搜档网
当前位置:搜档网 › 手性分子和旋光性

手性分子和旋光性

手性分子和旋光性
手性分子和旋光性

手性分子和旋光性

一、手性分子与非手性分子

不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手

它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。

从对称因素考虑,乳酸只有一个C1简单对称轴,任何一个物体或分子旋转360°(n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。

乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性

实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。

普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。

用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

把刀作一个粗浅的比喻。一本合上的书,只有刀口和书页平行时,才能够插进书内。

检查偏光的仪器叫做旋光仪(图3-3)。普通的旋光仪主要部分是一个两端装有电气石棱镜的长管子,一端的棱镜轴是固定的,这个棱镜叫起偏器,另一端是一个可以旋转的棱镜,叫检偏器。检偏器和一个刻有180°的圆盘相连,普通零点是在圆盘的右面中部。固定棱镜的外端放一个光源,通常是用一个钠光灯。若两个棱镜的轴是平行的,即圆盘的刻度正指零度,光可通过两个棱镜。长管中间可放入一根装满要测定具有光活性物质的玻璃管。管中如装入水或乙醇,光仍照旧通过,这表示水和乙醇对平面偏光不起作用。如放入乳酸某光活性异构体溶液,则光线不能如前通过,必须将第二个棱镜向左(反时针方向)或向右(顺时针方向)旋转若干度,才可使光完全通过。这表示该乳酸溶液可将通过第一棱镜出来的平面偏光向左或向右旋转若干度。因为通过乳酸溶液的偏光的振动平面和第二棱镜的轴不再平行,所以不能通过第二棱镜。为使光线完全通过,需将第二棱镜旋转一个角度,该角度和方向就代表乳酸溶液的旋光度,方向是向左旋的叫左旋,向右旋的叫右旋。

为了解释旋光现象,可用一个简单的模型来说明:将一束平面偏光看作是由两个旋转方向相反的圆偏光的叠加。这两个圆偏光,一个称为左旋圆偏光,一个称为右旋圆偏光,如图3-4所示。光沿OE方向前进,在E位置观察,若螺旋前进方向是顺时针的,为右旋圆偏光,反时针的,为左旋圆偏光。假若两个圆偏光通过一个物质,进行的速度相等,在时间t内的弧AB和AC是相等的,所以得到平面AA'[见图3-5(i)]。如通过一个光活性物质,此时两个圆偏光的速度不相等,弧AB 和AC就不等同了,结果使偏振面旋转一个角度α0,如图3-5(ii)所示:

图3-4左旋圆偏光图3-5两个圆偏光重叠所产生的平面偏光一左一右的圆偏振光成为对映体的关系,但是当它通过光活性的物质时,这种对映的关系被破坏了,造成一种非对映的关系。换言之,光活性物质可以识别左或右的圆偏振光,它使这两个圆偏振光的折射率产生了差别,若左圆偏振光的折射率大于右偏振光,那末左圆偏振光通过光活性物质的速度变慢,从而圆偏振光叠加成的平面振光表现右旋,图3-5(ii)。折射率和光的传播速度关系密切,与分子内的各基团的可极化性有关,而旋光的方向则与分子的构型有关。

手性分子对偏振光的作用是一个很复杂的现象,除分子的对称性外,其它的物理因素对偏振光也发生作用。旋光度的大小和管内所放物质的浓度、温度、旋光管的长度、光波的长短及溶剂的性质(若为溶液)等有关。某物质

来测定的,所以比旋光度是用下式求得:

c代表浓度,即在1mL溶液里所含溶质的量[g(溶质)2mL-1(溶液)]。在一定的条件下,某一具有旋光性的物质,其比旋光度是一个常数。普通的钠光灯(D线

波长为586 900pm与589 000pm)是常用的光源。标准的光源是汞绿线(波长为546 100pm)。所测的旋光度,向右旋用“+”号来表示,向左旋用“-”号来表示。在仪器上测得的读数α,实际上是等于α±n180°,向右旋及向左旋分别为+及-180°,如α的读数+30°,可能是向左旋330°,也可能是向右旋390°,或再多旋一周23180°,则为+750°,因此仅读一次,无法决定该物质是右旋光还是左旋光,如将原浓度稀释十倍,如为右旋的,则其α应为3°,如为左旋的,这时的读数是-33°,这样就可作出决定,该物质究竟为+或-。旋光度和浓度、管长度成比例很容易理解。和溶剂的关系,是由于溶剂使光活性物质发生溶剂化,这时偏振光是和被溶剂包围起来的分子作用,而溶剂化又对外界的影响和分子的结构非常敏感,因此α的读数不同。

发现光活异构体的小史:

学习到这一阶段,让我们回顾一下光活异构体的发现,不是没有益处的。

偏光是在1808年由马露(Malus,E.)首次发现的,随后拜奥特(Biot,I.B.)发现有些石英的结晶将偏光右旋,有些将偏光左旋。他进一步又发现某些有机化合物(液体或溶液)也具有旋转偏光的作用。当时就推想这和物质组成的不对称性有关。由于有机物质在溶液中也有偏光作用,巴斯德在1848年提出光活性是由于分子的不对称结构所引起的。巴斯德进一步研究酒石酸,并首次将消旋酒石酸拆分为左旋体和右旋体。

到1870年,布特列洛夫也注意到:不是所有异构现象都可用结构理论来解释。他说:“异构体的数目比真正所期望的数目要多。”例如上边讨论过的乳酸,除左旋、右旋两种,还有用化学合成方法得到的第三种乳酸,它没有旋光性,换言之,不是光活性的,所以称为消旋乳酸。用化学方法,无论用降解还是合成,都证明这三种乳酸是同一结构的物质。

直到1874年,范霍夫和勒贝尔这两个青年物理化学家才提出碳的四价是指向正四面体的顶点。从而得出不对称碳原子的概念。范霍夫更进一步作出预言,某些分子如丙二烯衍生物即使没有不对称碳原子,也应有旋光异构体存在。这个预言,

在60年以后才为实验所证实,尽管他们两人建立了立体化学的基础,但在他们提出这个理论以后的初期,遭到了当时的德国权威化学家柯尔伯的极强烈反对。他对这两个青年化学家极尽诬蔑之能事,但是无情的事实终于把柯尔伯驳斥得体无完肤。四面体的碳原子结构已不再是一个推想,今天完全可以通过X光衍射法拿到它的“真实照片”,这就等于可以间接地看到它的图象!

三、含不对称碳原子的分子的立体化学

前面已经提到,不对称碳原子不是决定手性分子的绝对条件,但是绝大多数手性分子含有这种碳原子,并且它们和有机物质的关系极为密切,因此它们成为立体化学研究的主要对象。下面将举一些实例来说明分子中不对称碳原子的数目、性质和光活异构体的关系。

含一个不对称碳原子的分子

乳酸是含有一个不对称碳原子分子的经典代表,分子中的不对称碳原子,一般用“C*”表示。

假若用图3-6(i)和(ii)代表乳酸,则可以用a,b,c,d分别代表达四个不同的基团:CH3,H,OH,COOH。(i)和(ii)具有镜象和实体的关系,并且不能重叠,所以是一对光活异构体,(i)和(iii)彼此可以重叠,所以是相同的分子。(i)和(iii)中将(d)放在后面,前面三个基团由a经b到c都是反时针的。而(ii)则是顺时针的。

从上面的模型可以看出以下的几件重要事实:

1.式(i)和式(ii)分别代表四个不同基团和一个碳原子相连的一对对映体,它们之间的区别仅在于这四个基团在空间具有两种并只有两种不同的排列次序,这两个分子因此具有不同的构型。在很长一段时间里,没有方法测定这种空间的关系。只能假定:如式(ii)中a,b,c代表顺时针的定向排列,则式(i)中a,b,c就代表反时针定向的排列。在实验室内,这两个化合物给我们的直接感观,就是一个是右旋光的,另一个是左旋光的,其它的物理性质都是相同的。不能解决的问题是到底右旋(或左旋)乳酸是具有式(i)还是式(ii)的构型,于是人们予以任意指定,这种任意指定的构型就称为“相对构型”。如果测出右旋的光活体确实就具有如式(i)的构型,当然左旋的构型就相当于式(ii)。这种能真实代表某一光活体的构型(而不是假定的)就称为绝对构型。

2.式(i)和(ii)中的四个不同基团,不能随意改变位置。因为任何两个基团对调了位置,则分子构型就变得和原来相反,由(+)的变为(-)的,或由(-)的变为(+)的,或者说由左手性变为右手性,或右手性变为左手性。

3.等量的(i)和(ii)混合在一起,(+)的旋光性和(-)的旋光性恰好互相抵消,结果得到的是一个没有旋光性的物质,这称为外消旋体。等量的右旋和左旋乳酸混合,就得到消旋乳酸,用(±)-乳酸、(RS)-乳酸或DL-乳酸表示。左旋乳酸与右旋乳酸为一对对映体,消旋乳酸为外消旋体。在气相或稀溶液中,左旋体、右旋体与外消旋体性质相同,但旋光不同,后者为零。在浓溶液和固态中,由于对映体分子间的相互作用,外消旋体的性质与左旋体或右旋体可能有所不同。外消旋体如为左旋体与右旋体的结晶混合物,称之为外消旋体混合物,其熔点比纯左旋体、纯右旋体低,而

且其中含的左旋体和右旋体结晶外形不同,可用机械法分开。如果外消旋体是左旋体与右旋体在晶格中交替排列的,称为外消旋体化合物,其性质比左旋体、右旋体更稳定,其熔点往往比纯净的左旋体、右旋体更高(也有少数外消旋化合物熔点较低的例子,如(±)-氯代丁二酸)。有少数外消旋体其熔点与其左旋体、右旋体相同。

分子的对称性与点群 摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。 关键词:对称性点群对称操作 一.对称操作与点群 如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。描述分子的对称性时,常用到“点群”的概念。所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。而全部对称元素的集合构成对称元素系。每个点群具有一个持定的符号。一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。 二.分子中的对称元素和对称操作 2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。作 分别用E、E^表示。这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作 分别用C n 、 C ^n 表示。 如果一个分子沿着某一轴旋转角度α能使分 子复原,则该分子具有轴C n , α是使分子复原所旋转的最小角度, 若一个分子中存在着几个旋转轴,则轴次高的为主轴 (放在竖直位 置),其余的为副轴。分子沿顺时针方向绕某轴旋转角度 α,α=360° /n (n=360°/α(n=1,2,3……) 能使其构型成为等价构型或复原, 即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分 子具有 n 次对称轴。n 是使分子完全复原所旋转的次数, 即为旋转 轴的轴次, 对应于次轴的对称操作有n 个。 C n n =E ﹙上标n 表示操 作的次数,下同﹚。 如NH3 (见图 1) 旋转 2π/3 等价于旋转 2π (复 原), 基转角 α=360°/n C3 - 三重轴;再如平面 BF3 分 子, 具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以 上 的旋转轴,则轴次最高的为主轴。 2.3 对称面与反映操作 分别用σ、σ^表示。对称面也称为镜面, 它将分子分为两个互为镜 像的部分。对称面所对应的操作是反映, 它使分子中互为镜像的两 个部分交换位置而使分子复原。 σ^?=E ^ ﹙n 为偶数﹚, σ^2n =E ^﹙n 为奇数﹚。 对称面又分为: σh 面﹙垂直于主轴的对称面﹚、σ v 面﹙包含主轴的对称面﹚与σd 面﹙包含主轴并平分垂直于主轴的两 个C 2轴的夹角的平面﹚, σd 是σv 面的特殊类型。 图1

综述 题目:天然手性小分子分离研究进展 姓名:吴文凡 学号:z1415005 科目:天然药物化学

天然手性小分子分离研究进展 摘要:综述了色谱法和石英晶体微天平传感器技术在天然手性小分子分离研究的新进展,也同时介绍了分离天然手性小分子分离的手性固定相柱的制备,并探讨手性分子与手性固定相间识别的方法;也同时对紫外光谱和荧光光谱等在天然手性小分子分离的应用进行了阐述。 关键词:天然手性小分子;手性固定相;石英晶体微天平传感器; Abstract: The chromatography and quartz crystal microbalance sensor technology in the new progress of the study of natural chiral separation of small molecules, and also describes the preparation of small molecule chiral separation natural separation of chiral stationary phase column, and to explore chiral molecules chiral stationary phase identification method; also for UV and fluorescence spectra of small molecules in natural chiral separation applications are described. Key words: natural chiral small molecules; chiral stationary phase; quartz crystal microbalance sensors; 天然手性小分子是手性分子的一种,其分离方法类似于手性分子,手性是自然界特别是生物体的本质属性,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征,如酶、载体、受体、血浆蛋白和多糖等.对映异构体在生物活性、生理活性和药理活性等方面存在较大差异甚至可能完全相反的作用,因此获得单一的对映异构体对生理学和药理学的研究有着非常重要的意义[1].近年来,有关手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。 1.色谱法 色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分.目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用.其中,高效液相色谱法(HPLC )进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、具有不对称中心的手性固定相成为发展手性色谱技术的前沿领域之一.在手性固定相材料中,选择剂和手性分子间形成非对映异构体络合物,但由于不同对映体分子间存在空间结构的差异,直接影响两者的结合和络合物的稳定性.根据这些差异有望实现对手性底物的拆分[2].以环糊精衍生物、多糖衍生物和蛋白质等为手性选择剂的手性固定相材料备受研究者的关注,它们对许多手性药物对映体表现出良好的分离性能,已有许多填充手性固定相的色谱柱实现商品化,广泛应用在制药工业、化学品和食品等行业中.下文针对新型环糊精手性固定相、多糖手性固定相和蛋白质手性分离材料的制备及在拆分手性对映体方面的研究进行综述。 1.1环糊精类手性固定相 泽环糊精由7个葡萄糖单元通过糖苷键连接形成,内部有一个疏水性手性空腔,可与有机物、无机物及生物分子形成主客体包合物.1965年,Solms等[3 ]首先开发了适用于液相色谱标准粒径的环糊精聚合物固定相.通过化学修饰可改变泽环糊精的内腔深度和氢键作用位点,引人静电作用和n- n作用位点,满足识别不同类型和结构的底物要求,提高泽环糊精衍生物的手性识别能力。环糊精手性固定相在巴比妥酸、阻断剂、镇静安眠剂、抗组胺剂、生物碱、胡萝卜素、二肽、多肽、氨基酸、芳香醇、黄酮类等的分析检测和制备方面得到很好的应用[4 ]。

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 2手性药物 : 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

分子的手性和旋光性 【摘要】长久以来,分子的手性和旋光性都受到了人们的密切关注。这些性质既带给了人们便利,也给人们造成了伤害。本文讲述了手性和旋光性的基本信息,详细阐述了它们的判断方法,着重说明了它们的应用领域和对人类生活的影响,文章的最后还提出了一些手性分子的合成方法。 【关键词】手性;旋光性;判断方法;应用;合成 1.分子的手性 1.1分子手性的概念 手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理和化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形就像镜子里和镜子外的物体那样,看上去互为对应,可是由于是三维结构,它们不管怎样旋转都不会重合,就如同人们的左手和右手。这两种分子具有手性,所以叫手性分子。由于这两种分子互为同分异构体,所以这种异构的形式称为手性异构,有R型和S型两类。 1.2发展历史 在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr通过细心研究发现了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对应异构体的概念。人们在研究对应异构体时发现,在左旋和右旋两种对应异构体的分子中,原子在空间的排列是不重合的实物和镜像关系,这与左受和右手互为不能重合的实物和镜像关系类似,从而引入了手性及手性分子的概念。 1.3分子手性的判断方法 物质分子凡在结构上具有对称面和对称中心的,就不具有手性。反之,在结构上既不具有对称面,也不具有对称中心的,这种分子就有手性。具有手性的分子称为手性分子。 1.3.1对称轴 这种轴是通过物体或分子的一条直线,以这条直线为轴旋转一定的角度,得到的物体或分子的形象和原来的形象完全相同,这种轴称为对称轴。n指绕轴一周,有n个形象与原形象相同。

在有机合成中产生手性化合物的方法有4种: 1.使用手性的底物 2.使用手性助剂 3.采用手性试剂 4.使用不对称催化剂 常常需要使用天然产物,如:氨基酸、生物碱、羟基酸、萜、碳水化合物、蛋白质等。 1.使用手性的底物 这种方法局限于比较有限的天然底物 如图,该化合物的硼氢化反应中,由于羟基的作用产生另外新的立体中心(反应从分子的背后发生) 以下两个反应,第一个是由于羧基的控制得到相应的手性产物..另一个则是由于反应中间体烯醇阴离子的构象决定了构型 2.使用手性助剂 如图,在第一步使用LDA去质子化时,为了使得上边的醇锂和下边的烯醇锂相距最远,Z-异构体占优势,在下一步与EtI的反应中得以产生了立体中心。 类似地,用烯醇锆替代烯醇锂(使用LDA,ZrCp2Cl2)确保烯醇的构型,再和醛反应产生不对称中心。 这些反应多数通过手性助剂的金属原子和底物中已有手性的O、N等原子络合,之后再加入其他试剂实现不对称中心的形成。这其中手性唑啉环是一个非常不错的手性助剂,它水解后可以生成一个羧基(潜在官能团) 另外一个试剂是手性的3-烷基哌嗪-2,5-二酮(一个环状二肽,可由两个氨基酸环合生成),如图 在羰基的α位进行不对称烷基化使用的是以下两种试剂A和B(B称为SAMP),如图,对环己酮的反应中采用A得到S异构体而采用B得到R异构体.

在氨基的α位进行不对称烷基化使用的试剂如下二图,用胺和它们作用后再用LDA、MeI甲基化,最后用N2H4脱去助剂得到产物. 还有一些有趣的反应如脯氨酸的α烷基化,涉及到一个立体化学的"存储"问题,经历了一个消失和再产生的过程:: 手性亚砜的作用:分离得到手性亚砜试剂和卤代烷作用后在下一步反应中诱导手性基团的产生,Al/Hg可以方便地除去亚砜基团。 3.采用手性试剂 通过铝锂氢化物与手性二胺或氨基醇作用可以得到一个用于不对称还原的试剂。如图。 利用α-蒎烯和9-BBN作用得到的试剂是一个很好的不对称还原试剂.如图 不对称硼氢化反应也是一个很好的构造立体化学中心的反应。这里需要利用α-蒎烯(图中的反应是针对三取代烯烃的,对于双取代烯烃应采用条件温和的双取代硼烷)

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326820.2 (22)申请日 2019.04.23 (71)申请人 上海大学 地址 200444 上海市宝山区上大路99号 (72)发明人 张阿方 吴金雕 林尧东 仲国强  徐刚 刘延军 李文  (74)专利代理机构 上海上大专利事务所(普通 合伙) 31205 代理人 顾勇华 (51)Int.Cl. C08G 83/00(2006.01) (54)发明名称 手性C 3超分子聚合物及其制备方法 (57)摘要 本发明提供一种手性C 3分子及其制备方法。 该分子的结构式为:。该C 3分子能够在 溶剂中,通过超分子作用力下,自发组装堆叠形 成超分子聚合物。该C 3超分子聚合物在二氯甲烷 中呈现出超强的手性信号,并且具有极强的荧光 效应。在超分子聚合物的基础上,发生丁二炔基 元在紫外光照下的拓扑聚合反应,使得聚合物中 相邻的C 3分子之间形成共价键,从而实现从超分 子聚合物向共价聚合物的转变,形成更稳定的聚合物。该方法利用超分子化学方便可设计的优点,实现了超高的手性诱导以及避免了传统共价化学合成聚合物产生的各种不可控因素。基于超分子聚合物实现的手性诱导、传递和放大,在手性材料、光学器件、生物医用材料等方面有重要 应用价值。权利要求书1页 说明书4页 附图4页CN 110078932 A 2019.08.02 C N 110078932 A

权 利 要 求 书1/1页 CN 110078932 A 1.一种手性C3分子, 其特征在于该分子的结构式为:Array 其中n= 1~6,R1=H或C1~C3的烷基,R2 = H或C1~C3的烷基,X为C1~C3的烷基。 2.一种制备根据权利要求1中所述的手性C3分子的方法,其特征在于该方法的具体步骤为:将该C3分子溶于有机溶剂或水中,在超分子作用力下,即苯环-丁二炔组成的扩展共轭核的强π-π堆叠作用和肽链的氢键作用,能够自发组装形成超分子螺旋聚合物,具有动态可逆的特征,并且在手性中心的诱导下,形成的聚合物具有明显的手性增强和有序二级结构。 3.一种根据权利要求1所述的C3分子的制备方法,其特征在于该方法的具体合成步骤如下: 步骤a:在惰性气体保护下,将Boc保护的二肽甲酯、DMAP、寡聚乙二醇单体溶于二氯甲烷中,冰盐浴20 min,加入EDC?HCl,1 h后撤去冰盐浴,室温过夜反应,经分离提纯得到产物; 步骤b:将步骤a产物溶于二氯甲烷中,冰浴下加入TFA,10min后撤去冰浴,搅拌反应1 h,滴加甲醇终止反应,蒸干溶剂得到产物; 步骤c:将4-戊炔酸溶于二氯甲烷中,加入HOBt,搅拌溶解,取步骤b产物和DiEA搅拌溶于二氯甲烷中,把两种混合溶液搅拌加入烧瓶中,在惰性气体保护下,把体系放入冰盐浴中冷冻20 min,加入EDC?HCl,室温过夜反应,经分离提纯得到产物; 步骤d:将步骤c产物、1,3,5-三(2-溴乙炔基)苯、三乙胺,溶于四氢呋喃的反应管中,用液氮冻住反应液,用泵抽气15 min,解冻,加入催化剂Pd(PPh3)2Cl2,CuI,再用液氮冻住反应液,用泵抽气15 min,解冻,如此循环冻抽3次,油浴升温至29o C,避光过夜反应,经分离提纯得到目标C3产物。 2

手性分子绝对构型的确定 手性分子可以分为下面几种类型:中心手性分子,轴手性分子,平面手性分子及螺旋手性分子。 下面用R/S 命名法依次对它们进行命名。 中心手性分子: 如果一个原子连接四个不同的基团,则称这个原子具有手性。常见的有C, N, P, S, Si, As 等原子。 判断方法:先将与手性原子相连的四个原子(团)按次序规则进行排列,然后将次序最小的原子(团)放在距观察者最远的位置,再观察其他3个原子(团)的排列次序,若由大到小的排列次序为顺时针方向,则R 为型,若为逆时针方向,则为S 型. e a 假定原子的优先次序为a >b > d >e b d 为顺时针方向,R 型 b d 为逆时针方向,S 型 轴手性分子:四个基团围绕一根轴排列在平面之外的体系,当每对基团不同时,有可能是不对称的。轴手性分子可分为以下几种类型: 丙二烯型分子:螺环型分子: 环外双键型分子: 联苯型分子: C 3 3 H 3 3 H 3 (远端) 逆时针方向,R 型 顺时针方向,R 型 (近端)逆时针方向,S 型 (近端)逆时针方向,S 型 从左向右看: 从左向右看: (远端) 判断方法:从左向右看,先看到的基团为近端,用实线表示,后看到的基团为远端,用虚线 表示,然后从近端的大基团看到近端的小基团再看到远端的大基团(不看远端的小基团),若为顺时针方向,则为则R 为型,若为逆时针方向,则为S 型. 平面手性分子:平面手性通过对称平面的失对称作用而产生,其手性取决与平面的一边与另

一边的差别,还取决与三个基团的种类。判断方法:第一步是选择手性平面,第二步是确定平面的优先边,这个优先边可以通过按标准的顺序规则在直接连接到平面原子的原子中找到哪一个是最优先的来确定。连接到平面的一套原子中的最优先原子,即先导原子或导向原子标记了平面的优先边(标记为1号),第二优先(标记为2号)给予手性平面直接与1号基团成轴连接的原子,等等,对于1-2-3为顺时针方向,则为R p 为型,若为逆时针方向,则为S p 型. 例如: S p 型R p 型 螺旋手性分子:螺旋性是手性的一个特例,其中分子的形状就像右的或左的螺杆或盘旋扶梯,从旋转轴的上面观察,看到的螺旋是顺时针方向的定为P 构型,而逆时针方向的定为M 构型. 例如: M 型 几个例子: 22 3 从上往下看: 顺时针方向,R 构型 近端 远端 从左向右看: R S 参考文献 《有机结构理论》,图书馆藏书

项目名称:功能导向的纳米超分子组装体结构调控 与可控制备 首席科学家:刘育南开大学 起止年限:2011.1至2015.8 依托部门:教育部天津市科委

二、预期目标 总体目标 以分子识别与传感、分子存储与转换、生物活性分子传输等功能为导向,利用小分子与小分子自组装、小分子与大分子自组装及大分子与大分子自组装构筑具有重要应用前景的纳米超分子组装体,运用各种现代测试技术研究纳米超分子组装体的形成规律,阐明小分子/小分子自组装体、小分子/大分子自组装体、大分子/大分子自组装体等各层次纳米超分子组装体间的内在联系、物理和化学过程、构效关系以及特定功能等基础科学问题。通过对自组装方法的优化实现纳米超分子组装体的结构调控和可控制备,提供多种具有特定功能和重要应用前景的纳米超分子组装体,并在此基础上揭示新现象,发展新理论,开拓新技术,推动相关学科的发展。 五年预期目标 在前一期重大研究计划?纳米研究?专项项目?具有重要应用背景的纳米超分子组装体的构筑与功能研究?研究成果的基础上,进一步加大研究力度,以分子识别与传感、分子存储与转换、生物活性分子传输等功能为导向,设计多个系列功能小分子和大分子作为构筑单元,通过小分子与小分子自组装、小分子与大分子自组装及大分子与大分子自组装构筑150种以上结构、形貌可控的纳米超分子组装体。利用各种现代测试手段考查它们的结构特征以及它们所具有的特定功能,阐述分子组装过程中各种外界因素对纳米超分子组装体结构和功能的影响,总结自组装的一般规律以及小分子/小分子自组装体、小分子/大分子自组装体、大分子/大分子自组装体等各层次纳米超分子组装体间的内在联系,通过引入不同性能的修饰基团和完善自组装工艺实现纳米超分子组装体的结构调控和可控制备,提升我国在纳米科学领域的国际影响,为开发具有我国自主知识产权的纳米技术提供新材质和奠定理论基础。本项目成果预计提供150-200篇高水平的论文发表在SCI摘录刊物上,申请国家发明专利20-30项,培养100名以上的博士和硕士研究生。

关于分子的对称性 高剑南 ﹙华东师范大学200062﹚ 1.从《非极性分子和极性分子》一课说起 曾经看过有关《非极性分子和极性分子》的教学设计,也听过《非极性分子和极性分子》的公开课。无论是教学设计,还是公开課,都很精彩。遗憾的是听到教师这样的讲述:CCl4分子为正四面体结构,是对称分子,所以是非极性分子。H2O分子的空间构型为折线形,不对称,所以是极性分子。甚至总结为:“分子的空间构型为直线型、平面正四边型、正四面体等空间对称构型的多原子分子则为非极性分子;分子的空间构型为折线型、三角锥型、四面体等空间不对称构型的多原子分子则为极性分子”。 那么,这样的判断有没有问题?何谓对称?何谓不对称?何谓极性分子?何谓非极性分子?分子的对称性与分子极性有着怎样的内在联系?研究对称性有什么意义? 2. 对称性 在所有智慧的追求中,很难找到其他例子能够在深刻的普遍性与优美简洁性方面与对称性原理相比。——李政道 2.1 对称是自然界的一个普遍性质 对称性是自然界的一个普遍现象。任何动物,无论是低等动物草履虫,还是高等的哺乳动物包括人;任何植物,无论是叶,还是花,都具有某种对称性。人类受此启发,任何建筑,无论是古建筑天坛、罗马式大教堂、泰姬陵,还是现代建筑国家大剧院、鸟巢体育馆;无论是高档别墅,还是普通民居,都具有某种对称性。对称是自然界中普遍存在的一种性质,因而常被认为是最简单、最平凡的现象。然而,对称又具有最深刻的意义。科学家、艺术家、哲学家从各种角度研究和赞美对称,“完美的对称”、“神秘的对称”、“可怕的对称”,表明对称性在人类心灵中引起的震撼。 a. 捕蝇草 b. 台灣萍蓬草 c.对称性雕塑艺术 图1 对称是一个普遍现象 2.2 对称操作与对称元素 对称性用对称元素和对称操作来描述。经过不改变图形中任何两点间距离的操作能够复原的图形称为对称图形。能使对称图形复原的操作称为对称操作。进行对称操作时所依赖的对称要素(点、线、面)称为对称元素。根据对称操作的概念,将一张纸撕成两半,然后再拼接,即使拼得天衣无缝,这“撕”纸的操作不能称为对称操作,这张纸即使修复得“天衣无缝”,也不能说纸在对称意义上“复原”了。因为在撕纸的过程中图形中任意两点间的距离都改变了,不满足对称图形的要求。

手性分子的合成方法及研究进展 学号: 班级: 姓名:

摘要:本文主要将手性药物的合成方法分为了两大类,并分别列举了一些方法,其中详细介绍了手性源合成以及酶法获得手性化合物两种方法,并通过对方法的介绍简述了手性化合物的研究进展。 关键词:手性化合物、合成、研究进展 手性是自然界最重要的属性之一,分子手性识别在生命活动中起着极为重要的作用。同一化合物的两个对映体之间不仅具有不同的光学性质和物理化学性质,而且它们具有不同的生物活性,比如在药理上,药物作用包括酶的抑制、膜的传递、受体结合等,均和药物的立体化学有关;手性药物的对映体的生物学活性、毒性、代谢和药物素质完全不同。获得手性化合物的方法,不外乎非生物法和生物法两种。 一、非生物法 非生物催化主要是指采用化学控制等手段来获得手性化合物,它主要包括不对称合成法、手性源合成、选择吸附拆分法、结晶法拆分、化学拆分法、动力学拆分、色谱分离等。下面主要介绍手性源合成: 手性源合成或者手性底物的诱导,该方法被称为第一代手性合成方法,亦称为底物控制法。它是通过底物中原有手性的诱导,在产物中形成新的手性中心。可简略表述为:原料为手性化合物A*,经不对称反应,得到另一手性化合物B*,即手性原料转化为反映产物。 美国Scripps 研究所Wong等曾报道了利用阿拉伯糖来合成L-N-乙酰神经氨酸的方法,该方法便是极其巧妙的利用了手性源合成。 阿拉伯糖是一个醛糖,它开环后的醛基与氨基化合物得到Schiff 碱中间体,硼酸衍生物上的乙烯基以富电子碳原子于Schiff碱上的碳原子发生亲核进攻,得到烯烃衍生物中间体,氨基用酸酐保护,总产率55%, de%为99%。烯烃衍生物中间体与硝酮衍生物进行1,3偶极环加成,得到氮氧五元环化合物,加成过程立体选择性较好,90%的产物是立体控制的。氮氧物五元环化合物经过脱质子化得到西佛碱中间体,水解后即得到L-N-乙酰神经氨酸(如图)。

超分子化学技术及其应用进展 20世纪80年代末, 诺贝尔化学奖获得者J.M.Lehn 创造性地提出了超分子化学的概念,它的提出使化学从分子层次扩展到超分子层次,这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。功能的最小基本单位不是分子而是超分子,功能产生于超分子组装体之中,这种认识带来了飞跃。据估计,现在已有40 %的化学家要用超分子的知识来解决所面临的科学问题,超分子科学已成为21世纪新思想、新概念和高技术的一个主要源头[1]。 所谓超分子化学[2],是基于分子间的弱相互作用(或称次级键) 而形成复杂而有序且有特定功能分子聚集体的化学。不同于基于原子构建分子的传统分子化学,超分子化学是分子以上层次的化学,它主要研究两个或多个分子通过分子之间的非共价键弱相互作用,如氢键、范德华力、偶极/ 偶极相互作用、亲水/ 疏水相互作用以及它们之间的协同作用而生成的分子聚集体的结构与功能。 一、超分子化合物的分类[3] 1.1杂多酸类超分子化合物 杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物。作为一类新型电、磁、非线性光学材料极具开发价值,有关新型Keg-gin和Dawson 型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注。 1.2 多胺类超分子化合物 由于二氧四胺体系可有效地稳定如Cu ( Ⅱ) 和Ni ( Ⅱ) 等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用。大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视。近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元。李晖等利用了冠醚分子的分子识别能力及蒽

手性化合物的合成和分离方法研究进展 摘要:手性问题与我们的生活密切相关,它涉及到生命、动植物、药物、食品、香料、农药等诸多领域,本文介绍了手性化合物的一些用途,合成和分离方法及发展方向。手性化合物的制备已成为当前国内外较热门的研究课题之一。本文从非生物法和生物法两个方面较全面地综述了手性化合物的制备方法, 希望为相关研究者提供参考。 关键词:手性化合物;手性药物;制备;生物合成 1.1用途 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心[1]。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品[2]。 1.生物制药 在合成中引入生物转化在制药工业中已成为关键技术。如Merck公司开发的酰胺酶抑制剂西司他丁的生产就是一个实例。西司他丁是一种N-取代的(S)-2,2-二甲环丙烷羰酰胺衍生物,它可以从易得原料合成消旋2,2-二甲基环丙羰腈开始,通过不同途径合成。 2.生物农药 拟除虫菊酯类杀虫剂是70年代中期开始大量使用的新型农药,是天然除虫菊酯的模拟物,生物降解性好,对环境影响小。拟除虫菊酯具高效安全杀虫谱广等优点。在世界农药市场占有一定的地位。手性化合物在生物农药方面也有广扩的前景,此杀虫剂占全球杀虫剂市场的20%。 3.香料、添加剂和酶技术 香精香料和其他行业占手性市场总值的4.7%;如人工合成一些甜味剂癸内酯具有强烈的果香香气。 酶技术的一个新方向是美国Altus Biologics的交联酶结晶(cross - linked enzyme

专论———化学前沿2009年,第5期手性,手性药物及手性合成 胡文浩,周静 (华东师范大学化学系,上海 200062) 摘要:手性是自然界的属性,也是人类赖以生存的本质属性之一,在生命过程中发生的各种生化反应过程均与手性的识别和变化有关,从而联系到药物的手性,由于手性药物的对映异构体的药效也有差别,导致在药物合成过程中不对称合成成为重中之重。以乌苯美司为例,介绍了原料手性诱导合成和不对称催化合成方法,提出了不对称多组分反应在乌苯美司合成中的新应用。 关键词:手性,手性药物,手性合成,不对称催化,乌苯美司文章编号:1005-6629(2009)05-0001-03 中图分类号:G633.8 文献标识码:B 手性是自然界的属性。手性(英文名为chirality,源自希腊文cheir )是用来表达化合物分子结构不对称性的术语。人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。 化合物的手性与其空间结构有关,因为化合物分子中的原子的排列是三维的。例如,图1中表示乳酸分子的结构式1a 和1b ,虽然连接在中心碳原子上的4个基团,即H,COOH,OH 和CH 3 都一样,但它们却是不同的化合物。它们之间的关系如同右手和左手之间的关系一样,互为对映体[1]。 手性是人类赖以生存的自然界的本质属性之一。生命现象中的化学过程都是在高度不对称的环境中进行的。构成机体的物质大多具有一定空间构型,如组成蛋白质和酶的氨基酸为L-构型,糖为 D-构型,DNA 的螺旋结构为右旋。在机体的代谢和 调控过程中所涉及的物质(如酶和细胞表面的受体)一般也都具有手性,在生命过程中发生的各种生物-化学反应过程均与手性的识别和变化有关[2]。 由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物,其中只含有效对映体或者以有效的对映体为主。药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的[1]。 在许多情况下,化合物的一对对映异构体在生物体内的药理活性、代谢过程、代谢速率及毒性等 存在显著的差异。另外在吸收、分布和排泄等方面也存在差异,还有对映体的相互转化等一系列复杂的问题。但按药效方面的简单划分,可能存在三种不同的情况:1、只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用,如治疗帕金森病的L-多巴(L-dopa ,图2中a ),其对映异构体对帕金森病无治疗效果,而且不能被体内酶代谢,右旋体聚积在体内可能对人体健康造成影响;2、一对对映异构体中的两个化合物都有等同的或近乎等同的 药理活性,如盖替沙星(gatifloxacin ,图2中b ),其左旋体和右旋体的活性差别不大;3、两种对映体具有完全不同的药理活性,如镇静药沙利度胺(thalido - mide,又名反应停,图2中c ),(R)-对映体具有缓解妊 娠反应作用,(S)-对映体是一种强力致畸剂[1,2]。因此,1992年3月FDA 发布了手性药物的指导原则,明确要求一个含手性因素的化学药物,必须说明其两个对映体在体内的不同生理活性,药理作用,代谢过程和药物动力学情况以考虑单一对映体供药的问题[2]。目前,手性药物受到世界各国的关注和重视,手性药物的合成也成为目前各国研究的一项迫切的任务。 自19世纪Fischer 进行了氢氰酸和糖的反应[3],得到了不同比例的氰羟化物异构体,开创了不对称反应的研究领域以来,至今已有100多年的历史,不对称反应的发展历程经历了四个阶段[2]: H HOOC OH HO H COOH H C áCH á 1a 1b 2 HO H N áHO COOH a. L- H H C ?HN N OMe F O COOH * 1/2 H O áb. N O O O O N NH c. 1

不对称分子及生命分子的手性起源 王丁众钟绮文江来田松海张威关键词:不对称,光活性,起源 一、不对称分子 在引出这个概念之前,我们先看什么是对称分子。对称分子有以下几种对称因素: 1、平面对称因素即存在一个平面把分子分成两部分,这个平面好像一个镜子,镜外实体的镜象可与镜内实体重叠,如CH2=CH 2、C6H6、CO2等。 2、反射对称因素检查是否存在这种因素时,一般需经两个操作:先将分子通过一个轴旋转2π/n度,然后用一个垂直这个轴的镜面反射,如果镜内的镜象和镜外未旋转前的实 体完全重叠,如分子,这种具有n次反射对称轴的分子也为对称分子。 3、简单轴对称因素即以一条直线为旋转轴旋转2π/n度,得到的分子与原分子可以重叠,n表示轴的级,称n重轴,如氨分子有一个三重轴。但需注意的是,如果分子中不含其它对称因素,只有简单旋转轴因素,它们就必定和其镜象不重叠,这就是我们要说的不对称分子,又叫手性分子,如L-酒石酸、D-酒石酸。 由此我们可以引出不对称分子(即手性分子)的概念:在三维空间中实体与其镜象或经轴旋转后的镜象不重叠的分子,即为不对称分子。 旋光性是手性分子的重要特征。不对称分子的实体和镜象─—左手性分子(用L表示)和右手性(用D表示)─—互称对映体。它们的差别在于对偏振光作用不同:一个可以把偏振光向左旋,另一个则把偏振光向右旋。 二、不对称分子对生命的意义 1、不对称分子是生命的物质基础。 生命的基本物质是核酸和蛋白质。核酸和蛋白质以及糖元、淀粉、纤维素、磷脂等都有右手螺旋结构(可用右手螺旋方法判断),螺旋型分子均是不对称分子,而它们的单体如核苷酸、氨基酸等,也都是不对称分子。 2、光学活性是生命有序性和组织化的基础 生命是一个非常高度组织化了并高度有序的体系。为了生成这样的体系,就只能有一种对映体作为形成生物分子的空间结构,如组成生命蛋白质的氨基酸都是L型,组成核酸的核糖和脱氧核糖分子都是D型。 试想如果没有这种光学活性,会怎样呢?例如由100个谷氨酸组成的α一聚谷氨酸大分子,组成单元具有同一旋光性的,就只能生成一种α一聚谷氨酸。相反,若这100个氨基酸分子是L型和D型的混合物,则这100个氨基酸组成的聚合分子的异构体将有2100个之多,这样的分子根本构不成高度有序的生命分子。 3、生物大分子手性是识别生命与非生命的探针 在地球上的生命组织的蛋白质中,氨基酸都是L型;核酸中,核糖和脱氧核糖总是D

第二章分子的对称性与分子结构 【补充习题及答案】 1.HCN和CS2都是直线形分子,请写出它们具有的对称元素的种类。 答案:HCN:C∞、σv。CS2:C∞、C2'、σh、σv、i、S∞。 2.指出下列分子存在的对称元素: (1)AsCl3;(2)BHFBr;(3)SiH4 答案:(1)AsCl3分子为三角锥形,存在对称元素C3和3σv。 (2)BHFBr分子为三角形,存在对称元素1个σ。 (3)SiH4分子为四面体形,存在对称元素4C3、3C2、3S4、6σd。 3.SF5Cl分子的形状和SF6相似,试指出它的点群。 答案:SF5Cl分子仍为八面体,但1条键与其他键不同,分子点群为C4v。 4.正八面体6个顶点上的原子有3个被另一种原子取代,有几种可能的方式?取代产物各属于什么点群?取代产物是否具有旋光性和偶极矩? 答案:只有经式(mer-)和面式(fac-)两种取代方式。经式产物属于C2v点群,面式产物属于C3v点群。均有偶极矩,均无旋光性。 5.指出下列各对分子的点群。 (1)CO2和 SO2 (2)二茂铁(交错式)和二茂钌(重叠式)(3)[IF6]+八面体)和[IF6]-(五角锥)(4) SnClF(角形)和XeClF(线形)

(5)mer-WCl3F3和fac-WCl3F3(6)顺式和反式Mo(CO)4Cl2 答案:(1)CO2:D∞h点群;SO2:C2v点群。 (2)二茂铁(交错式):D5h点群;二茂钌(重叠式):D5d点群。 (3) [IF6]+(八面体):O h点群;[IF6]-(五角锥):C5v点群。 (4)SnClF(角形):C s点群;XeClF(线形):C∞v点群。 (5)mer-WCl3F3:C2v点群;fac-WCl3F3:C3v点群。 (6)顺式Mo(CO)4Cl2:C2v;反式Mo(CO)4Cl2 :D4h点群 6.如何判断一个分子有无永久偶极矩和有无旋光性? 答案:对称元素不是交于一点的分子具有永久偶极矩。C n和C nv点群对称元素交于C n轴,因此属于C n和C nv点群的分子都具有永久偶极矩,而其他点群的分子无永久偶极矩。由于C1v ≡C s,因此C s点群也包括在C nv点群中。 凡具有反轴S n对称性的分子一定无旋光性,而不具有反轴对称性的分子理论上具有旋光性。由于S1≡σ,S2≡i,所以具有i和σ的分子也一定无旋光性。 7.下列哪个物质具有手性?哪个物质具有极性?(分子中离域的双键均忽略不计) Cl HO P N N P N P P N (1)顺式CrCl2(acac)2(2)反式CrCl2(acac)2(3)cyclo-(Cl2PN)4答案:(1)有手性,有极性。

相关主题