 C.离子电荷D.核电荷数 解析金属键的强弱与离子半径的大小、离子所带电荷数的多少有关。金属阳离子的半径越小,所带电荷数越多,其熔点越高。 答案AC 8.下列原子在形成不同物质时,既能形成离子键又能形成极性键和非极性键的是( ) A.Na B.Mg C.Br D.Ne 解析Br与活泼金属元素如Na之间形成离子键,与其他的非金属元素的原子间形成极性键,Br与Br之间形成非极性键。 答案 C 9.下列分子中,分子间不能形成氢键的是( ) A.NH3B.HF C.C2H5OH D.CH4 解析在氢键X—H…Y中,X原子和Y原子所属的元素通常具有很强的电负性和很小的原子半径,主要是氮原子、氧原子和氟原子,而D中CH4不符合条件。 答案 D

高考化学共价键 分子间作用力

第2课时共价键分子间作用力 一、共价键与共价化合物 1.共价键的形成过程 (1)氯分子的形成过程 两个氯原子各提供一个电子→两个氯原子间形成共用电子对 →两个氯原子均达到8e-稳定结构→形成稳定的氯气分子 请你根据上述图示,用电子式表示其形成过程: 。 (2)下图形象地表示了氯化氢分子的形成过程 请你用电子式表示HCl的形成过程:。 2.共价键 (1)概念:原子间通过共用电子对所形成的强烈的相互作用。 (2)成键三要素: ①成键微粒:原子。 ②成键元素:一般是同种的或不同种的非金属元素。 ③成键条件:成键前原子最外层电子未达到饱和状态。

(3)分类 3.共价化合物 (1)概念:以共用电子对形成分子的化合物。 (2)四种常见的共价化合物 ①非金属氢化物:如NH3、H2S、H2O等。 ②非金属氧化物:如CO、CO2、SO2等。 ③酸:如H2SO4、HNO3等。 ④大多数有机化合物:如CH4、CH3CH2OH等。 4.共价分子的电子式与结构式 (1)常见分子的电子式和结构式 (2)用电子式表示共价分子的形成过程 ①H2:H·+·H―→H∶H。 ②NH3:。 ③CO2:。 (1)含有共价键的分子不一定是共价化合物。例如H2、O2等单质。 (2)含有共价键的化合物不一定是共价化合物。例如NaOH、Na2O2。

(3)离子化合物中可能含有共价键,共价化合物中一定不含离子键,只有共价键。 例1下列叙述中,不正确的是() A.含有共价键的物质一定是共价化合物 B.H2O2中既含有极性键又含有非极性键 C.CaO和NaCl晶体熔化时均要破坏离子键 D.H2SO4熔融态不导电 考点共价键与共价化合物 题点共价键与共价化合物的关系与应用 答案 A 解析部分非金属单质如O2、N2中含有共价键,但不属于化合物;某些离子化合物如NaOH 中既含有离子键又含有共价键。 例2下列分子的电子式书写正确的是() A.氨气 B.四氯化碳 C.氮气 D.二氧化碳 考点共价键与共价化合物 题点典型物质的电子式的书写与判断 答案 C 二、化学键与分子间作用力 1.化学键 (1)化学键概念:使离子相结合或原子相结合的作用力。 (2)分类

《分子间作用力分子晶体》教案(苏教版)

第四单元分子间作用力分子晶体 第2课时氢键的形成 【学习目标】 1.理解氢键的本质,能分析氢键的强弱,认识氢键的重要性 【学习内容】 二、氢键 思考:观察课本P51页图3-29,第ⅥA族元素的气态氢化物的沸点随相对分子质量的增大而升高,符合前面所学规律,但H2O的沸点却反常,这是什么原因呢? (一)氢键的成因: 当氢原子与电负性大的原子X以共价键相结合时,由于H—X键具有强极性,这时H相对带上较强的正电荷,而X相对带上较强的负电荷。当氢原子以其唯一的一个电子与X成键后,就变成无内层电子、半径极小的核,其正电场强度很大,以至当另一HX分子的X原子以其孤对电子向H靠近时,非但很少受到电子之间的排斥,反而互相吸引,抵达一定平衡距离即形成氢键。 (二)氢键的相关知识 1.氢健的形成条件:半径小、吸引电子能力强的原子(N 、O 、F )与H核。2.氢键的定义:半径小、吸引电子能力强的原子与H核之间的很强的作用叫氢键。通常我们可以把氢键看做一种比较强的分子间作用力。 3.氢键的表示方法:X—H···Y(X、Y可以相同,也可以不同) 4.氢键对物质的性质的影响:可以使物质的熔沸点升高,还对物质的溶解度等也有影响。 如在极性溶剂中,如果溶质分子和溶剂分子间能形成氢键,就会促进分子间的结合,导致溶解度增大。例如:由于乙醇分子与水分子间能形成不同分子间的氢键,故乙醇与水能以任意比互溶。而乙醇的同分异构体二甲醚分子中不存在羟基,因而在二甲醚分子与水分子间不能形成氢键,二甲醚很难溶解于水。 5.影响氢键强弱的因素:与X—H···Y中X、Y原子的电负性及半径大小有关。X、Y原子的电负性越大、半径越小,形成的氢键就越强。常见的氢键的强弱顺序为:F—H···FO—H···OO—H···NN—H···NO—H···Cl 5.说明:氢键与范德华力之间的区别 氢键与范德华力同属于分子间作用力;但两者的不同之处在于氢键具有饱和性与方向性。所谓饱和性是指H原子形成一个共价健后,通常只能再形成一个氢键。这是因为H原子比X、Y原子小得多,当形成X—H···Y后,第二个Y原子再靠近H原子时,将会受到已形成氢键的Y原子的电子云的强烈排斥。而氢键的方向性是指以H原子为中心的3个原子X—H···Y

分子间的作用力(精)

分子间的作用力 上面已经讨论了三种基本类型的化学键,它们都是分子内部原子间较强的结合力,是决定分子化学性质的主要因素。在分子与分子之间还存在着较弱的作用力,它是决定物质的沸点、熔点、溶解度等物理性质的重要因素。为了更好地说明分子间作用力,先谈一下分子极化的问题。 一、分子极化 任何分子都有正、负电重心,任何分子又都有变形的性能。因而在外电场的作用下,分子的电荷重心可发生相对的位移,即分子发生变形,这个过程就叫分子的极化(被极化)。例如非极性分子,正、负电重心是重合的,但在外电场作用下,正负电重心可被拉开,发生变形并产生偶极(图3-59),这叫诱导偶极(外电场除去,偶极也消除)。 对于极性分子,其本身具有偶极这叫固有偶极,在没有外电场作用时极性分子的固有偶极由于热运动,而杂乱排列。但在外电场作用下杂乱无章的极性分子可按电场方向定向排列起来,同时由于电场的作用而使偶极加大(固有偶极加诱导偶极)产生一定的变形(图3-60)。 由上可看出,无论非极性分子还是极性分子在外电场作用下都可发生极化作用。 二、分子间力的形成 如果将外电场换成极性分子自身所产生的电场,这就与上述情况相似,彼此有相互作用,也就产生了分子间力,下面就分别来分析这方面的情况。 1.取向力 当极性分子和极性分子相互接近时,它们的固有偶极的同极相斥而异极相吸,就使得极性分子按一定方向排列(图3-61),因而产生了分子间的作用力,这种力叫取向力。显然,极性分子的偶极矩越大,取向力越大。这种力只存在于极性分子与极性分子之间。

2.诱导力 当极性分子和非极性分子相接近时,非极性分子在极性分子的固有偶极的作用下,发生极化,而产生诱导偶极,然后诱导偶极与极性分子固有偶极相互吸引(图3——62)。这种由于诱导偶极而产生的作用力,称为诱导力。这种力产生于极性分子与非极性分子之间,当然极性分子与极性分子之间也互相诱导,因而也有这种力。 3.色散力 非极性分子与非极性分子之间有无作用力?实验指出,N2、O2、H2……等气体,只要充分降温,都可以转变成液态和固态。这就说明这些分子间也是存在着吸引力。那么这种力是如何产生的呢?' 从统计观点看,非极性分子没有极性,但组成分子的正、负微粒总是在不断地运动着,在某一瞬间,对多个分子而言总可能有分子出现正、负电荷重心不重合,而成为偶极子,这种偶极叫瞬时偶极。对大量分子,这种瞬时偶极的存在就成为经常性的,这种靠瞬时偶极产生的作用力叫色散力。不难理解,只要分子可变形,不论其原先是否有偶极、分子间都会产生瞬时偶极。因此,色散力是普遍存在的,而且分子个越大,越易变形,也即分子量越大,色散力就越大。此外,由于瞬时偶极的方向处在瞬息万变之中,故色散力的方向是多变的(没有方向性)。 以上这三种力总称为分子间力,也叫范德华力或范氏力(取名Van-derWaals)。 [思考题]“极性分子之间的作用力称为取向力,色散力仅存在于非极性分子之间”这些说法正确吗? 三、分子间力的特点 1.不同情况下分子间力的组成不同 极性分子与极性分子间的作用力是由取向力、诱导力和色散力三部分组成;极性分子与

苏教版高中化学选修3分子间作用力 分子晶体教案

分子间作用力分子晶体 [学习目标] 1.了解范德华力的类型,把握范德华力大小与物质物理性质之间的辨证关系2.初步认识影响范德华力的主要应素,学会辨证的质量分析法 3.理解氢键的本质,能分析氢键的强弱,认识氢键的重要性 4.加深对分子晶体有关知识的认识和应用 [课时安排] 3课时 第一课时 [学习内容] 一、分子间作用力 1.提出分子间存在作用力的依据 气体分子能够凝聚成相应的固体或液体 2.分子间作用力的本质 存在于分子间的一种较弱的相互作用力。 3.分子间作用力的类型 (1)取向力——极性分子之间靠永久偶极与永久偶极作用称为取向力。仅存在于极性分子之间 (2)诱导力——诱导偶极与永久偶极作用称为诱导力。极性分子作用为电场,使非极性分子产生诱导偶极或使极性分子的偶极增大(也产生诱导偶极),这时诱导偶极与永久偶极之间形成诱导力,因此诱导力存在于极性分子与非极性分子之间,也存在于极性分子与极性分子之间。 (3)色散力——瞬间偶极与瞬间偶极之间有色散力。由于各种分子均有瞬间偶极,故色散力存在于极性分子与极性分子、极性分子与非极性分子及非极性分子与非极性分子之间。色散力不仅存在广泛,而且在分子间力中,色散力经常是重要的。取向力、诱导力和色散力统称范德华力, 它具有以下的共性: (1)它是永远存在于分子之间的一种作用力。 (2)它是弱的作用力(几个——几十个kJ·mol-1)。 (3)它没有方向性和饱和性。 (4)范德华力的作用范围约只有几个pm。 (5)分子间的三种作用力。其中对大多数分子来说色散力是主要的,水分子除外。4.影响范德华力的因素 阅读下表,分析影响范德华力的因素

2020届二轮复习 化学键 分子间作用力 专题卷(全国通用)

化学键分子间作用力 1.(2018·辽宁大连模拟)实现下列变化,需克服相同类型作用力的是(D) A.石墨和氯化钠分别受热熔化 B.冰的融化和水的分解 C.NaCl和HCl溶于水 D.干冰和碘的升华 [解析]石墨是混合晶体,熔化时破坏共价键和分子间作用力,氯化钠是离子晶体,熔化时破坏离子键,故A不符合题意;冰融化主要破坏氢键,水分解破坏共价键,故B不符合题意;NaCl溶于水破坏离子键,故B不符合题意;NaCl溶于水破坏离子键,HCl溶于水破坏共价键,故C不符合题意;干冰和碘都是分子晶体,干冰和碘的升华破坏的均是分子间作用力,故D符合题意。 2.(2018·河南郑州调研)下列过程中,共价键被破坏的是(D) ①碘升华②溴蒸气被木炭吸附③乙醇溶于水④HCl气体溶于水⑤冰融化⑥NH4Cl受热⑦氢氧化钠熔化 ⑧(NH4)2SO4溶于水 A.①④⑥⑦B.④⑥⑧ C.①②④⑤D.④⑥ [解析]碘升华与溴蒸气被木炭吸附均是物理变化,无共价键被破坏;③乙醇溶于水,不发生电离,破坏的为分子间作用力;④HCl气体溶于水,发生电离,H—Cl共价键被破坏; ⑤冰融化,破坏的为分子间作用力;⑥NH4Cl受热发生化学变化,生成NH3和HCl,N—H 共价键被破坏;⑦氢氧化钠熔化,离子键被破坏;⑧(NH4)2SO4溶于水,发生电离,离子键被破坏。D项正确。 3.(2018·试题调研)2017年6月15)日,环球网发布文章称美国太空探索技术公司创始人、CEO马斯克在杂志《新太空》上公布了其火星殖民计划。火星基本上是沙漠行星,以二氧化碳为主的大气既稀薄又寒冷,在火星表面曾发现有溶解高氯酸盐的液态水活动。下列有关说法正确的是(C) A.高氯酸盐和水均为强电解质 B.1H2O与2H2O互为同位素 C.高氯酸盐结构中一定含有共价键和离子键 D.常温下,高氯酸盐水溶液的pH=7 [解析]本题考查电解质、同位素、化学键等知识,意在考查考生对基本概念的理解能力。水为弱电解质,故A项错误;同位素指的是同种元素的不同核素,而1H2O与2H2O均为水分子,故B项错误;高氯酸盐由高氯酸根离子和金属阳离子或铵根离子构成,含有离

九年级物理《分子间的作用力》知识点归纳

九年级物理《分子间的作用力》知识点 归纳 内燃机、冲程及工作循环 .内燃机:燃料在汽缸内燃烧的热机叫内燃机,内燃机分为汽油机和柴油机。它们的特点是让燃料存汽缸内燃烧,从而使燃烧更充分,热损失更小,热效率较高,内能利用率较大。 2.冲程:活塞在汽缸内住复运动时,从汽缸的一端运动到另一端的过程,叫做一个冲程。 3.工作原理:四冲程内燃机的工作过程是由吸气、压缩、做功、排气四个冲程组成的。四个冲程为一个工作循环,在一个工作循环中,活塞往复两次,曲轴转动两周,四个冲程中,只有做功冲程燃气对外做功,其他三个冲程靠飞轮的惯性完成。 (1)吸气冲程:进气门打开,排气门关闭,活塞向下运动,汽油和空气的混合物进入气缸; (2)压缩冲程:进气门和排气门都关闭,活塞向上运动,燃料混合物被压缩; (3)做功冲程:在压缩冲程结束时,火花塞产生电火花,使燃料猛烈燃烧,产生高温高压的气体。高温高压的气体推动活塞向下运动,带动曲轴转动,对外做功; (4)排气冲程:进气门关闭,排气门打开,活塞向上

运动,把废气排出气缸。(如下四个冲程的示意图)。 汽油机的工作过程 进气阀开关 排气阀开关 活塞运动 曲轴运动 冲程作用 能量的转化 吸气冲程 开 关 向下 半周 吸入汽油和空气的混合物 —— 压缩冲程 关 关 向上 半周 燃料混合物被压缩,温度升高,压强增大 机械能→内能

做功冲程 关 关 向下 半周 燃烧产生的高温高压燃气推动活塞向下运动,通过连杆带动曲轴对外做功 内能→机械能 排气冲程 关 开 向上 半周 排除废气 —— 说明 一个工作循环中,有两次内能与机械能的转化:压缩冲程机械能转化为内能,做功冲程内能转化为机械能柴油机和汽油机的区别: 汽油机 柴油机 构造不同

相关主题