搜档网
当前位置:搜档网 › 浅述土质边坡稳定性分析及稳定性验算方法

浅述土质边坡稳定性分析及稳定性验算方法

浅述土质边坡稳定性分析及稳定性验算方法
浅述土质边坡稳定性分析及稳定性验算方法

浅述土质边坡稳定性分析及稳定性验算方法[摘要]结合工程实例分析了土质边坡的稳定性,并利用理正软件计算边坡的

稳定性系数,对边坡的稳定性进行验算,根据分析结果结合工程实际情况,给出边坡的支护建议。

[关键词]边坡稳定性分析稳定性系数稳定性验算理正计算

边坡可分为人工边坡和自然边坡。随着人类社会的发展,人类工程建设的扩大,边坡的稳定性问题逐渐成为各项工程领域里的一项重要的研究内容。边坡稳定性分析的方法主要有:极限平衡理论,如瑞典条分法、毕肖普法等,有限单元法,模糊综合评判方法,以及计算机模拟方法等。其中,由于极限平衡法具有模型简单、计算简捷以及能考虑各种加载形式等特点而得以广泛应用。为此,本文主要结合深圳地铁7号线某停车场的边坡工程,采用极限平衡法综合分析评价土质边坡的稳定性。

1场地工程地质概况

深圳地铁7号线某停车场场地区为丘陵边缘,东北高西南低,地形起伏较大,地面高程约41.0~133.0m。东部地形改造变化较大,已修整为若干级平台,西部边坡较缓,边坡坡度约20度左右。本文以西部边坡为例进行评价。该边坡西部现状主要为自然斜坡形成,中上部以土质为主,下伏为岩质,属岩土质边坡,表面有植被覆盖。岩土层由上到下为素填土、全风化花岗岩、强风化花岗岩,其下为中微风化花岗岩,土层物理参数如下:

2边坡稳定性影响因素分析

边坡稳定性主要取决于边坡中各类岩土的性质(密度、湿化性、抗剪强度),地下水活动情况、软弱夹层及软弱结构面的分布情况和基岩岩体中的软弱结构面,软弱夹层,裂隙发育程度及风化特征等。经全面分析边坡区的地貌、地层岩性等特征,并借鉴前人研究的边坡经验,对影响边坡稳定不利因素主要归结为以下几点:

(1)岩土体主要由工程地质性质较差的人工填土和全、强风化的岩体组成,结构松散,是控制边坡稳定性的主要因素;(2)边坡上部平台上无完善的排水系统,降雨时,雨水的渗入也将使得松散土体进一步软化,对边坡稳定不利;(3)边坡在人工削坡后,由于上部的人工填土和粘性土在地表水下渗后产生变形蠕动,进而使下部强风化基岩沿着强风化裂隙产生变形、破坏,其基岩强风化下限与中风化顶界面因受上部土层挤压、推挤作用而发生剪切变形面。

从上述原因分析,边坡存在较多处对稳定不利因素。因此,自然边坡目前虽然比较稳定,但在施工时,由于边坡体植被破坏及人工削坡等不利条件,如不整治防护,在大量雨水下渗或其他不利条件下,将可能产生边坡滑塌等破坏活动。

边坡稳定性分析方法

边坡稳定性分析方法 目前,边坡稳定性的研究方法有很多,一般将其分为定性分析法、定量分析法与数值分析法等,其中,定性分析方法中主要有自然(成因)历史分析法、工程类比法、图解法等;定量分析方法中运用最为广泛的是极限平衡法;数值分析法中包括有限元法、离散元法、边界元法等;另外,随着各种新型理论的引入及对边坡认识的深入,不确定性分析方法也更多的运用到了边坡的稳定性研究当中,其中有代表性的研究方法有可靠性评价法、模糊理论评价法、灰色系统理论评价法、神经网络评价法、突变理论评价法及分形理论评价法等等。 由于不同的边坡工程所处具体情况的不同,使得目前对边坡进行稳定性分析、评价尚无统一的方法。众多方法的出现虽然可以使我们从不同侧面了解边坡的稳定性状况,但是这正也说明由于边坡岩体及其工程条件、环境的复杂性,不可能用简单的一种方法就把边坡的特性分析清楚,同时也没有任何一种方法可以解决所有的边坡稳定性评价问题。总的来说,目前进行边坡稳定性评价分析的方法很多,但是各自都有其一定的局限性,定性分析法:不论是类比法、自然历史分析法还是图解法,都是经验性的分析方法,没有实际的根据,所以人为因素影响较大,结论准确性差。极限平衡法:将滑体视为刚体来分析,边界条件过多的进行了简化,并加了许多假设条件,不能解决超静定问题。有限单元等数值分析法:虽然有限元计算方法具有不可比拟的优点,但所建立模型的可靠性、适用性以及分析当中所采用的各种参数的可靠性对边坡稳定性的最终判断有非常大的直接性影响;还有网格划分的不确定性、随意性大,只要能把上述问题解决好,该方法依然是目前对边坡稳定性进行数值分析中最有力的数值模拟工具。模糊理论法:该法当中不同指标的隶属函数、隶属度以及指标的权重值均难以准确确定,带有一定人为性、经验性的成分,且评价结果只能是定性的判断。神经网络法:网络不易收敛,容易陷入局部最小,计算和训练十分费时。由此可见,尽管目前边坡稳定性分析方法比较多,但由于边坡工程的复杂性,更合理的稳定性评价方法还有待进一步的探索、开发。 力学计算法和工程地质法是边坡稳定性分析和验算方法常用的两种方法。 1.力学计算法 (1)数解法 假定几个不同的滑动面,按力学平衡原理对每个滑动面进行计算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法 在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与边坡条件相类似的稳定值的参考数据,作为确定边坡值的依据。 一般土质边坡的设计常用力学计算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 第一节力学计算法 一、力学计算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

边坡稳定性计算方法.doc

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪 度指标为 c 、φ。如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图 已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的 抗滑力Tˊ分别为: T=W ·sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当F s =1 时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于0.1 时,可以把它当作一个无限边坡进行分析。 图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s = c/ γH称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α=φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强 度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘 这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动 法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O 为圆心,R 为半径。 假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

围堰边坡稳定计算

围堰稳定性计算(示意) 本计算书采用瑞典条分法进行分析计算,因为围堰顶标高****m , 故假定迎水面水位标高达到**m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法;基坑外侧水位标高:10.50m基坑内侧水位标高:5.50m 荷载参数:由于围堰上无恒载,故不考虑外部荷载 土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条, 不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系 数,考虑安全储备的大小,按照《规范》要求,安全系数要满足》1.3 的要求。

二、计算公式: Fs= E{c i l i +[( Yh1 i + y'h2 i )b i +qb i ]cos 0i tan 由}/ H ( yh1 i + 丫 'h2i )b i +qb i ]sin 0i 式子中: Fs-- 土坡稳定安全系数; C i -- 土层的粘聚力; l i --第i 条土条的圆弧长度; Y - 土层的计算重度; B i --第i 条土中线处法线与铅直线的夹角; 咖--土层的内摩擦角; b i --第i 条土的宽度; h i --第i 条土的平均高度; hl i --第i 条土水位以上的高度; h2 i --第i 条土水位以下的高度; Y --第i 条土的平均重度的浮重度; q--第i 条土条土上的均布荷载 ;

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

用理正岩土计算边坡稳定性

运用《理正岩土边坡稳定性分析》 作定量计算 (整理人:朱冬林,2012-2-21) 1、我目前手上理正岩土的版本为5.11版,有新版本的请踊跃报名,大家共同进步! 2、为什么要用理正岩土边坡稳定性分析? 现在山区公路项目地形条件越来越复杂,对于一些斜坡(指一般自然坡)或边坡(指开挖后的坡体)的稳定性评价是不可避免,比如桥位区沿斜坡布线,桥轴线与坡向大角度相交,自然坡度20~40°,覆盖层比较厚,到底是稳定还是不稳定?会不会有隐患和危险?必将困扰每个勘察技术人员,说它稳定吧,又怕将来出问题,说不稳定,目前又没有出现开裂变形滑动迹象,那在报告中如何评价桥址的安全性?再比如,路线从大型堆积体上经过,究竟稳定性如何评价?仅靠钻探或地质调查无法对其稳定性进行合理评价。这时候,就要辅以定量分析计算来提供证据了。 还有,我们在报告中提路堑边坡的岩土经验参数,常常遭设计诟病,按报告

中提的参数,自然坡都垮得一塌糊涂了,更不要说开挖了。我们在正式报告中提出“问题参数”会大大降低了勘察在设计心目中的光辉(灰)形象。如果我们事先对自然斜坡的横断面进行过初步计算,提出的参数就不会太离谱,必将给设计留下“很专业”的印象。 3、是否好用? 很好用。在保宜项目我一天计算几十个断面,既有效又快。 4、断面图能不能直接从CAD图读入? 可以。只需事先转化为dxf即可(用dxfout命令保存)。对图形的条件是所有的线段都是直线段组成(对于多段线需要炸开,对于样条曲线可以用多段线描一下再炸开即可),另外图形边界要封闭(事先可以用填充命令试一下,看各个区域是否封闭)。注意,图中只能有直线段,不能有其它图元(记得按上面操作完后,全选(Ctrl+A),看“属性”(Ctrl+1),全部为直线,则OK)。 5、下面结合实例讲解计算过程,保证学一遍就上手。 以土质边坡计算为例(最常用) 进入土质边坡稳定性分析程序

土质边坡和岩石边坡的分析异同

土石坝的一些资料 非粘性土料与粘性土料的区别: 土料压实特性,与土料自身的性质,颗粒组成情况、 级配特点、含水量大小以及压实功能等有关。 对于粘性土和非粘性土的…这的根本区别 施工: 二?开挖运输机械设备容量确定 分期施工的土石坝, 应根据坝体分期施工的填筑强度和开挖强度来确定相应的机械设 备容量,可按 qd=K*K1*Vd/T*N 式中qd ――坝体分期填筑强度, mT/h;Vd ――坝体分期填筑方量, m^3 ; K ――施工 不均匀系数,可取1.2~1.3 ;K1 ――考虑沉降,削坡、损失等影响系数,可取1.15- 1.2 ;T ―― 分期时段的有效工作日数, d;按分期时段的总日数,扣除节假日、降雨及气温影响可能的 停工日数,即为有效工作日数; N ――每日的工作小时数,以 20h 计。坝体分期施工的开 挖强度qc (m^3/h )为qc=K2*qd*rd/rn 式中K2 ——开挖及运输中的损失系数,可取 1.05? 1.10; rd ----- 土料的设计干表观密度, 满足上坝填筑强度要求的挖掘机数量 率,m^3/h 。 Na 为Na=qc/Pa 式中Pa 一辆汽车的生产率, 因此应满足nPa>Pc 。 为了充分发挥自卸汽车的运输效能,应根据挖掘机械的斗容选择具有适当斗容量(或 载重量)的汽车。挖掘机装满一车斗数的合理范围应为 3?5斗,通常要求装满一车时间 不超过3.5?4min ,卸车是不超过 2min 。 第三节土料压实 土石料的压实,是土石坝施工质量的关键。维持土石坝自身稳定的土 料内部主力(粘结力和摩擦力)、土料的防渗性能等,都是随土料密实度的增加而提高。 例如,干表观密度为 1.4t/mA3的砂壤土,压实后若提高到 1.7t/mA3,其抗压强度可提高 4t/m A 3;rn ―― 土料的天然干表观密度, t/m A 3。 Nc 为Nc=qc/Pc 式中Pc ——一台挖掘机的生产 满足上坝填筑强度要求的汽车总数量 mA3/h 。配合一台挖掘机所需的汽车数量 n ,其总的生产率应略大于一台挖掘机的生产率,

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

土质边坡动力稳定性试验研究

第44卷 第2期 煤田地质与勘探 Vol. 44 No.2 2016年4月 COAL GEOLOGY & EXPLORA TION Apr . 2016 收稿日期: 2014-09-11 基金项目: 国家自然科学基金项目(41302246) Foundation item :National Natural Science Foundation of China(41302246) 作者简介: 朱赛楠(1984—),男,宁夏银川人,博士,从事边坡稳定性研究. E-mail :zsn105@https://www.sodocs.net/doc/e612932985.html, 引用格式: 朱赛楠,曹广祝,李滨.土质边坡动力稳定性试验研究[J]. 煤田地质与勘探,2016,44(2):66–72. ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. Coal Geology & Exploration, 2016, 44(2): 66–72. 文章编号: 1001-1986(2016)02-0066-07 土质边坡动力稳定性试验研究 朱赛楠1,曹广祝2,李 滨3 (1. 长安大学地测学院,陕西 西安 710064;2. 昆明理工大学国土资源工程学院,云南 昆明 650093;3.中国地质科学院地质力学研究所,北京 100081) 摘要: 以云贵高原某典型土质边坡为原型,采用了4种加速度震动波输入模式,设计完成了比例 为1:6的小型振动台模型试验,结合FLAC 3D 数值模拟对边坡动力响应特性和边坡变形破坏规律进 行分析。结果表明:当输入加速度低于某个临界值时,整个坡体的加速度响应基本保持一致,各 部位放大效应增加不明显,当输入加速度逐渐增加,高于临界值时,坡体的卓越频率得到充分激 励,各部位加速度响应大幅增加,此时边坡最易发生变形破坏,且加速度响应沿着坡高方向有显 著的放大效应;剪应变增量时程曲线反映出在边坡震动破坏过程中,滑体后缘以张拉为主,中部 及下部以剪切为主,而且剪出口剪应变增量的变化尤为关键,其增幅速度直接导致该部位抗剪强 度降低速度增快;边坡震动变形破坏模式为崩塌–剪切滑移破坏,变形破坏过程可分为4个阶段。 关 键 词:土质边坡;振动台试验;加速度动力响应;剪应变增量;剪切滑移 中图分类号:P642.22 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2016.02.013 Dynamic stability model test of soil slope ZHU Sainan 1, CAO Guangzhu 2, LI Bin 3 (1. School of Geology Engineering and Geomatics , Chang ′an University , Xi ′an 710064, China ; 2. College of Territorial Resources , Kunming University of Science and Technology, Kunming 650093, China ; 3. Institute of Geomechanics , Chinese Academy of Geological Science , Beijing 100081, China ) Abstract: This paper, based on a typical soil slopes prototype in Yunnan-Guizhou plateau, designed and completed test on a small vibrostand at scale of 1:6 by using four kinds of acceleration vibration wave input mode. The slope dynamic response characteristics, the deformation and failure law of slope were analyzed by FLAC 3D . The results show that when the input acceleration is below certain threshold, the acceleration response of the whole slope is basic consistent in the same way, and amplification effect at each place does not increase obviously, when the input acceleration increases gradually ans is higher than the critical value, the predominant frequency of slope is fully stimulated and the acceleration response of each place increases, the slope is the most prone to deformation and damage. And the acceleration response has significant amplification effect along the direction of the slope height. The shear strain increment time course curve reflects the fact that in the process of the vibration failure, the trailing edge of the landslide mass is mainly effected by tensioning, the middle and the bottom of the slope are mainly ef- fected by shear, and the variation of shear strain increment at the shear outlet particularly critical, its growth speed directly results in rapid decrease of shear strength. The slope deformation process is divided into four stages, and the failure mode is collapse-shear sliding. Key words: soil slope; vicrostand test; acceleration response; shear strain increment; shear sliding 地震是诱发边坡滑动和坍塌的重要因素之一。 近年来,国内外就边坡地震动力稳定性进行了多方 面的研究[1-3]。随着振动台模型的推广改进,应用振 动台模型试验模拟边坡的动力响应特性和斜坡变形破坏规律成为研究边坡失稳机理的重要手段[4-7]。徐光兴[8]设计了土坡大型振动台模型试验,考虑了不同地震波的类型、幅值和频率作用下土质边坡的动力响应规律,以及地震动参数对动力响应的影响。

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

匀质粘性土体边坡稳定性计算

匀质粘性土体边坡稳定性计算中 极限平衡法与强度折减法数值分析比较 1边坡的种类和滑面类型 边坡按形成的原因大致可以分为三类:自然边坡、人工开挖边坡和人工填筑边坡;边坡按土层的种类也大致可以分为三种:匀质黏土边坡(人工填筑边坡一般为匀质边坡)、非匀质粘性土边坡(自然的黏砂性土边坡,或者人工开挖黏土边坡)和存在潜在软弱面或层面强度差异较大的边坡(如存在既有滑面的滑坡和上层为黏土层下为岩层的边坡)。使边坡失稳的外因大致有:外荷载(地震、列车荷载、房屋和填土等)、重力和水的渗流、岩土的膨胀力等。边坡失稳时滑动及滑面类型主要取决于边坡的外部荷载和边坡土层的类别,匀质粘土边坡的失稳滑面主要为圆弧型,非匀质边坡的失稳滑面主要是曲面型(复合型、对数螺旋型等),存在潜在软弱面或层面强度差异较大的边坡一般沿既有软弱面或者沿强度差异较大的两层面层间滑动(一般多为折线型,也有直线型)。本将对匀质边坡进行有限差分强度折减法数值分析法和经典极限平衡法进行稳定性分析计算,并就安全系数的计算及粘性土边坡潜在滑动面的确定进行比较分析。 2匀质边坡的极限平衡法计算和数值模拟 2.1匀质粘土边坡的极限平衡法概述 粘性土边坡中,危险滑动面在土体的内部,常与圆弧面相似。经典的基于圆弧滑动面的边坡稳定分析方法称为圆弧滑动法,属极限平衡法[1],本文对几种常用的经典分析方法进行简单概述如下。 (1)整体圆弧滑动法。又称瑞典圆弧法,用于分析均质黏性土边坡的稳定性,即只能分析内摩擦角υ=0时的边坡稳定问题。边坡稳定安全系数为抗滑力矩与滑动力矩之比, 一般公式为:11 (sin ) n i i r n s i i i cl M K M W α === = ∑∑ (2)简单圆弧条分法。又称瑞典条分法,仍假定滑动面为一个圆弧面。为分析摩擦角υ>0时粘性土边坡的稳定性,将土坡分成若干个条块,但只考虑作用在条块上的重力、滑弧面上的法向力和切向抗滑力,忽略条块侧面法向力和切向力的作用。一般公式为: 1 1 (cos tan ) (sin ) n i i i i r n s i i i W cl M K M W α φα ==+= = ∑∑ (3)简化毕肖普(Bishop)法。简化毕肖普法仍假设滑动面为圆弧,将滑动土体分为若干个条块。在进行第i个条块的受力分析时,考虑条块侧面法向力的作用,但忽略切向力的作用。一般公式为:

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

常用的边坡稳定性分析方法

常用的边坡稳定性分析方法

第一节概述 (1) 一、无粘性土坡稳定分析 (1) 二、粘性土坡的稳定分析 (1) 三、边坡稳定分析的总应力法和有效应力法 (1) 四、土坡稳定分析讨论 (1) 第二节基本概念与基本原理 (1) 一、基本概念 (1) 二、基本规律与基本原理 (2) (一)土坡失稳原因分析 (2) (二)无粘性土坡稳定性分析 (3) (三)粘性土坡稳定性分析 (3) (四)边坡稳定分析的总应力法和有效应力法 (7) (五)土坡稳定分析的几个问题讨论 (8) 三、基本方法 (9) (一)确定最危险滑动面圆心的方法 (9) (二)复合滑动面土坡稳定分析方法 (9)

常用的边坡稳定性分析方法 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。 2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土

理正岩土边坡稳定性分析帮助

第一章功能概述 边坡失稳破坏是岩土工程中常遇到的工程问题之一。造成的危害及治理费用均非常可观。因此,客观的、正确的评估边坡稳定状况,是摆在工程技术人员面前的一道难题。为满足工程技术人员的需要,编制了“理正边坡稳定分析”软件。 该软件具有下列功能: ⑴本软件具有通用标准、《堤防工程设计规范GB50286-98》、《碾压式土石坝设计规范SDJ218-84》、《碾压式土石坝设计规范SL274-2001》、《浙江省海塘工程技术规定》五种标准,以满足不同行业的要求; ⑵本软件提供三种地层分布模式(等厚地层、倾斜地层、复杂地层),可满足各种地层条件的要求; ⑶本软件可计算边坡的稳定安全系数及剩余下滑力; ⑷本软件提供多种方式计算边坡的稳定安全系数; ⑸本软件提供的自动搜索最小稳定安全系数的方法,是理正技术人员研制、开发、应用到软件中,并取得良好的效果。一般情况下,都可以得到最优解。但是对于较复杂的地质条件,建议先指定区域搜索、分不同精度进行分析,逐步逼近最优解,这样才能既快又准; ⑹对于圆弧滑动稳定计算,本软件提供三种方法:瑞典条分法、简化Bishop法、及Janbu 法;对于折线滑动稳定计算,本软件提供三种方法:简化Bishop法、简化Janbu法、摩根斯顿-普赖斯法。用户可以根据不同的要求采用不同的方法。 ⑺本软件针对水利行业做了大量工作,除水利的堤防、碾压土石坝规范外,还有海堤规范;可按不同工况——施工期、稳定渗流期、水位降落期计算堤坝的稳定性(包括总应力法及有效应力法); ⑻软件可考虑地震作用、外加荷载及锚杆、锚索、土工布等对稳定的影响;详细考虑水的作用,包括堤坝内部、外部水的作用;尤其方便的是可以将渗流软件分析的流场数据直接应用到稳定分析,使计算结果更逼近真实状况; ⑼具有图文并茂的交互界面、计算书;具有对计算过程的信息查询及计算过程图形显示功能,可视化程度高;并有及时的提示指导,帮助用户使用软件; 本软件适用于水利、公路、铁路等行业岩土在工程建设中遇到的边坡(主要是土质边坡、岩石边坡可参考)稳定分析。

边坡稳定验算

工程名称: 边 坡 稳 定 性 评 价 设计单位: 施工单位: 监理单位: 建设单位: 编制时间: 工程概况: 本次边坡稳定性评价是针对箱涵工程开挖放坡过程中,对于邻近建筑物住宅楼安全稳定性进行评价。边坡稳定性采用圆弧滑动法验算,并根据临近建筑物基础底面荷载标准值对土质边坡侧向压力影响范围进行计算。 设计依据 1、《建筑边坡工程技术规范》(GB50330—2002); 2、《岩土工程勘察规范》(GB50021—2001); 3、《建筑地基基础技术规范》(GB50007—2012); 4、《混凝土结构设计规范》(GB50010—2010); 5、《土层锚杆设计与施工规范》(CECS22:90); 三、对于坡顶有重要建筑物的边坡工程设计应符合下列规定: 1、应根据基础方案、构造做法和基础到边坡的距离等因素,考虑建筑物基础与边坡支护结构的相互作用; 当坡顶建筑物基础位于边坡潜在塌滑区时,应考虑建筑物基础传递的垂直荷载、水平荷载和弯矩对边坡支护结构强度和变形的影响; 基础邻近边坡边缘时,应考虑边坡对地基承载力和基础变形的影响,并对建筑物基础稳定性进行验算; 应考虑建筑基础和施工过程引起地下水变化造成的影响。 四、边坡工程勘察 边坡工程勘察报告应包括下列内容: 在查明边坡工程地质和水温地质条件的基础上,确定边坡类别和可能的破坏形式; 提供验算边坡稳定性、变形和设计所需的计算参数值; 评价边坡的稳定性,并提出潜在的不稳定边坡的整治措施和监测方案的建议; 对需要进行抗震设防的边坡应根据区划提供设防烈度或地震动参数; 提出边坡整治设计、施工注意事项和建议; 对所勘察的边坡工程是否存在滑坡(或潜在滑坡)等不良地质现象,以及开挖或勾住的适宜性做出结论; 对安全等级为一、二级的边坡工程尚应提出沿边坡开挖的地质纵、横剖面图。 边坡工程勘察应查明下列内容:

土质高边坡稳定性监测分析

土质高边坡稳定性监测分析 摘要:通过对边坡工程的监测,可以扑捉到边坡稳定性的异常信息,以便及时发现问题。监测坡体变形的位移是最直观、最直接的、最主要的物理量,分析统计变形监测数据的相关性、统一性,结合地形地貌与工程地质条件,加以综合分析,用于合理评价边坡的稳定程度及变形特征,为边坡的动态设计提供科学依据,以便提出具有针对性的防护治理措施,对边坡工程建设和社会效益具有重要意义,为类似工程提供借鉴。 关键词:堆积体变形监测稳定性 土质高边坡稳定性研究一直是工程界和地质工作者关注的重大课题之一,尽管坡体经过稳定性计算和支护,但边坡的稳定性状况仍难以确定,在开挖过程中或开挖后的失稳事故也常有发生,因此,对边坡进行稳定性监测是确保工程建设顺利进行及安全运行的重要措施。土质边坡的变形发展,主要受地形地貌特征、地层结构及软弱带控制,又受到人类工程活动的影响。开展边坡工程监测,收集相关监测数据,扑捉监测数据异样信息的相关性及统一性,结合工程地质特性,综合分析评价边坡的稳定性程度以及变形特征,为边坡工程的动态设计提供信息参考,指导边坡工程的合理治理与防护。本文以某水电站坝址下游泥洛村堆积体监测工程为实例,对其稳定性监测进行了详细分析。 1.工程概况与工程地质条件 该堆积体位于河谷左岸,边坡下部有1#、2#导流洞出口,对岸有泄洪放空洞、尾水洞出口,边坡的稳定性非常重要,其变形可能危及到电站的安全运行,因此对该边坡工程进行了内外观安全监测,全面掌握边坡变形情况,以便及时发现问题,采取措施进行处理。 堆积体周缘具明显的冰斗地貌,冰斗向大渡河倾斜、敞开。堆积体下游边界有一深切冲沟,深度达50-100m,沟内基岩出露。其分布高程1710m~2760m,堆积体斜坡坡度总体为下陡上缓,高程2000m以下38°~40°,斜坡较完整,高程2000m以上斜坡总体坡度20°~25°,台阶状明显,部分坡段地形坡度可达40~45°;前缘分布高程1710m,顺河向宽度480m~530m,后缘宽度400m,堆积层厚度较大,一般50m~80m,体积约为5800万m3,成因为冰水堆积。 现场调查及勘探揭示,堆积体厚度一般54.51m~81.2m,最大约147m,堆积体物质为早更新世冰川堆积的含块碎砾石土(flQ3),块碎砾石成份为白云岩、灰岩、绢云母片岩,大小悬殊,土体结构密实,仅表层1m~2m内结构稍松,钻进中返水返浆。堆积体含水不丰,透水性微弱,大气降雨的入渗难度较大,暴雨季节在浅表部可能存在少量上层滞水,其余部位总体较为干燥。 堆积体下覆基岩岩性为志留系上统(S3)绢云石英白云片岩、薄层~中厚层泥质结晶白云岩夹变质灰岩,为较软岩~硬质岩,在泥洛沟及堆积体后缘、前缘

相关主题