搜档网
当前位置:搜档网 › (整理)常见芯片封装的类型

(整理)常见芯片封装的类型

(整理)常见芯片封装的类型
(整理)常见芯片封装的类型

常见芯片封装的类型

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?那么就请看看下面的这篇文章,将为你介绍个中芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装具有以下特点:1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。2.芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。

PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。QFP/PFP封装具有以下特点:1.适用于SMD表面安装技术在PCB电路板上安装布线。2.适合高频使用。3.操作方便,可靠性高。4.芯片面积与封装面积之间的比值较小。Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。

PGA封装具有以下特点:1.插拔操作更方便,可靠性高。2.可适应更高的频率。

Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过10 0MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。

因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array Pac kage)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:

1.PBGA(Plasric BGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。

2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。

3.FCBGA(FilpChipBGA)基板:硬质多层基板。

4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板。

5.CDPBGA(Carity Down PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。

BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。

3.信号传输延迟小,适应频率大大提高。

4.组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,***西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。

目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有7

0%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(Chip Size Package)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。

CSP封装又可分为四类:

1.Lead Frame Type(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。

2.Rigid Interposer Type(硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。

3.Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。

4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:>

1.满足了芯片I/O引脚不断增加的需要。

2.芯片面积与封装面积之间的比值很小。

3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。六、MCM多芯片模块

为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。

芯片封装全套整合(图文精选对照)

芯片封装方式大全 各种IC封装形式图片 BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package

TSBGA 680L CLCC CNR Communicatio n and Networking Riser Specification Revision 1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SO Small Outline Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28SSOP TO18 TO220 TO247 TO264 TO3

ITO220 ITO3p JLCC LCC LDCC LGA LQFP PCDIP TO5 TO52 TO71 TO72 TO78 TO8 TO92

PGA Plastic Pin Grid Array PLCC 详细规格PQFP PSDIP LQFP 100L 详细规格METAL QUAD 100L 详细规格PQFP 100L 详细规格TO93 TO99 TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid

常见芯片封装类型的汇总

常见芯片封装类型的汇总 芯片封装,简单点来讲就是把制造厂生产出来的集成电路裸片放到一块起承载作用的基板上,再把管脚引出来,然后固定包装成为一个整体。它可以起到保护芯片的作用,相当于是芯片的外壳,不仅能固定、密封芯片,还能增强其电热性能。所以,封装对CPU和其他大规模集成电路起着非常重要的作用。 今天,与非网小编来介绍一下几种常见的芯片封装类型。 DIP双列直插式 DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装结构形式有多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP (含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存储器和微机电路等。 DIP封装 特点: 适合在PCB(印刷电路板)上穿孔焊接,操作方便。 芯片面积与封装面积之间的比值较大,故体积也较大。 最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚可插到主板上的插槽或焊接在主板上。 在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。DIP还有一种派生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高六倍。 现状:但是由于其封装面积和厚度都比较大,而且引脚在插拔过程中很容易被损坏,可靠性较差。同时这种封装方式由于受工艺的影响,引脚一般都不超过100个。随着CPU内

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

这些芯片封装类型,基本都全了

这些芯片封装类型,基本都全了 1、2、BQFP(quad flat package with bumper)3、碰焊PGA(butt joint 4、C-(ce5、Cerdip6、Cerquad7、CLCC(ceramic leaded chip carrier)8、COB(chip on board)9、DFP(dual flat package)10、DIC(dual in-line ceramic package)11、DIL(dual in-line)12、DIP(dual in-line package)13、DSO(dual small out-lint)14、DICP(dual tape carrier package)15、DIP(dual tape carrier package)16、FP(flat package)17、flip-chip18、FQFP(fine pitch quad flat package)19、CPAC(globe top 20、CQFP(quad fiat package with guard ring)21、H-(with heat sink)22、pin grid array(surface mount type)23、JLCC(J-leaded chip carrier)24、LCC(Leadless chip carrier)25、LGA(land grid array)26、LOC(lead on chip)27、LQFP(low profile quad flat package)28、L-QUAD29、MCM(mul30、MFP(mini flat package)31、MQFP(metric quad flat package)32、MQUAD(metal quad)33、MSP(mini square package)34、OPMAC(over molded pad array carrier)35、P-(plastic)36、PAC(pad array carrier)37、PCLP(printed circuit board leadless package)38、PFPF(plastic flat package)39、PGA(pin grid array)40、piggy back41、42、P-LCC(plastic 43、QFH(quad flat high package)44、QFI(quad flat I-leaded packgac)45、QFJ(quad flat J-leaded package)46、QFN(quad flat non-leaded package)47、QFP(quad flat package)48、QFP(FP)(QFP fine pitch)49、QIC(quad in-line ceramic package)50、QIP(quad in-line plastic package)51、QTCP(quad tape carrier package)52、QTP(quad tape carrier package)53、QUIL(quad in-line)54、QUIP(quad in-line package)55、56、SH-DIP(shrink dual in-line package)57、SIL(single in-line)58、SIMM(single in-line memory module)59、SIP(single in-line package)60、SK-DIP(skinny dual in-line package)61、SL-DIP(slim dual in-line package)62、SMD(surface mount devices)63、SO(small out-line)64、SOI(small out-line I-leaded package)65、SOIC(small out-line integrated circuit)66、SOJ(Small Out-Line J-Leaded Package)67、SQL(Small Out-Line L-leaded package)68、SONF(Small Out-Line Non-Fin)69、SOF(small Out-Line package)70、SOW (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。林超文PCB设计直播第1节:PADS元件库管理

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

元器件封装大全:图解文字详述

元器件封装类型: A. Axial轴状的封装(电阻的封装) AGP (Accelerate raphical Port)加速图形接口 AMR(Audio/MODEM Riser) 声音/调制解调器插卡 B BGA(Ball Grid Array) 球形触点阵列,表面贴装型封装之一。在印刷基板的背面按阵列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点阵列载体(PAC) BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP封装之一,在封装本体的四个角设置突(缓冲垫)以防止在运送过程中引脚发生弯曲变形。 C 陶瓷片式载体封装 C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。 Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。 CERQUAD(Ceramic Quad Flat Pack) 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~2W 的功率 CGA(Column Grid Array) 圆柱栅格阵列,又称柱栅阵列封装 CCGA(Ceramic Column Grid Array) 陶瓷圆柱栅格阵列

CNR是继AMR之后作为INTEL的标准扩展接口 CLCC 带引脚的陶瓷芯片载体,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆 盖以确保可靠性。 CPGA(Ceramic Pin Grid Array) 陶瓷针型栅格阵列封装 CPLD 复杂可编程逻辑器件的缩写,代表的是一种可编程逻辑器件,它可以在制造完成后由用户根据自己的需要定义其逻辑功能。CPLD 的特点是有一个规则的构件结构,该结构由宽输入逻辑单元组成,这种逻辑单元也叫宏单元,并且CPLD 使用的是一个集中式逻辑互连方案。CQFP 陶瓷四边形扁平封装(Cerquad),由干压方法制造的一个陶瓷封装家族。两次干压矩形或正方形的陶瓷片(管底和基板)都是用丝绢网印花法印在焊接用的玻璃上再上釉的。玻璃然后被加热并且引线框被植入已经变软的玻璃底部,形成一个机械的附着装置。一旦半导体装置安装好并且接好引线,管底就安放到顶部装配,加热到玻璃的熔点并冷却。 fly_shop 2008-6-19 14:07 D.陶瓷双列封装 DCA(Direct Chip Attach) 芯片直接贴装,也称之为板上芯片技术(Chip-on-Board 简称COB),是采用粘接剂或自动带焊、丝焊、倒装焊等方法,将裸露的集成电路芯片直接贴装在电路板上的一项技术。倒装芯片是COB中的一种(其余二种为引线键合和载带自动键合),它将芯片有源区面对基板,通过芯片上呈现阵列排列的焊料凸点来实现芯片与衬底的互连。 DICP(dualtape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。

芯片封装形式与命名规则

芯片封装之多少与命名规则 一、DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 QFP/PFP封装具有以下特点: 1.适用于SMD表面安装技术在PCB电路板上安装布线。 2.适合高频使用。 3.操作方便,可靠性高。 4.芯片面积与封装面积之间的比值较小。 Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 三、PGA插针网格阵列封装 PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF 的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。 ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。 PGA封装具有以下特点: 1.插拔操作更方便,可靠性高。 2.可适应更高的频率。 Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。 四、BGA球栅阵列封装

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

PCB元件封装类型

PCB元件封装类型 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1、适合PCB的穿孔安装; 2、比TO型封装易于对PCB布线; 3、操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU 为例,其芯片面积/封装面积=3×3/15.24×50=1:86,1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。Intel 公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless eramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic eaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封PQFP(Plastic Quad Flat Package),以0.5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:7.8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1、适合用SMT表面安装技术在PCB上安装布线; 2、封装外形尺寸小,寄生参数减小,适合高频应用; 3、操作方便; 4、可靠性高。

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

IC的常见封装形式

IC的常见封装形式 常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 按封装体积大小排列分:最大为厚膜电路,其次分别为双列直插式,单列直插式,金属封装、双列扁平、四列扁平为最小。 封装的历程变化:TO->DIP->PLCC->QFP->BGA ->CSP 1、DIP(DualIn-line Package)双列直插式封装 D—dual两侧 双列直插式封装。插装型封装之一,引脚从封装两侧引出 2、SIP(single in-line package)单列直插式封装 引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状 3、SOP(Small Out-Line Package) 小外形封装双列表面安装式封装 以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路) 4、PQFP(Plastic Quad Flat Package)塑料方型扁平式封装 芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。适用于高频线路,一般采用SMT技术应用在PCB板上安装

5、BQFP(quad flat package with bumper)带缓冲垫的四侧引脚扁平封装 QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形 6、QFN(quad flat non-leaded package)四侧无引脚扁平封装 封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN 7、PGA(Pin Grid Array Package)插针网格阵列封装 插装型封装之一,其底面的垂直引脚呈阵列状排列,一般要通过插座与PCB板连接。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 8、BGA(Ball Grid Array Package)球栅阵列封装 其底面按阵列方式制作出球形凸点用以代替引脚。适应频率超过100MHz,I/O 引脚数大于208 Pin。电热性能好,信号传输延迟小,可靠性高。

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

芯片封装(Chip Package)类型70种

芯片封装(Chip Package)类型70种 芯片封装:指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接。 Chip Package: The housing that chips come in for plugging into (socket mount) or soldering onto (surface mount) the printed circuit board. Creating a mounting for a chip might seem trivial to the uninitiated, but chip packaging is a huge and complicated industry. The ability to provide more and more I/O interconnections to a die (bare chip) that is increasingly shrinking in size is an ever-present problem. In addition, the smaller size of the package contributes as much to the miniaturization of cellphones and other handheld devices as the shrinking of the semiconductor circuits. 封装类型70种, 其中最常用的就是DIP和SO(SOP),即双插直列和小型贴片 70种IC封装术语 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以 代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸 点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。 封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有 一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为, 由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.sodocs.net/doc/e51343854.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.sodocs.net/doc/e51343854.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

芯片封装类型图解

集成电路封装形式介绍(图解) BGA BGFP132 CLCC CPGA DIP EBGA 680L FBGA FDIP FQFP 100L JLCC BGA160L LCC

LDCC LGA LQFP LQFP100L Metal Qual100L PBGA217L PCDIP PLCC PPGA PQFP QFP SBA 192L TQFP100L TSBGA217L TSOP

CSP SIP:单列直插式封装.该类型的引脚在芯片单侧排列,引脚节距等特征和DIP基本相同.ZIP:Z型引脚直插式封装.该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也和DIP基本相同. S-DIP:收缩双列直插式封装.该类型的引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP. SK-DIP:窄型双列直插式封装.除了芯片的宽度是DIP的1/2以外,其它特征和DIP相同.PGA:针栅阵列插入式封装.封装底面垂直阵列布置引脚插脚,如同针栅.插脚节距为2.54mm或1.27mm,插脚数可多达数百脚. 用于高速的且大规模和超大规模集成电路. SOP:小外型封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状.引脚节距为 1.27mm. MSP:微方型封装.表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm. QFP:四方扁平封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为 1.0mm,0.8mm,0.65mm,0.5mm,0.4mm,0.3mm,引脚可达300脚以上. SVP:表面安装型垂直封装.表面贴装型封装的一种,引脚端子从封装的一个侧面引出,引脚在中间部位弯成直角,弯曲引脚的端部和PCB键合,为垂直安装的封装.实装占有面积很小.引脚节距为0.65mm,0.5mm. LCCC:无引线陶瓷封装载体.在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装.用于高 速,高频集成电路封装. PLCC:无引线塑料封装载体.一种塑料封装的LCC.也用于高速,高频集成电路封装. SOJ:小外形J引脚封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈J字形,引脚节距为 1.27mm. BGA:球栅阵列封装.表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚. 焊球的节距通常为1.5mm,1.0mm,0.8mm,和PGA相比,不会出现针脚变形问题. CSP:芯片级封装.一种超小型表面贴装型封装,其引脚也是球形端子,节距为0.8mm,0.65mm,0.5mm等. TCP:带载封装.在形成布线的绝缘带上搭载裸芯片,并和布线相连接的封装.和其他表面贴装型封装相比,芯片更薄,引脚节距更小,达0.25mm,而引脚数可达500针以上. 介绍:

相关主题