搜档网
当前位置:搜档网 › 2009年中国数学奥林匹克CMO试题和详细解答word版

2009年中国数学奥林匹克CMO试题和详细解答word版

2009年中国数学奥林匹克CMO试题和详细解答word版
2009年中国数学奥林匹克CMO试题和详细解答word版

2009中国数学奥林匹克解答、给定锐角三角形PBC, PB = PC ?设A, D分别是边PB,

PC上的点,连接

AC, BD,相交于点O.过点O分别作0E丄AB, OF丄CD,垂足分别为E, F,线段

BC, AD的中点分别为M, N.

(1)若A, B, C, D 四点共圆,求证:EM FN =EN FM ;

(2)若EM FN =EN FM ,是否一定有A, B, C, D四点共圆?证明你的结论.

解(1)设Q, R分别是OB, OC的中点,

EQ, MQ, FR, MR」

1 1

EQ 0B 二RM, MQ OC 二RF , 2 2

又OQMR是平行四边形,所以

.OQM —ORM ,

由题设A, B, C, D四点共圆,所以

ABD "ACD ,

于是

EQO =2 ABD =2 ACD = FRO ,

所以EQM = /EQO. OQM/ FRO. O RM ,

故.E Q M 二.:M R,F

所以EM = FM ,

同理可得EN = FN,

所以EM F N E N F.M

(2) 答案是否定的.

当AD // BC时,由于.B = C,所以A, B, C, D四点不共圆,但此时仍然有

EM FN二EN FM,证明如下:

如图2所示,设S, Q分别是OA, OB的中点,连接ES, EQ, MQ, NS,贝U

NS 二丄OD, E^-OB ,

2 2 所以

EQ O B

1 1

又ES^OA MQ^OC,所以

ES OA

MQ - OC

而AD// BC,所以

OA OD

OC~~OB

NS ES

EQ 一MQ

因为NSE 二NSA ? ASE 二AOD 2 AOE , .EQM - MQO . OQE 二.AOE ? EOB (180 -2 EOB)

= /AOE (180 -. EOB)=/AOD 2 AOE ,

所以

同理可得,

所以

从而

NSE 二EQM ,

. NSE ?. EQM ,

EN SE OA

EM -QM - OC

(由

②).

FN OA

FM - OC ,

EN FN

EM 一FM ,

EM FN =EN FM .

A N

D

E S 'F

O

由①,②,③得

二、求所有的素数对(p, q),使得pq 5p+5q.

解:若 2 | pq,不妨设p = 2,则2q|52- 5q,故q |5q? 25 .

由Fermat小定理,q|5q—5,得q | 30,即q = 2, 3, 5 .易验证素数对(2,2)不合要求,(2,3),(2, 5)合乎要求.

若pq为奇数且5| pq,不妨设p = 5,则5q |555q,故q |5q」625 .

当q =5时素数对(5,5)合乎要求,当q=5时,由Fermat小定理有q | 5q」_ 1,故q|626 .由于q为奇素数,而626的奇素因子只有313,所以q=313 .经检验素数对(5,313)合乎要求.

若p,q都不等于2和5,则有pq|5p「5q」,故

5pJ 5q_* = 0(mod p). ①由Fermat小定理,得5pJ 1 (mod p),②

故由①,②得

5qJ= 1 (mod p). ③设p—1=2k(2r—1),q-1=2l2s-1),其中k,l,r,s 为正整数.

若k空I,则由②,③易知

1 彳上(Z =(5心)廿(Z =52l(2r4)(2s4) =(52)2r' =(-1)心=-1(modp),

这与p = 2矛盾!所以k l .

同理有k :l,矛盾!即此时不存在合乎要求的(p,q).

综上所述,所有满足题目要求的素数对(P, q)为

(2,3),(3,2),(2, 5),(5,2),(5, 5),(5,313)及(313, 5).

三、设m, n是给定的整数, 4 :::m :::n , AA2 A2n d是一个正2n+1边

形,

P =:A,A2,…,A2「I 1求顶点属于P且恰有两个内角是锐角的凸m边形的个数.

解先证一个引理:顶点在P中的凸m边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.

事实上,设这个凸m边形为RP2…P m,只考虑至少有一个锐角的情况,此时不妨

设.P m P i P2 ,则

2

卩2吓-二 - P zR P m 尹一j 乞口-1),

B亠K

更有P j」P j P j i Q(3一j _ m -1) ?

而.RP2P3+. P m二P m R *二,故其中至多一个为锐角,这就证明了引理.

由引理知,若凸m边形中恰有两个内角是锐角,贝尼们对应的顶点相邻.

在凸m边形中,设顶点A i与A j为两个相邻顶点,且在这两个顶点处的内角均为锐角?设A i与A j的劣弧上包含了P的r条边(1兰r W n ),这样的(i, j)在r固定时恰有2n 1对.

(1)若凸m边形的其余m-2个顶点全在劣弧A i A j上,而A A j劣弧上有r-1个P 中的点,此时这m-2个顶点的取法数为C^ .

(2)若凸m边形的其余m - 2个顶点全在优弧AA j上,取A i,A j的对径点B i , B j,由于凸m边形在顶点A,A j处的内角为锐角,所以,其余的m-2个顶点全在劣弧B j B j 上,而劣弧B i B j上恰有r个P中的点,此时这m-2个顶点的取法数为C r m^ .

所以,满足题设的凸m边形的个数为

n ■- n n

(2n 1p (bj C r m')=(2n 1) '。心

r 1?: .r =1 r =1

n n

=(2 n 1)0 (C r m‘ -C rT) (e mW))

r T r d

= (2n 1)2畀U4).

n

32

所以 四、给定整数 解不妨设 a i n 狂3,实数a 1,a 2,…,a n 满足 min a i 恒匕切

:::a 2 :::…:::a n ,则对1乞k 乞

n ,有

a k

+ a n_k41

求7 k4

a k

a k 2 k A j n a k

8 k =1

a k

的最小

值.

当n 为奇数时, 当n 为偶数时,

所以,当n

等号均在a i = i

此,

兰 a? —a k z n +1 —2k ,

a n 1 _k

+ a n*_k

a n 1 _k

f3 2 1#

{4(a

k — a n41

」)+

-(

4 a k

+ a n^_k

3

1

_n

瓦n+1 -2k

-2 23

2

乏 id

i 3

冷(「)2

? Z n+1 -2k

(2i -1)

为奇数时," k =1

a k

a k

=2

n

2 (2i)3

i =1

Jn 2( n 2

-2)?

_ —(n 2

32 -1)2

,当n 为偶数时,

a k

1 >—— n 2(n 2

-2), n 亠1

于,i =1,2,…,n 时成立.

1 1

的最小值为

-

(n

2

-

1)2

(n 为奇数),或者护

(n

2

-2)( n 为偶数).

五、凸n边形P中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:

对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P的顶点,且它的3条边分别被染为这3种颜色?

解当n _3为奇数时,存在合乎要求的染法;当n _ 4为偶数时,不存在所述的染法。

每3个顶点形成一个三角形,三角形的个数为C:个,而颜色的三三搭配也刚好有

C3种,所以本题相当于要求不同的三角形对应于不同的颜色组合,即形成一一对应.

我们将多边形的边与对角线都称为线段. 对于每一种颜色,其余的颜色形成C L种

搭配,所以每种颜色的线段(边或对角线)都应出现在C n2」个三角形中,这表明在合

乎要求的染法中,各种颜色的线段条数相等. 所以每种颜色的线段都应当有

条.

n —1

当n为偶数时,—不是整数,所以不可能存在合乎条件的染法.下设n = 2m 1

2

为奇数,我们来给出一种染法,并证明它满足题中条件.自某个顶点开始,按顺时针

方向将凸2m 1边形的各个顶点依次记为A i, A?, , A2mi .对于L'{1, 2, , 2m 1},按

med 2m 1理解顶点A .再将2m ? 1种颜色分别记为颜色1, 2/ , 2m 1 .

将边A i A i 1染为颜色i,其中i =1, 2,…,2m T .再对每个i = 1, 2,…,2m 1,都将线段(对角线)A丄A 1 .k染为颜色i,其中k =1, 2,…,m -1 .于是每种颜色的线段都刚好

有m条.注意,在我们的染色方法之下,线段A i1A j1与A i2A j2同色,当且仅当

h h = i2 j2 (mod 2m 1).

因此,对任何i = j (mod 2m 1),任何k = 0 (mod 2m 1),线段A A j都不与A i k A j k

同色.换言之,如果

i 一j^i 三i2一j 2 (mod 2m 1). ②

则线段^1A j1都不与A i2A j2同色.

任取两个三角形A h A j1 A k1和Ai2A2A k2,如果它们之间至多只有一条边同色,当

然它们不对应相同的颜色组合.如果它们之间有两条边分别同色,我们来证明第边必不同颜色?为确定起见,不妨设A1A j1与A i2A j2同色.

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

初中数学奥林匹克竞赛题及答案 奥数题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故C错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

高中数学奥林匹克竞赛试题 (9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分 一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则 (A)y =f(x)是奇函数 (B)y =f(x)是偶函数 (C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数 2.二次函数y =ax 2+bx +c 的图象如右图所示。记N =|a +b +c|+|2a -b|,M =|a -b +c| +|2a +b|,则 (A)M >N (B)M =N (C)M <N (D)M 、N 的大小关系不能确定 3.在正方体的一个面所在的平面内,任意画一条直线,则与它异 面的正方体的棱的条数是 (A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC ,则 (A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形 5.ΔABC 中,∠C =90°。若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关 系中正确的是 (A)p =q 21+±且q >21- (B)p =q 21+且q >2 1- (C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤2 1 6.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为 (A)双曲线 (B)椭圆 (C)椭圆的一部分 (D)双曲线的一部分 二、填空题(本大题共6个小题,每小题6分,满分36分) 7. 满足条件{1,2,3}? X ?{1,2,3,4,5,6}的集合X 的个数为____。 8. 函数a |a x |x a )x (f 22-+-=为奇函数的充要条件是____。 9. 在如图所示的六块土地上,种上甲或乙两种蔬菜(可只种其中一种,也可两种都种),要求相邻两块土地上不都种甲种蔬菜,则种蔬菜的方案数共有____种。 10. 定义在R 上的函数y =f(x),它具有下述性质: (i)对任何x ∈R ,都有f(x 3)=f 3(x), (ii)对任何x 1、x 2∈R ,x 1≠x 2,都有f(x 1)≠f(x 2),

小学二年级数学奥林匹克竞赛题(附答案) 1、用0、1、 2、3能组成多少个不同的三位数?2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题? 3、2,3,5,8,12,( ),( ) 4、1,3,7,15,( ),63,( ) 5、1,5,2,10,3,15,4,( ) ,( ) 6、○、△、☆分别代表什么数?(1)、○+○+○=18 (2)、△+○=14 (3)、☆+☆+☆+☆=20 7、△+○=9 △+△+○+○+○=25 8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗? 9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元? 10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟? 11. 修花坛要用94块砖,?第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算) 12. 王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米? 13. 食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵? 14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元? 15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本? 16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵? 17、1+2+3+4+5+6+7+8+9+10=( ) 18、11+12+13+14+15+16+17+18+19=( )

19、按规律填数。(1)1,3,5,7,9,( ) (2)1,2,3,5,8,13 ( ) (3)1,4,9,16,( ) ,36 (4)10,1,8,2,6,4,4,7,2,( ) 20、在下面算式适当的位置添上适当的运算符号,使等式成立。 (1)8 8 8 8 8 8 8 8 =1000 (2) 4 4 4 4 4 =16 (3)9 8 7 6 5 4 3 2 1=22 21、30名学生报名参加小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人? 22、用6根短绳连成一条长绳,一共要打( )个结。 23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下( ) 个。 24、2个苹果之间有2个梨,5个苹果之间有几个梨? 25、用1、2、3三个数字可以组成( ) 个不同的三位数。 26、有两个数,它们的和是9,差是1,这两个数是( ) 和( ) 27、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( ) 盘。 28、把4、6、7、8、9、10填下入面的空格里(三行三列的格子) ,使横行、竖行、斜行上三个数的和都是18。

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

2007年女子数学奥林匹克 第一天 1.设m 为正整数,如果存在某个正整数n ,使得m 可以表示为n 和n 的正约数个数(包括1和自身)的商,则称m 是“好数”。求证: (1)1,2,…,17都是好数; (2)18不是好数。 2.设△ABC 是锐角三角形,点D 、E 、F 分别在边BC 、CA 、AB 上,线段AD 、BE 、CF 经过△ABC 的外心O 。已知以下六个比值 DC BD 、EA CE 、FB AF 、FA BF 、EC AE 、DB CD 中至少有两个是整数。求证:△ABC 是等腰三角形。 3.设整数)3(>n n ,非负实数.2,,,2121=+++n n a a a a a a 满足 求1 112 1232 221++++++a a a a a a n 的最小值。 4.平面内)3(≥n n 个点组成集合S ,P 是此平面内m 条直线组成的集合,满足S 关于P 中的每一条直线对称。求证:n m ≤,并问等号何时成立? 第二天 5.设D 是△ABC 内的一点,满足∠DAC=∠DCA=30°,∠DBA=60°,E 是边BC 的中 点, F 是边AC 的三等分点,满足AF=2FC 。求证:DE ⊥EF 。 6.已知a 、b 、c ≥0,.1=++c b a 求证: .3)(4 1 2≤++-+ c b c b a 7.给定绝对值都不大于10的整数a 、b 、c ,三次多项式c bx ax x x f +++=2 3)(满足条件32:.0001.0|)32(|+<+问f 是否一定是这个多项式的根?

8.n 个棋手参加象棋比赛,每两个棋手比赛一局。规定:胜者得1分,负者得0分,平局各得0.5分。如果赛后发现任何m 个棋手中都有一个棋手胜了其余m —1个棋手,也有一个棋手输给了其余m —1个棋手,就称此赛况具有性质P (m ). 对给定的)4(≥m m ,求n 的最小值)(m f ,使得对具有性质)(m P 的任何赛况,都有所有n 名棋手的得分各不相同。 综上,最少取出11枚棋子,才可能满足要求。 三、定义集合}.,|1{P k m k m A ∈∈+=+N 由于对任意的k 、1 1, ,++≠∈i k i k P i 且是无理数,则对任意的k 1、P k ∈2和正整数 m 1、m 2, .,1121212211k k m m k m k m ==?+=+ 注意到A 是一个无穷集。现将A 中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n ,设此数列中的第n 项为.1+k 接下来确定n 与m 、k 间的关系。 若.1 1,1111++≤+≤+i k m m k m i m 则 由m 1是正整数知,对5,4,3,2,1=i ,满足这个条件的m 1的个数为].1 1[++i k m 从而,).,(]1 1[5 1 k m f i k m n i =++= ∑= 因此,对任意.),(,,,n k m f P k N m N n =∈∈∈++使得存在

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

2019-2020英国数学奥林匹克 第一轮 比赛时间:2019年11月29日 1.证明:存在至少3个小于200的素数p ,满足p+2,p+6,p+8,p+12均为素数.同样的,证明有且仅有一个素数q,满足q+2,q+6,q+8,q+12,q+14均为素数. 2.整数数列a 1,a 2,a 3,……满足递推关系:2214410n n n n a a a a +-+-=对任意正整数n 成立. 求a 1的所有可能的值. 3.两个圆S 1,S 2切于点P.一条不经过点P 的公切线分别与S 1,S 2交于点A,B.过P 且在△APB 外的直线CD 与S 1,S 2分别交于点C,D.证明AC ⊥BD. 4.共2019只企鹅摇摆着走向它们最喜欢的饭馆.当企鹅到达时,每只企鹅都得到了一张门票,上面写有1-2019的数字,升序排列,并被告知他们要排队就餐.第一只企鹅站在队伍的最前面.接下来,持有n 号门票的企鹅,需要找到满足m <n 且m 整除n 的最大整数m,然后钻到第持有m 号门票的企鹅后面.随后下一只企鹅加入队伍,直到2019只企鹅都排好队. (1)持2号门票的企鹅前面有多少只企鹅? (2)与持33号门票企鹅相邻的分别是持哪两个号码的企鹅? 5.有6个小孩均匀地围着圆桌坐成一圈.开始时,有一个小孩有n 个糖果,其他人没有糖果.如果有一个小孩有4个以上的糖果,那么他可以进行如下操作:吃掉一个糖果,同时给他相邻的和对面的一个人各一个糖果.如果经过某些步骤之后,每个小孩的糖果数量相同,就称这是一次”完美安排”.求可以实现”完美安排” 的所有 n 的值. 6.若定义域和值域均为整数的二元函数f(m,n)满足,对任意整数对(m,n),都有: 2f(m,n)=f(m-n,n-m)+m+n=f(m+1,n)+f(m,n+1)-1, 就称它是一个“好函数”.求所有的“好函数”. 第二轮 比赛时间:2020年1月30日

2016女子数学奥林匹克 (2016年8月12‐8月13日) 1、整数3n ≥,将写有21,2,...,n 的2 n 张卡片放入n 个盒子,每个盒子各有n 张。其后允许操作如下:每次选其中两个盒子,在每个盒子中各取两张卡片放入另一个盒子。证明:总是可以通过有限次操作,使得每个盒子内的n 张卡片上恰好是n 个连续整数。 2、ABC ?的三条边长为,,BC a CA b AB c ===,ω是ABC ?的外接圆。 ①若不含A 的 BC 上有唯一的点P (不同于,B C ),满足 PA PB PC =+,求,,a b c 应该满足的充要条件。 ②P 是①中所述唯一的点,证明:若AP 过BC 的中点, 则60BAC ∠

5、设于数列12,,...a a 的前n 项之和为12...n n S a a a =+++,已知11S =,对于1n ≥都有 21(2)4n n n S S S ++=+。证明:对于任意正整数n ,都有n a ≥。 6、求最大的正整数m ,使得可以在m 行8列的方格表中填入,,,C G M O ,每个单元格填一个字母。使得对于其中任意两行,这两行中最多在一列所填字母相同。 7、I 是锐角ABC ?的内心,AB AC >。BC 边上的高AH 与直线,BI CI 分别交于,P Q 。O 是IPQ ?的外心,,AO BC 交于L ,AIL ?的外接圆与BC 交于,N L ,D 是I 在BC 上的投影,求:BD BN CD CN =。 8、,Q Z 分别代表全体有理数、整数,在坐标平面上,对于任意整数m ,定义 (,),,0,m xy A x y x y Q xy Z m ??=∈≠∈???? 。对于线段MN ,定义()m f MN 为线段MN 上属于m A 的点的个数。求最小的实数λ,使得对于任意直线l ,均存在与l 有关的实数()l β,满足:对于l 上任意两点,M N ,都有20162015()()()f MN f MN l λβ≤?+。

中心小学三上年级数学竞赛试题 小朋友,经过小学里两年多的学习,你一定掌握了不少本领,相信你一定会有大的收 获。 一、我会填(每题2分,共26分) 1、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下, 要想超过姐姐,小华第三次最少要踢()个。 2、学校有篮球和排球共80个,篮球比排球多4个,篮球有()个。 3、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大 猴有()只。 4、某学生第一次与第二次数学测验的平均成绩是62分,第三次测验后,三次平均 成绩是68分,他第三次得()分。 5、由0、2、5、8组成的最大四位数是(),最小四位数是()。 6、在()里填上合适的数 2时=()分 8米=()分米=()厘米 5000千克=()吨 60毫米=()厘米 7、下列算式中,□,○,△,☆各代表什么数? (1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4) 56÷☆= 7 □=(),○=(),△=(),☆=()。 8、用4个边长是1厘米的正方形,拼成一个长方形,这个长方形的周长是()厘 米,如果拼成一个正方形,这个正方形的周长是()厘米。 9、小惠今年6岁,爸爸今年年龄是她的5倍,()年后,爸爸年龄是小惠的3 倍。 10、四月份有30天,这个月共( )个星期余( )天。 11、在○里填上“>”“<”或“=” 3时○300分60毫米○6分米6千米○5800米6+7+8+9+0○6×7×8×9×0 12、一节课40 分钟,如果10时40分上课,那么( )时( )分下课。 13、在□内填入适当的数字,使下列加法竖式成立: 二、我会判断(每题1分,共6分)

小学四年级数学奥林匹克竞赛试题及答案 (每题8分;总共120分) 一、选择.(将正确的答案填在相应的括号内) 1.找规律填数:(在横线上写出你发现的规律) 21 26 19 24 ( ) ( ) 15 20 . (1)15,34 (2)17,18 (3)17,22 (4)23,25 2.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多 5,丙数是( ). (1)124 (2) 122 (3)140 (4)127 3.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值 是( ). (1)1000 (2) 990 (3)999 (4)998 4.选择: 8746×7576 的积的末四位数字是 ( ). (1) 6797 (2) 9696 (3) 7669 (4) 6769 5. 现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少 种不同的支付方法? (1)4 (2) 5 (3)10 (4)8 6.右图中,所有正方形的个数是( )个. (1)10 (2)8 (3)11 (4)9 7.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)10000 8.用0、5、8、7这四个数字;可以组成()个不同的四位数? (1)10 (2)18 (3)11 (4)9

9. 学校进行乒乓球选拔赛;每个参赛选手都要和其他所有选手各赛一场;一共进 行了21场比赛;有多少人参加了选拔赛? (1)7 (2)8 (3)11 (4)9 10 一个长方形的纸对折成三等份后变成了一个正方形;正方形的周长是40厘米;那么 原来长方形的周长是多少? (1)70 (2)80 (3)100 (4)96 11.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路 相对出发,8分钟后两人相距( )米. (1)75 (2)200 (3)220 (4)90 12甲、乙、丙、丁四位同学的运动衫上印有不同的号码. 赵说:“甲是2号;乙是3号.” 钱说:“丙是4号;乙是2号.” 孙说:“丁是2号;丙是3号.” 李说:“丁是4号;甲是1号.” 又知道赵、钱、孙、李每人都说对了一半;那么丙的号码是几? (1)4 (2)2 (3)3 (4)1 13有一根木材长4米,要把它锯成8段,每锯一段要用3分钟.共锯了( )分钟. (1)21 (2)24 (3)19 (4)20 14有一个两位数,这个两位数十位上的数字是个位上的数字的4倍,如果把它减去5,十位数字就与个数字相同,那么这个两位数减去10后是( ). (1)73 (2)82 (3)83 (4)72 15. 公园要建一个正方形花坛,并在花坛四周铺上2米宽的草坪,草坪的面积是96平方米,花坛和草坪的面积总和是( )平方米. (1)204 (2)190 (3)196(4)100

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

1 小学数学奥林匹克竞赛试题及答案 (四年级) (红色为正确答案) 1、下面的△,○,□各代表一个数,在括号里填出得数: △+△+△=36 □×△=240 ○÷□=6 ○=( ) A 120 B 100 C 130 D 124 2、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个. A 5 B 6 C 7 D 4 3、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场. A 97 B98 C 99 D 50 4、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵. A 10 B 8 C 9 D 7 5、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。 A 24 B 20 C 12 D 16 6、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次. A 5 B 6 C 3 D 4 7、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。 A 0 B 1 C 2 D 3 8、有一位探险家,用6天时间徒步横穿沙漠。如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。 A 2 B 3 C 4 D 5 9、在右图的中间圆圈内填一个数,计算每一线段两 数之差(大减小),然后算出这三个数之和,那么这个 差数之和的最小值是( ). 13 32 41 13

初中一年级奥赛训练题(一)及解析 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么( C) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数D.a,b互为倒数 2.下面的说法中正确的是( D) A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式 3.下面说法中不正确的是( C) A. 有最小的自然数B.没有最小的正有理数 C.没有最大的负整数D.没有最大的非负数 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( D) A.a,b同号B.a,b异号C.a>0 D.b>0 5.大于-π并且不是自然数的整数有( B) A.2个B.3个C.4个D.无数个 6.有四种说法: 甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是( B) A.0个B.1个C.2个D.3个 解析:负数的平方是正数,所以一定大于它本身,故丙错误。 7.a代表有理数,那么a和-a的大小关系是( D) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( D) A.乘以同一个数B.乘以同一个整式 C.加上同一个代数式D.都加上1 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,D所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( C) A.一样多B.多了C.少了D.多少都可能 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为(1-10%)a=0.9a;第三天杯中水量为0.9a(1+10%)=0.9×1.1a;第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

第一天 2018年8月12日上午8∶00~12∶00 长春 我们进行数学竞赛的目的,不仅仅是为了数学而数学,其着眼点还是因为它是一切科学的得力助手,因而提高数学,也为学好其他科学打好基础. ——华罗庚 1. 如图,设点P 在△ABC 的外接圆上,直线CP 和AC 相交于点E ,直线BP 和AC 相交于点F ,边AC 的垂直平分线交边AB 于点J ,边AB 的垂直平分线交边AC 于点K,求证: 2 2BF CE =F ··K AK JE AJ . 2.求方程组 的所有实数解. 3.是否存在这样的凸多面体,它共有8个顶点,12条棱和6 个面,并且其中有4个面,每两个面都有公共棱? 4.求出所有的正实数a ,使得存在正整数n 及n 个互不相交的无限集合1A ,2A ,…,n A 满足1A ∪2A ∪…∪n A =Z ,而且对于每个i A 中的任意两数b >c ,都有b -c ≥i a . ?? ???=++??? ?? +=???? ? ?+=??? ??+1 ,11311215zx yz xy z z y y x x

第二天 2018年8月13日上午8∶00~12∶00 长春 数学竞赛,它对牢固基础知识、发展智力,培养拔尖人才,是一件具有战略意义的活动。 ——华罗庚 5.设正实数x ,y 满足3 x +3y =x -y ,求证: .1422<y x + 6.设正整数n ≥3,如果在平面上有n 个格点,,,?21P P n P 满足:当j i P P 为有理数时,存在k P ,使得k i P P 和k j P P 均为无理数;当j i P P 为无理数时,存在k P ,使得k i P P 和k j P P 均为有理数,那么称n 是“好数”. (1)求最小的好数; (2)问:2018是否为好数? 7.设m ,n 是整数,m >n ≥2,S ={1,2,…,m },T ={1a ,2a …,n a }是S 的一个子集.已知T 中的任两个数都不能同时整除S 中的任何一个数,求证: .11121m n m a a a n ++?++< 8.给定实数a ,b ,a >b >0,将长为a 宽为b 的矩形放入一个正方形内(包含边界),问正方形的 边至少为多长?

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

高中数学奥林匹克竞赛训练题(02) 第一试 一、选择题(本题满分30分,每小题5分) 1.(训练题07)十个元素组成的集合.的所有非空子集记为,每一非空子集中所有元素的乘积记为.则(C). (A)0 (B)1 (C) -1 (D)以上都不对 2.(训练题07)△ABC的三个内角依次成等差数列,三条边上的高也依次成等差数列.则为(B) (A)等腰但不等边三角形(B)等边三角形(C)直角三角形(D)钝角非等腰三角形 3.(训练题07)对一切实数,不等式恒成立.则的取值范围是(A) (A)(B) (C) (D) 4.(训练题07)若空间四点满足,则这样的三棱锥共有(A)个. (A)0 (B)1 (C)2 (D)多于2 5.(训练题07)已知不等式时恒成立,则的取值范围是(B) (A)(B) (C) (D) 6.(训练题07)方程在复数集内根的个数为.则(C) (A)最大是2 (B)最大是4 (C)最大是6 (D)最大是8 二、填空题(本题满分30分,每小题5分) 1.(训练题07)函数的值域是________ 2.(训练题07)已知椭圆,焦点为,,为椭圆上任意一点(但点不在x轴上),的内心为,过作平行于轴的直线交于.则________. 3.(训练题07)为的三个内角, 且.则_____. 4.(训练题07)实数满足.则的最小值是____. 5.(训练题07)在一次足球冠军赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有队参赛,则=__6____. 6.(训练题07)若是一个完全平方数,则自然数14 . 三、(训练题07)(本题满分20分)若正三棱锥底面的一个顶点与其所对侧面的重心距离为4,求这个正三棱锥的体积的最大值.(18) 四、(训练题07)(本题满分20分)一个点在轴上运动的速度为2米/秒,在平面其它地方速度为1米/秒.试求该点由原点出发在1秒钟内所能达到的区域的边界线. 五、(训练题07)(本题满分20分)已知为虚数,且是方程的实根.求实数的取值范围.() 第二试 一、(训练题07)(本题满分20分)在中,为边上的任一点,于,于,交于. 求证:. 二、(训练题07)(本题满分35分)用个数(允许重复)组成一个长为的数列,且.证明:可

相关主题