搜档网
当前位置:搜档网 › 从CPU供电电路设计看主板选购

从CPU供电电路设计看主板选购

从CPU供电电路设计看主板选购
从CPU供电电路设计看主板选购

CPU供电电路分析及故障检修

相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。

CPU供电电路原理图

我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V

直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。

一般而言,有两种供电方式。 T&U~

1.线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻串接在供电回路中。

雷傲上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。

2.开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。

其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC 电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的电压了。

上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。

由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 ^

多相供电的引入

单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

雷傲超级论坛 -- 雷

上图就是一个两相供电的示意图,其实就是两个单相电路的并联,因此它可以提供双倍的电流。

三相供电当然就是三个单相电路并联而成的,因此可以提供三倍的电流。

上图是一个典型的三相供电电路,读者抓住本质的话,就可以看到此图和上面图片的一致。

区分两相和三相有些用户很关心怎么从主板上看出到底是两相还是三相供电。一般的读者可能会说通过在CPU插槽附近的供电电路有多少电感线圈来判断。这种说法有它的道理,但不太全面。笔者这里提供

更加合理的方法供大家借鉴。

1.根据元器件的数量来分辨,rb7N

首先我们要找到主板CPU插槽附近的供电电路,下图是一个典型的三相供电电路。一般来说,判断标准是一个线圈、两个场效应管和一个电容构成一相电路。图中上面三个是电容(右边那个不算),中间被散热片覆盖的是场效应管,下面三个是线圈,大家要认准了。

再看一个两相供电电路,可以看到有两个电容(中间有一个竖的线圈,这个是一级电感),四个场效应管。

总结来说,电容的个数并不一定。看到一个电感加上两个场效应管就认为是一相。但是近来也有并联多个电感或者多个场效应管的情况发生,这个时候就要综合考虑,挑数目少的那种元器件来判断。顺便说一句,因为很多情况第一级电感线圈也做在附近,所以一般也有线圈数目-1=相数的说法。上面两个例子里面我们都看到多出一个电感。 2I/4我们再看一个例子,下图中有三个电感,六个场效应管,但它不是三相供电的,而是两相,因为左边的电感是一级电感,所以这里用两个电感和六个场效应管构成的是两相供电电路。

三相VS两相

首先要强调除去设计导致的不稳定因素,三相供电总是好过两相供电的。

三相的好处很多:

1.可以提供更大的电流,当然笔者认为不能简单认为可以提供的电流成倍增长,因为电感,场效应管本身的选择也对能够承受的最大电流产生重要影响,选择承载电流强度大的元器件同样可以提高电流的承载能力,但是三相供电能够提供更大电流毋庸置疑。

2.可以降低供电电路的温度,因为电流多了一路分流,每个器件的发热量自然减少了。其实供电电路是主板上温度最高的区域之一,甚至比处理器本身还热,有很多厂家已经对这部分电路增加散热措施,如果长时间工作在高温下,显然对器件不利,对主板的稳定不利。三相电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡,在器件发热这项上三相供电具有优势。

3.利用三相供电获得的核心电压信号也比两相的来得稳定。

上图反映了三相供电滤波之后的电压比两相更加平滑,更加稳定。

当然三相供电也有一些缺点,在成本上,三相总是大一些。对设计的要求也更高一些。而且一般说来元器件越多越不利散热,出现故障的概率越大,相互之间的干扰也较高,而且笔者已经说了,元器件的选择同样重要,如果因为三相供电对元器件的要求降低的话,效果到底是怎样就不一定了。

选购策略

笔者经常看到一些网友对供电很重视,而且很偏执的认为一定要选择三相。其实我们都知道,一款成功的产品出厂的时候必定经过多次测试,不可能因为供电模块使用两相而导致不稳定,在设计阶段厂商肯定会考虑到这一点。而且,使用什么供电策略,使用什么元器件都是主板工程师们决定的,只要稳定,只要设计合理,没有理由拒绝两相供电的产品。

当然我们再次强调,同样设计下的三相供电理论上优于两相供电,而且一般三相供电的

控制芯片总是优于两相供电的控制芯片,在功能上也是如此,这样一来在很大程度上保证日后升级新处理器的时候有优势。

所以笔者的意见是不要盲目相信三相供电的炒作广告,也不要盲目相信所谓两相更稳定的说法,我们选购主板的时候还是应该更关注品牌,关注口碑。而且供电电路只是主板上的小小部分而已,整块主板的运行情况并不由它决定。

优秀产品推荐

捷波智尊K8F8G+SLi 参考价格:¥999

捷波智尊K8F8G+SLi主板出色的三相低温回路供电设计

捷波智尊K8F8G+SLi主板神奇的“魔力32X”

捷波智尊K8F8G+SLi主板板载千兆网络芯片

捷波智尊K8F8G+SLi,采用nVidia顶级的nForce 4 SLi芯片组。六个高品质MOSFET+三个密闭式高性能电感线圈+多达10个优质的固态电容组成了三相低温回路供电系统,为高功耗CPU提供了良好的供电保障的同时主板的稳定性也得以大大提高。由于MOSFET发热量较大,此款主板还在MOSFET上面加装了散热片,体现了捷波大厂的风范。由于固态电容的采用,从而彻底杜绝电容暴浆的隐患。这款主板除了通常的插槽外,捷波智尊K8F8G+ SLI 上采用了一个全球首创“魔力32X”技术:采用了独创的1×PCI Express x16(by 16)、2×PCI Express x16(by 8)全新PCI-E设计模式,同时兼顾了单卡PCI-E16X的要求,也能同时满足实现SLI时所需要的两个PCI-E8X的需求,并且可以直接插上去使用避免了使用桥接子卡造成的不便,切换简单快速,真正意义上实现NV SLI的即插即用。而作为捷波的高端系列:智尊系列,它不但板载Debug侦测灯,还带有独家采用的Magic RecoverII恢复精灵2代,在操作方式更方便的同时拥有了更实用的功能;另外可扩展的魔力孖仔MagicTwin功能,只需加一个插卡可实现世界领先的一拖二系统。

供电是所有电子元件工作的先决条件,供电电路也是最容易坏的单元,主板的供电电路主要有CPU供电,内存供电和芯片组供电,其中尤以CPU供电电路的故障率为高,下面我们就对CPU供电电路作一个分析。

因为CPU核心电压比较低而且有着越来越低的趋势,ATX电源供给主板的12V和5V直流电不可能直接给CPU供电,所以需要一定的供电电路来进行高直流电压到低直流电压的转换(即DC-DC),这些转换电路就是CPU的供电电路。

一、CPU供电电路组成

1.CPU供电电路的功能:

主板的CPU供电电路最主要的功能是为CPU提供电能,保证CPU在高频,大电流工作状态下稳定地运行。同时,由于现在的CPU功耗非常大,从低负荷到满负荷,电流的变化非常大,为了保证CPU能够在减速的负荷变化中,不会因为电流供应不上而无法工作,CPU 供电电路要求具有非常快速的大电流响应能力。

另外,CPU供电电路同时也是主板上信号强度最大的地方,处理得不好会产生串扰效应,而影响到较弱信号的数字电路部分,因此CPU供电部分的电路设计制造要求通常都比较高。简单来说,CPU供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求。

2.CPU供电电路的组成:

主板的CPU供电电路主要由电源管理芯片、电感线圈、场效应管(MOSFET管)和电解电容等元器件组成。

(1)电源管理芯片

电源管理芯片主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片的瑾有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。

主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阴小等特点,能精密调整CPU供电电压。下面发HIP6301为例,讲解电源管理芯片各个引脚的功能。

(2)电感线圈

电感线圉是由导线在铁氧体磁芯环或磁棒上绕制数圈而成,有线圈式、直立式和固态式等到几种。主板CPU供电电路中的电感中的电感线圈主要包括两种,一种是用来对电流进行滤波的,称为滤波电感;另一种电感线圈是用来储能的。经和场效应管、电容配合使用来为CPU供电。另外根据线圈的蓄能的特点,实际电路中通常利用电感和电容组成低通滤波系统,过滤供电电路中的高频杂波,以便向CPU提供干净的供电电流。

(3)滤波电容

CPU供电电路中的电容一般采用的就是大家通常所讲的“普通电容”。

在电路中电容具有“隔直通交”特性,它的作用包括以下几方面:一是滤波,大部分都用在了直流转换之后的滤波电路中,利用其充放电特性,在储能电感的配合下,将脉冲直流电变成较为平滑的直流电,一般说来大容量电容适用于滤除低频杂波,而小容量电容滤除较高频杂波的效果比较好;三是信号去耦,防止信号在电路间串扰;三是信号耦合,用于将两个电路的直流电位进行隔离时使信号在电路间传送。

在单相供电电路中,电容和电感线圈的规格越高以及场效应管的数量越多,就代表了供电电路的品质越好。一般情况下,日系的SANY(三洋)、Rubycon(红宝石)、KZG电容比较优秀,台系的TAICON、OST、TEAPO、CAPXON等品片的电容也可以考虑。少数高端的超频版主板还会采用化学稳定性极好的固态电容,彻底杜绝了电容爆浆现象的发生。

(4)场效应管

场效庆管是金属氧化物半导体声效应晶体管(Metallic Oxide Semiconductor Fidld Effect Transistor)的简称,具有开关速度极快、内阻小、输入阻抗高、驱动电流小(0.1uA左右)、热稳定性好、工作电流大、能够进行简单并联等特点,非常适合作为开关管使用。CPU供电电路中常见的场效应管,通常其两侧的引脚分别为源极(S)和栅极(G),中间的引脚为漏极(D)。

场效应管在供电电路中的作用是在电源管理芯片的脉冲信号的驱动下,不断的导通与截止,然后将ATX电源输出的电能存储在电感中,然后释放给负载。在主板供电电路中,场效应管的性能和数量。通常决定着供电电路的性能。

二、CPU供电电路的工作原理

CPU供电电路通常采用PWM开关电源方式供电,即由电源管理芯片根据CPU工作电源需求,向连接的场效应管发出脉冲控制信号,然后控制场效应管的导通和截止,将电能储存在

电感中,然后再通过电容滤波后向CPU输出工作电压。

CPU供电的基本原理,当电脑开机后,电源管理芯片在获得ATX的电源输出的+5V或+12V 供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID给电源管理芯片。电源管理芯片再根据CPU的VID电压,发出驱动控制信号,控制两个场效应管导通的顺序和频率,使其输出的电压与电源达到CPU核心供电需求,为CPU提供工作需要的供电。

以上供电原理是所有主板最基本的供电原理,在实际的主板中,根据不同的型号CPU工作的需要,CPU的供电方式又分为许多种,主要有单相供电电路、两相供电电路、三相供电电路、四相供电电路、六相供电电路和多组供电电路等几种。

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

电力拖动毕业设计

电力拖动系统设计 摘要:电力拖动系统电动机的选择,首要的是在各种工作制度下电动 机功率的选择,同时还要确定电动机的电流种类、类型、额定电压与 额定转速。正确决定电动机的功率与很重要的意义。如果功率过大, 会造成浪费,设备投资增大,而且电机经常欠载运行,效率及交流电 动机的功率因数较低,运行费用较高,急不经济;反之如果功率选择 小了,电机将过载运行。造成电动机过早的损坏。或者在保持电动机 不过热的情况下,只能降低负载使用。因此,电动机不适当地选择得 太大货太小。都将对国民经济造成损失。 决定电动机功率时,要考虑电动机的发热,允许过载能力与起动能力等三方面的因素。一般情况下,发热问题最为重要。 关键字:同步电动机异步电动机接触器 1电力拖动系统中电动机的选择 1.1绝缘材料的等级 电动机在负载运行时, 其内部总损耗转变为热能使电动机温度升高。而电动机中耐热最差的是绝缘材料,若电动机的负载太大, 损耗太大而使温度超过绝缘材料允许的限度时, 绝缘材料的寿命就急剧缩短, 严重时会使绝缘遭到破坏, 电动机冒烟而烧毁。这个温度限度称为绝缘材料的允许温度。由此可见, 绝缘材料的允许温度就是电动机的允许温度;绝缘材料的寿命就是电动机的寿命。 1

如表中的绝缘材料的最高允许温升(也称允许温升)就是最高允许温度与标准环境温度 40℃的差值, 它表示一台电动机能带负载的限度, 而电动机的额定功率就代表了这一限度。电动机铭牌上所标注的额定功率, 表示在环境温度为 40℃时, 电动机长期连续工作, 而电动机所能达到的最高温度不超过绝缘材料最高允许温度时的输出功率。当环境温度低于 40℃时, 电动机的输出功率可以大于额定功率;反之, 电动机的输出功率将低于额定功率, 以保证电动机最终都能达到或不超过绝缘材料的最高允许温度。 当绝缘处于表一所示的极限工作温度时,电机的使用寿命可以长达15~20年。如果高于表一所表示的温度连续运行,电机的使用寿命将迅速下降。据统计,A级绝缘材料的工作温度每上升8~10 ,绝缘的寿 命将缩短一半。现代电机中应用用最多的是E级和B级绝缘。 2

CPU供电输出异常维修实例

CPU供电异常维修实例 今天修到一块精英的板子 现象是客户描述电脑不显示,拆出主板,插上诊断卡,显示为无复位,如下 插上假负载,电源,诊断卡,简单检测一下,复位前提条件,(各主供电,CLK,PGIN,RST排针等)测各主供电时,发现cpu供电不正常

此时问题已经缩小为,CPU供电异常,导致无复位,需检修CPU供电。 1 测cpu电感输出对地值正常 2 测上下MOS管基本正常 3测上MOS管的(D极)12v输入正常

4 测主控ic的工作条件(查定义检测,此板主控ic的型号为“ISL6556BCB”定义如下) 5 ic供电(26脚)12v正常 6 ic EN(27脚) 1.8v正常(一般主控的EN脚,为高电平有效) 7 测ic的VID脚时发现3-8脚都是高电平1.2v左右,很明显vid都为高电平,cpu是不会有电压输出,可查表如下

如上图,为此芯片vid电压识别表,当vid都为1(代表高电平)时,cpu电压输出off(无输 出)这一点很容易理解,每一个主控芯片的vid脚都为高电平时,基本cpu电压无输出。必须有一个或一个以上低电平,方可有cpu电压输出。一般主控芯片的VID脚是直接或间接连接cpu座针脚,那么CPU座异常时,都会导致这种情况,简单先看了下座子针脚没有变形现象,然后按压下CPU座子看看是否空焊,结果还是一样,这时换了个角度往CPU座右上方按压后,发现复位已正常如下

因为CPU主控芯片的VID脚到CPU座的针脚都是在座子的右上角(775接口CPU座)。所以刚刚按压到其他部位,没接触。现在按压时,测出CPU供电1.18v,已正常。最后把此板放到BGA焊台上加焊后,测试显示等一切正常

主板CPU供电电路原理图

CPU供电电路原理图 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 ● CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1. 线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,

一般主板不可能用这种方法。 2. 开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

CPU供电电路原理及检修流程.

CPU供电电路原理及检修流程 测试卡跑FF00的,该修哪里啊,CPU不工作了,怎么测啊,等等,问得多了也麻烦,干脆我就把《CPU供电电路原理及检修流程》写一下,谁要是再问,就自己来看看行了。 显示器点不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。 CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。 场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。 一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU 需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。 整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用,滤波电容(C1~CN、电感(L1、L2、稳压二极管(D和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V。

电力拖动课程设计

辽宁工程技术大学 课程设计成绩评定表 学期2009-2010学年第二学期姓名 专业电气与控制工程班级自动化08-1 课程名称电机与拖动 论文题目他励直流电动机的调速 评定标准 评定指标分值得分 知识创新性20 理论正确性20 内容难易性15 结合实际性10 知识掌握程度15 书写规范性10 工作量10 总成绩100 评语: 任课教师时间年月日备注

课程设计任务书 一、设计题目 他励直流电动机的调速 二、设计任务 一台他励直流电动机,参数如下: Un=220V ,, In=68.6A , kw P n 13= , min /1500 r n N =, Ω=076.0L R 1.用其拖动通风机负载运行,若采用电枢串电阻调速时,要使转速降低至1200r/min,试设计电枢电路中的调速电阻。 2.用其拖动恒转矩负载运行,负载转矩等于电动机的额定转矩,采用改变电枢电压调速时,要使转速降止1000r/min,试设计电枢电压值。 3.用其拖动恒功率负载运行,采用改变励磁电流调速,要使转速增止1800r/min,试设计Ce Ф的值。 三、设计计划 电机与拖动课程设计共计1周内完成。第1~2天查资料,熟悉题目;第3~5天设计方案分析,具体按照步骤进行设计以及整理设计说明书;第6天准备答辩;第7天答辩 四、设计要求 1.设计工作量为按照要求完成设计说明书一份; 2. 设计必须根据进度计划按期完成; 3. 设计说明书必须经指导老师审查签字方可答辩。 指 导 教 师:李国华 王巍 王继强 董衲 教研室主任:仲伟堂 时 间:2010年7月12日

电动机,俗称马达,是一种将电能转化为机械能,并可再使用机械能产生动能使用来驱动其他装置的电气设备。按运动方式分两种类型。一种是旋转式电动机,一种是线性电动机。按使用电源不同分为直流电动机和交流电动机。而直流电动机是应用最早的,但不如交流电动机应用广泛,它有优良的起动,调速和制动性能。但直流电动机结构复杂,体积庞大,价格较贵,维护困难。直流电动机的类型主要分四类:1,他励支流电动机,2:并励直流电动机,3:串励直流电动机,4:复励直流电动机。他励直流电动机应用最广泛。 关键词:直流电动机;电能;机械能;

CPU供电详细说明

一、识别CPU供电电路的元件 CPU供电电路主要有 5种元件 PWM芯片 MOSFET 电感电容 1:PWM芯片(脉宽调制芯片)CPU供电电路指挥官 ADP3228INTELCPU供电4相华硕P35/P45主板常用 EPU=ADP3228华硕打磨标记改为EPUX58也用 ISL6336AINTELCPU供电6相微星/技嘉P45/X58高端主板用ISL6334INTELCPU供电4相微星/技嘉P45主板常用 STL6740LAMD CPU供电4相微星/华硕AM3/AM2+新主板用ISL6324AMDCPU供电4相微星/华硕/技嘉AM2+主板常用PWM芯片识别CPU核心电压,规定供电相数、调整电压和电

流,指挥MOS工作 ISL6336/6334和ST L6740L支持供电相数变换(APS) 2:驱动芯片(Driver-IC)驱动MOSFET工作 PWM芯片通过驱动芯片驱动MOSFET工作 驱动芯片型号由PWM芯片规定 有的PWM芯片内部整合驱动芯片 3:MOSFET大功率晶闸管(开关管/场效应管)

MOSFET其实就是一个开关,开启时允 许电流通过,关闭时不允许电流通过。 常用MOSFET是单颗的,封装形式有 D型和Power型。1相供电回路至少有 2颗,1颗输入/1颗输出(1进1出), 还有3颗(1进2出),4颗(2进2出)。4:电感延迟电压/电流上升/下降

电感的特性是当电流通过时,输出的电压缓慢上升,比如输入12V,输出是从0V慢慢上升到12V。 CPU供电就是利用电感的特性把12V降到1.xxV 5:电容:滤波和蓄电池 富士通固态电容 日本化工固态电容 电感输出的电流对电容充电,经过电容的电流被滤波,滤出一些交流成分,电流曲线更平滑。 电容可以充电/放电,就像一个大的蓄电池,存储电能。经过电感的电流给电容充电。当CPU负载瞬时增大,电容可以瞬时提供大电流(MOSFET和电感的反应时间较慢)。 供电电路的电容是电解电容。以前常用的是液态铝电解电容

CPU供电原理及上下管为何要一起更换

相信大家都知道在更换这个电路的时候,最好是两只MOS管一起更换。那么为什么要两只管子一起换呢,原理上怎么解释呢?相信大家听完下面的分析就知道了! 说道CPU供电电路原理,我相信很多人都会说,这有什么难得,我早就清楚了。呵呵确实是这样吗?先听哥讲完你在说 好了下面就来说说上面这个电路的原理,看看你和哥说的是不是一样的。该电路的原理就是:“当K1导通,K2截止时,VCC通过K1和L向负载RL供电,并且向电容EC充电,当K2导通,K1截止时,电容向负载RL放电形成回路”看看就这么简单,不知道有多少人理解的和这个叙述的是一样的,如果你和这个理解的是一样的,那么哥要恭喜你。你答错了,并且是大错特错。至于为什么呢,接下来咱们就讲这个问题。 其实这个电路真正的工作原理是这样的: “当K1导通,K2截止时,VCC就通过K1想负载L提供电流,同时在L上感应一个左正右负的电压,当K2导通,K1截止时,电感L两端的电流不能突变,也就是说他要维持之前的电流,那么这个之前的电流是怎么样的呢?这个之前的电流,也就是K1导通,K2截止时的电流,是从A流到B的。为了维持这个电流,所以电感L上存储的磁能就会感应一个右正左负的电压,这个在电源上有一个专有名词叫”电压突变“也就是电感在K1导通,K2截止时电压本来是左正右负的,但是在K1和K2的状态转换的瞬间,电感L上的电压就变成右正左负了。所以K2导通,K1截止时电感上产生的这个右正左负的感应电压就通过B 点,负载RL,K2,A点,形成在K2导通时的电流回路。也就是说K2导通时并不是由电容EC向负载提供电流的,而是由电感提供在K2导通时的电流,电感在这里主要的作用就是和L形成低通滤波器以使在A点的PWM波变成平缓的直流“ 好了,接下来在说两只MOS管一起更换的原理。 ”相信大家都知道,MOS损害一般说来只有两种情况:1 开路;2 短路,下面分别讨论,当然只讨论下管,因为上管如果是因为他自身质量不良损坏的话对下管是没影响的,这个相信大家都看的出来,所以就不用多说 1 当下管短路时,通过上图可以看出,VCC提供的电流就全部经过短路的K2到地,这个电流显然比K2截止时VCC提供的电流经过电感,负载RL到地大的多,同时K1的管压降等于VCC。根据W=V*I,虽然V并没增加,但电流增加,W也增加,所以K2一但短路是有可能会损害K1的,但这时只要不是长时间的工作,上管K1一般是不会损坏的因为在设计的时候,设计师都留有很大的余量。也就是说当下管K2短路,短时间通电,上管不是一定就会损坏的,甚至只要上管的功耗足够大,就算长时间通电,上管也不会损坏。 2 当当下管开路时,根据上面原理的分析可以得知从K1导通,K2截止,转换到K2导通,K1截止时,电感两端的感应电压发生了突变,也就是上图中A点为负,B点为正,这时可以看出K1两端的电压是等于(VCC-(-A点电压)),所以当电路转换到K1导通时,流过K1的电流就会大增,还是根据W=V*I,这是可以看出K1的功耗在极端时能达到正常工作时的4倍左右,所以K1损坏就是很自然的事了。 那么为什么只要K2正常工作,上管就不会损坏了呢?根据上图,A点为负时,当电路从K1导通,K2截止,转换到K2导通,K1截止时因为K2导通,就把A点的电位嵌位在K2的导通管压降了,也就是说,这时A点的电压就=地电压(0V)+(-K2的管压降),以三极管为列说明,三极管的导通管压降比如取0.3V,那么此时因为K2的导通作用。此时A点电压=0V+(-0.3V)=-0.3V,那么此时K1的管压降=VCC-(-0.3V)=VCC+0.3V,电流还是从K1经过L,负载RL到地,可见这时K1的功耗W=(VCC+0.3)V*I,因为I并没增加,而电压也只增加了0.3V,所以K1自然就不会损坏了。本文来自微维网(https://www.sodocs.net/doc/e810938587.html,),原帖地址:https://www.sodocs.net/doc/e810938587.html,/thread-659-1-1.html

电脑电源接口详解(图解)

电脑主板电源接口图解 计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压:在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3 地13 地 4 5V 14 PS-ON 5 地15 地 6 5V 16 地 7 地17 地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V 在电源上看: 编号输出电压编号输出电压20 5V 10 12V

19 5V 9 5V-SB 18 -5V 8 PW+OK 17 地7 地 16 地 6 5V 15 地 5 地 14 PS-ON 4 5V 13 地 3 地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量。 另附:24 PIN ATX电源电压对照表 X电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了 3.3V

电脑供电电路的工作原理

供电电路的工作原理 CPU核心随着制造工艺的提高,核心电压也越来越低。我们用的ATX电源供给主板的1 2V和5V的直流电不能直接给CPU供电,所以需要通过一定的电路转换来把高直流电压 变成低直流电压给CPU的供电。 图1:许多最新的主板都采用了四相供电回路 从电路工作原理上来讲,电源做的越简单越好,单相电路元器件最少。从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。所以供电电路越简单,越能减少出问题的概率。但是主板除了要承受大功率的CPU外,还要承受显卡等其它设备的功耗,做成单相电路需要采用大功率的MOS-FET管,发热量会很恐怖,而且花费的成本也不是小数目。所以,大部分厂商都采用多相供电回路。

图7:Richtek RT9241芯片 PWM芯片的功能在出厂的时候都已经确定,可以根据主板使用的PWM控制芯片的型号来分辨。比如常见的Richtek RT9241芯片。上Richtek的查询产品页面,可以看到RT924 1是一个两相的控制芯片,当然不可能用这块芯片做出三相的供电电路来的。 图4:三相供电电路的示意图 三相供电就是三个单相电路并联而成的,因此理论上可以提供3倍的电流。图4是一个典型的3相供电电路,它和两相供电的原理是一致的,其实就是三个单相电路并联。 如何区分两相和三相供电回路 有些用户很关心怎么从主板上看出到底是两相还是三相供电回路。一般的读者可能会说通过在CPU插槽附近的供电电路有多少电感线圈来判断。这种说法有它的道理,但不太全面。笔者这里提供更加合理的方法供大家借鉴。 1.根据元器件的数量来分辨。

图2:开关电源供电方式的原理图 我们平时用的主板基本都用开关电源供电方式,其原理图如图2。ATX电源提供的12V 电压通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形。然后,经过第二级LC电路滤波形成所需要的CPU核心电压Vcore。这其实就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。由于场效应管工作在开关状态,导通时的内阻和截止时的电流很小,所以自身耗电量很小。

浅谈电力拖动中基本控制电路的设计改进与创新

浅谈电力拖动中基本控制电路的设计改进与创新 【摘要】通过一个典型的电机控制电路实例,对电力拖动教材中比较常见的“Y一△”起动控制电路工作的可靠性进行分析,并阐述提高“Y一△”起动控制电路工作可靠性的改进设计与创新方法。 【关键词】竞争电动机 Y一△起动 PLC 目前,日常生活和工农业生产采用的电力拖动中利用Y一△起动装置作为笼型电动机的降压起动方式还是非常普遍的。这是由于这种起动方式可使电动机每相绕组所承受的电压在起动时降到直接起动的1/3,电流降到直接起动的1/3;并且起动电路的成本低、运行可靠、操作和维修方便。但是,如果电路中某些控制电器拒动故障而造成不能实现降压起动,或由于触头间的制约关系而造成触头动作互相竞争,都严重影响Y一△起动控制电路工作的准确性和可靠性。这就要求我们增强对Y一△起动控制电路原理的认识和进行新工艺、新技术、新材料的改进和应用。 一、现实中间存在的问题 图(1)是中国劳动社会出版社出版的 《电力拖动控制线路与技能训练》161页 的Y一△起动控制电路,不考虑触点的动 作时间,该控制系统的工作过程如下:按

下起动按钮SB2时,KM1得电自锁,同时KM3和KT的线圈得电,电机开始Y起动,时间继电器开始计时,当计时时间到,KT延时闭合的常开触头闭合,KM2线圈通电并自锁,KM2常闭触头即刻断开KM3和KT 线圈的并联支路,电机于是转入△接法运转。 但是,我们在指导学生在实训通电操作试验时,发现该电路有时能正常工作,有时不能正常工作。我们发现当计时时间到,KT延时闭合的常开触头闭合接通KM2线圈时,KM2常闭触头先于KM2常开触头动作,KM2常闭触头首先分断KT线圈,使得KT常开触头很快断开,而KM2常开自锁触头还未来得及闭合,造成自锁失败。电动机始终处在Y接法的低压运行状态,如不及时处理,电机绕组有被烧毁的危险。 二、典型的“竞争”控制电路 如图(2)所示的控制线路,不考虑触点 的动作时间,该控制系统的工作过程如下:压 下起动按钮SB2,接触器KM1、时间继电器KT 得电。经一定时间的延时,KT的延时闭合的常 开触点闭合,接触器KM2得电。此时,KM2的 常闭触点断开,使KM1、KT失电;同时,KM2常开触点闭合,使KM2实现自锁。这样,KT失电后其延时闭合的常开触点断开,也不会影响KM2继续得电工作。但是,对该控制线路进行通电试验时,我们发现:有时候,KM2吸合一下又很快释放,无法实现自锁。出现这种现象的原因是本电路存在“竞争”现象,即KM2得电后,其常闭触点先断开,常开触点后闭合,KM2常闭触点断开后,KT失电,KT的触点断开,而

主板维修教程之CPU供电电路原理及检修

主板维修教程之CPU供电电路原理及检修.txt两人之间的感情就像织毛衣,建立的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。主板维修教程之CPU供电电路原理及检修显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。 CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。 场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX 电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。 一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。 整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。 主板空载:主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。 所以主板在空载的情况下,只会输出以上几个不同的电压值。即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。 主板插上CPU:当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。

3主板供电电路基础知识

主板供电电路设计基础知识 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

电力拖动控制系统课程设计

函授专升本电气工程自动化 课程设计 课 程 电力拖动控制系统 班 级 电气自动化 姓 名 胡 涛 学 号 1213030045 指导教师 张 智 靓 二零一三年十

一、转速、电流双闭环直流调速系统组成及原理 1.1、转速、电流双闭环直流调速系统的组成 对于经常正、反转运行的调速系统,利用双闭环调速系统具有十分明显的优势。它能充分利用电动的过载能力,在过渡过程中保持电流(转矩)为允许最大值,使电力拖动系统以最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳定运行。这时,启动电流成方波形,而转速是线性增长的。 为实现转速和电流两种负反馈分别作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套连接,如图1所示。把转速调节器的输出当做电流调节器的输入,再用电流的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环:转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 1.2、转速、电流双闭环直流调速系统的原理图

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图如上图所示。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U为正电压的情况标出的并考虑到运算放大器的倒相作用。图中还表示了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压U决定了电流调节器ACR的最大给定电压,电流调节器ACR的输出限幅电压U限制了电力电子变换器的最大输出电压 二、直流调速系统控制方案的对比 2.1方案一:单闭环直流调速系统 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机周上装一台测速发动机,引出与转速成正比的电压给定电压比较后,得偏差电压ΔU,经放大器,产生触发装置的控制电压Uk,用于控制电动机的转速,如下图 2.2方案二:双闭环直流调速系统

电脑主板CPU供电电路原理图解

电脑主板CPU供电电路原理图解 一.多相供电模块的优点 1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。 2.可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。3.利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。 二.完整的单相供电模块的相关知识 该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。 图1单相供电电路图 主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。 小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。 实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2 主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三.判断方法 1.一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

主板上CPU核心供电电路的简单示意图

主板上CPU核心供电电路的简单示意图说明 电脑主板供电电路原理(维修系列二) 下图(1) 下图(2)

主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4 处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。 图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。实际应用中还存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电气元件中较热的部分。要注意的是,温度越高代表其效率越低。这

电力拖动控制线路

《电力拖动》专业课题训练讲义 课题一、点动控制线路 一、生产机械对电气控制的要求 在生产机械设备中要求电动机短时运转,如车床大、小拖板的快进、快退,小型门式起重机吊钩的上、下运动,均采用点动控制。 二、电气控制线路的设计思路 用交流接触器和按钮组成控制电路;为了安全,线路中必须设置熔断器,实现短路保护。 三、电气控制线路的构成 (一)电气原理图(三)电器布置图 四、线路工作原理分析 首先合上电源开关QS。 启动: 按下启动按钮SB →交流接触器线圈KM获电→主触头KM闭合→电动机M获电启动运转。 停止: 放开启动按钮SB →交流接触器线圈KM失电→主触头KM断开→电动机M失电停止运转。

保护: 主电路短路,熔断器FU1熔断;实现对电源及主线路的保护。 控制电路短路,熔断器FU2熔断;实现对电源及控制线路的保护。 《电力拖动》画图训练示范卡 课题:点动控制线路 第一步、在原理图上标线号第二步、画出电器布置图 第三步、画出电器元件位置图并标出元件符号和端子号

第四步、画出连接线完成安装接线图 (1)(一般画法) 安装接线图(2)(分色画法)

安装接线图(3)(单线画法) 读图训练: 写出点动控制线路工作原理 线路工作原理如下:首先合上电源开关QS。 启动: 按下SB KM线圈获电主触头KM闭合电动机M获电运转。停止: 放开SB KM线圈失电主触头KM断开电动机M失电停转。保护: 主电路短路由FU1实现保护;控制电路短路由FU2实现保护。

《电力拖动》专业课题训练讲义 课题二、连续运转控制线路 一、生产机械对电气控制的要求 在生产机械设备中要求电动机长时间连续运转,如车床、钻床、水泵等均要求连续运转控制。 二、电气控制线路的设计思路 用交流接触器和按钮组成自锁控制电路;为了安全,线路中必须设置熔断器,实现短路保护,设置热继电器,实现过载保护。 三、电气控制线路的构成 (一)电气原理图(二)电器布置图 读图训练:写出连续运转控制线路工作原理 线路工作原理如下:首先合上电源开关QS。 启动:↗自锁触头KM(5—7)闭合自锁 按下SB2 →线圈KM获电→主触头KM闭合→电动机M获电启动运转。 停止:↗自锁触头KM(5—7)断开解除自锁按下SB1 →线圈KM失电→主触头KM断开→电动机M失电停止运转。 保护: 主电路短路,熔断器FU1熔断;实现对电源及主线路的保护。 控制电路短路,熔断器FU2熔断;实现对电源及控制线路的保护。

电脑主板CPU供电电路原理图解

电脑主板CPI 供电电路原理图解 .多相供电模块的优点 1. 可以提供更大的电流,单相供电最大能提供25A 的电流,相对现在主流的处 理器来说,单相供电无法提供足够可靠的动力, 所以现在主板的供电电路设计都 采用了两相甚至多相的设计,比如 K7、K8多采用三相供电系统,而LGA755的 Pentium 系列多采用四相供电系统。 2. 可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。 3. 利用多相供电获得的核心电压信号也比两相的来得稳定。 一般多相供电的控 制芯片(PWM 芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证 了日后升级新处理器的时候的优势。 .完整的单相供电模块的相关知识 该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容 组成;输出部分同样也由一个电感线圈和一个组成; 控制部分则由一个PW 控制 芯片和两个场效应管(MOS-FE )组成(如图1)。 0丁1艸 ------ 1 中国旭日电器 輸入气分I ::控制部分中国旭日电器符栋梁 CPU 供电外,还要给其它设备的供电,如果做成 单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以 各大主板厂商都采用多相供电回路。多相供电是将多个单相电路 XX 而成的,它可以提供N 倍的电流。 小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,输出部分 i ? I Vcor^

其应用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM^片:PWM 卩 Pulse Width Modulation (脉冲宽度调制),该芯 片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号, 使得两个场效应管轮流导通。 图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三.判断方法 1. 一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的 个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感 实际电感线圈、电容和场效应管位于 CPU 插槽的周围(如图2)。 管 应 J 场

相关主题